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Light-matter interaction induces a shadow vortex
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By sending a light beam on a homeotropic nematic liquid-crystal cell subjected to a voltage with a photosensitive
wall, a stable matter vortex can be induced at the center of the beam. When the applied voltage is decreased, the
vortex disappears from the illuminated region; however, the system shows a stationary molecular texture. Based
on a forced Ginzburg-Landau amplitude equation, we show that the vortex with a core of exponentially suppressed
amplitude always remains in a shadow region below instability threshold and that the observed texture is induced
by its phase distribution. This is a different type of vortex phase singularity solution. Numerical simulations and
experimental observations show a quite fair agreement.
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In two-dimensional systems, dissipative vortices are de-
scribed by the complex Ginzburg-Landau equation (CGLE),
which has universal character and describes such different
systems as fluids, superfluids, superconductors, liquid crystals,
granular media, magnetic media, and optical dielectrics, to
mention a few [1–3]. Vortices occur in complex fields and
can be identified as topological defects, that is, pointlike
singularities which locally break the symmetry. They exhibit
zero intensity at the singular point with a phase spiraling
around it. The topological charge is assigned by counting the
number of spiral arms in the phase distribution, while the sign
is given by the sense of the spiral rotation.

Liquid crystals with negative anisotropic dielectric constant
and homeotropic anchoring are a natural physical context
where dissipative vortices are observed [4,5]. The nematic
liquid-crystal phase is characterized by rod-shaped molecules
that have no positional order but tend to point in the same
direction. The state of the nematic liquid crystal is described
by a vector—the director n⃗—which accounts for the molecular
order. When a homogeneous layer of nematic liquid crystal is
subjected to a low frequency electric field along the director,
the molecules will tend to align perpendicularly to the electric
field if the dielectric anisotropy is negative; this is in order
to minimize the dipolar interaction of the molecules and
the electric field [5]. Due to the competing behavior of
the torque generated by the applied field and the intrinsic
elastic torque generated by the liquid-crystalline medium, an
effective reorientation will occur when the electric torque
overcomes the elastic one. Thus, over the critical voltage at
which this imbalance occurs, i.e., the Fréederickz transition
voltage, the molecules will align towards the plane normal
to the electric field but in random directions, causing the
emergence of dissipative defects, which will tend to disappear
with the aim of establishing a new molecular orientation that
minimizes the energy of the system. This effect can be easily
observed experimentally in geometries where the liquid crystal
is confined between two conductive glass plates, treated to
promote orthogonal, so-called homeotropic, alignment of the
molecules at the interface between the liquid crystal and the
glass plate. The electric field can be applied to the liquid-crystal

layer via a low frequency voltage through the inner transparent
conductive coating of the glass plates. Dissipative vortices
are known in this context as umbilical defects [4]. Two
types of stable vortices are observed. They have opposite
charges and are characterized by being attracted to (repulsed
from) the opposite (identical) topological charge. Note that
the defects observed in this context are strongly dissipative,
compared to those observed in magnetic systems, superfluids,
superconductors, and Bose-Einstein condensates. Recently,
by exploiting reorientational nonlinearities in the nematic
liquid-crystal layer of an optically addressable liquid-crystal
cell, the so-called liquid-crystal light valve (LCLV), it has
been shown that spontaneous, stable matter vortices can be
induced at the chosen location [6,7]. This is accomplished by
sending light beams onto a homeotropic nematic liquid-crystal
cell subjected to a voltage with a photosensitive wall. Figure 1
shows a schematic representation of the experimental setup
and the typical vortex observed using linear crossed polarizers.
When the voltage V0 applied to the cell is decreased, the vortex
disappears from the illuminated region; however, the system
shows a stationary molecular texture that is characterized by
dark lines separating different lobes of molecular orientations
[cf. Fig. 1(c)]. The induced voltage in the illuminated area is
above the threshold, i.e., Fréederickz tension, necessary for
the molecules to reorient. The unilluminated area, i.e., shadow
region, is characterized by having the applied voltage lower
than the critical threshold. The texture deformation revealed
by the lines of zero intensity intersecting at the boundary of the
illuminated region identifies the presence of a shadow vortex.

The stability properties and dynamical evolution of the
vortices are associated with their topological nature. Therefore,
the mechanisms through which these solutions disappear
or self-organize in extended systems are open questions.
The aim of this Rapid Communication is to explain the
mechanism of disappearance of a vortex and the emergence of
a reorientation domain as a result of light-matter interaction in
a liquid-crystal light cell with a photosensitive wall. Based on
a forced Ginzburg-Landau amplitude equation that describes
the system under study, we show that the observed texture is
induced by the phase of the vortex with an exponentially small
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FIG. 1. (a) Schematic setup for vortex induction; a light beam is
incident on the photoconductive side of the LCLV. (b),(c) Intensity
profiles measured using linear crossed polarizers for a large (V0 = 18
V) and a small (V0 = 17 V) voltage, respectively. The presence of
a shadow vortex is revealed in (c) by the lines of zero intensity
intersecting at the boundaries of the illuminated region.

amplitude located in a region below the instability threshold,
i.e., the shadow region. The shadow vortex is a different
type of phase singularity solution. Numerical simulations and
experimental observations show a quite fair agreement.

To describe the dynamics of the illuminated liquid-crystal
light valve filled with a negative dielectric nematic liquid
crystal and homeotropic anchoring, we consider a model in the
vicinity of the Fréedericksz transition, a limit where analytical
results are accessible as nematic liquid-crystal molecules are
weakly tilted from the longitudinal axis ẑ and backflow effects
can safely be neglected. The dynamical equation for the
molecular director n⃗(r⃗ ,t) reads [5]

γ ∂t n⃗ = K3[∇2n⃗ − n⃗(n⃗ · ∇2n⃗)]

+ (K3 − K1)[n⃗(n⃗ · ∇⃗)(∇⃗ · n⃗) − ∇⃗(n⃗ · ∇⃗)]

+ 2(K2 − K3){(n⃗ · ∇⃗ × n⃗)[n⃗(n⃗ · ∇⃗ × n⃗) − ∇⃗ × n⃗]

+ n⃗ × ∇⃗(n⃗ · ∇⃗ × n⃗)} + ϵa(n⃗ · E⃗)[E⃗ − n⃗(n⃗ · E⃗)], (1)

where γ is the relaxation time, ϵa is the anisotropic dielectric
constant (ϵa < 0), and {K1,K2,K3} are, respectively, the splay,
twist, and bend elastic constants of the nematic liquid crystal.
Under uniform illumination, E⃗ = [V0 + αI ]/d ẑ, where V0
is the voltage applied to the LCLV, d is the thickness of the
cell, I is the intensity of the illuminating light beam, and α is
a phenomenological dimensional parameter that describes the
linear response of the photosensitive wall [8]. The homeotropic
state, n⃗ = ẑ, undergoes a stationary instability for critical
values of the voltage which match the effective Fréedericksz
transition threshold VFT =

√
−K3π2/ϵa − αI .

Illuminating the liquid-crystal light valve with a Gaussian
beam induces a voltage drop with a bell-shaped profile across
the liquid-crystal layer, and higher in the center of the
illuminated area. The electric field within the sample takes
the form [7]

E⃗ = Ezẑ + Er r̂ ≡ [V0 + αI (r)]
d

ẑ + zα

d
I ′(r)r̂ , (2)

where r is the radial coordinate centered on the beam, r̂ is the
unitary radial vector, I (r) is the intensity of the Gaussian light
beam, I (r) = I0e

−r2/2ω2
, I0 is the peak intensity, and ω is the

waist of the light beam.
Considering the intensity of the light beam as small enough

and close to the Fréedericksz transition, one can use the
following ansatz for the amplitude of the critical spatial
mode [7]:

n⃗(r,θ,z,t) ≈

⎛

⎜⎝
u(r,θ,t) sin

(
πz
d

)

w(r,θ,t) sin
(

πz
d

)

1 − 1
2 (u2 + w2) sin2

(
πz
d

)

⎞

⎟⎠. (3)

Introducing the above ansatz in the director equation, in-
tegrating in the z coordinate over the sample thickness,
and considering the complex amplitude A ≡ (u + iw), after
straightforward calculations one obtains the forced Ginzburg-
Landau equation [6,7],

γ ∂tA = µA − aA|A|2 + K∇2
⊥A + δ∂ηηĀ + bI ′(r)eiθ , (4)

where µ(r) ≡ −K3k
2 − ϵaE

2
z (r) is the bifurcation parameter,

a ≡ −(K3k
2/4 + 3ϵaE

2
z /4) > 0, k ≡ π/d, b ≡ 2ϵaαV0/dπ ,

∂η ≡ ∂x + i∂y , K ≡ (K1 + K2)/2, and δ ≡ (K1 − K2)/(K1 +
K2) accounts for the elastic anisotropy. Note that in the ansatz
[Eq. (3)], higher order nonlinear terms in amplitude A have
been neglected.

Neglecting the anisotropy (K1 = K2 = K3 and δ = 0) and
considering homogeneous illumination (I = I0), the above
model reduces to the well-known Ginzburg-Landau equation
with real coefficients, which admits stable dissipative vortex
solutions with topological charge ±1 [1,10]. However, due to
their microscopic constituents (rod-shaped molecules), liquid
crystals are anisotropic materials, and thus, in general, K1 ̸=
K2 ̸= K3. When the anisotropy is taken into account (δ ̸= 0),
this generates a symmetry breaking of vortex solutions with
different topological charge [9]. This anisotropic amplitude
equation adequately describes the dynamics of the nematic
umbilical defects.

Taking into account inhomogeneous illumination and
anisotropy, the system is described by Eq. (4). The last term
on the right-hand side is an external forcing generated by
the inhomogeneous radial electric field. Such forcing term
is responsible for inducing a matter vortex with positive
charge at the center of the applied Gaussian beam [6]. The
anisotropic term is responsible for slight rotation of the matter
vortex; also due to this term a vortex of positive charge is
energetically preferred by the system [9]. Figure 2 shows a
typical vortex solution obtained from numerical simulations
of the model given by Eq. (4). Notice that the nullcline field
ψ(x,y,t) ≡ Re(A)Im(A) adequately realizes the experimental
observations using linear crossed polarizers. The numerical
simulations were conducted considering a triangular finite
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FIG. 2. Induced vortex obtained from numerical simulations of the forced Ginzburg-Landau equation (4) with µ(r) = −0.2 + e−r2/2000,
a = 1, b = −5, I ′(r) = −re−r2/2000/1000, and δ = 0.7. (a) Vector representation of the complex amplitude A(x,y), with the horizontal and
vertical components corresponding, respectively, to the real and imaginary parts of A. The dashed circumference stands for the illuminated
area, which corresponds to the region with positive µ. (b) Tridimensional graph of the magnitude of the complex amplitude A(x,y). (c) Contour
plot of the nullcline field ψ(x,y) = Re(A)Im(A). (d) Phase field of the complex amplitude A(x,y).

element code with adaptive spatial and temporal steps, and
a simulation box of dimensions 100 × 100 with Neumann
boundary condition. Hence, model (4) adequately describes
the observed dynamics of light-matter interaction in a liquid-
crystal light cell with a photosensitive wall [6,7].

When the voltage is decreased, it crosses a critical value
and the vortex in the center of the illuminated region becomes
unstable. As a result, it moves from the illuminated region
towards the unilluminated region and, at the end, the vortex
is located in the region below the Fréederickz threshold—we
call this type of phase singularity a shadow vortex. Figure 3
shows different properties of the shadow vortex that make it
distinct from the standard vortex. Note that the shadow vortex
is positioned near the region where the bifurcation parameter
changes sign. This is easy to discern by analyzing the phase of
the amplitude A [cf. Fig. 3(c)]. However, experimental deriva-
tion of the phase using the polarimetry technique in a region
where the amplitude is exponentially small becomes difficult if
possible. Therefore, the orientation domain of the field A in the
illuminated region is completely determined by the vortices in
the shadow region [cf. Fig. 3(a)]. Because the shadow vortex
is located in the region of exponentially suppressed amplitude
[see Fig. 1(d)], it is difficult to detect it position from the
magnitude of the amplitude. At the same time, the form of the
nullcline field obtained numerically [cf. Fig. 3(b)], which is
quite similar to the one observed experimentally [cf. Fig. 1(c)],

clearly indicates the shadow vortex center. Notice that due
to forcing, the inhomogeneous solution without topological
charge is not a solution of the system.

When the bifurcation parameter is positive and inhomoge-
neous, µ(r), and without forcing (b = 0), it is known that the
vortex moves down the gradient of this parameter to minimize
the system energy [10]. The corresponding topologically trivial
solution is called corner layer [11]. Tuning the forcing on
induces the vortex with positive charge at the center of the light
beam. The balance between these effects determines whether
the position of the vortex is in the bright region or in the dark
region. By increasing the voltage applied to the sample, the
shadow vortex becomes unstable and moves to the illuminated
region and positions itself at the center of the light beam—the
local profile of this phase singularity is that of the standard
vortex.

To understand the dynamics of these phase singularities,
we have considered the equivalent equation in one dimension,

∂t u = (µ0 + βe−x2/ω2
)u − u3 + ∂xxu + αxe−x2/ω2

, (5)

where u(x,t) is a one-dimensional order parameter, µ0 < 0
is a control parameter, β stands for the intensity of the
inhomogeneous linear parameter and satisfies β + µ0 > 0, ω
is the width of the Gaussian, and α is the intensity of the
forcing. For β = α = 0, the previous model (5) corresponds
to the real Ginzburg-Landau equation or the overdamped
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FIG. 3. Shadow vortex obtained from numerical simulations of the forced Ginzburg-Landau equation (4) with µ(r)=−0.2 + e−r2/2000, a=1,
b = −0.02, I ′(r) = −re−r2/2000/1000, and δ = 0.1. (a) Vector representation of the complex amplitude A(x,y). The dashed circumference
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of the complex amplitude A(x,y). (d) Tridimensional graph of the magnitude of the complex amplitude A(x,y).
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FIG. 4. Induced kinks obtain from numerical simulation of the
one-dimensional forced real Ginzburg-Landau equation (5) with
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0.005. (b) Shadow kink with α = 0.002. The solid and the dashed
curves account for the stationary solution of the scalar field u(x) and
the inhomogeneous bifurcation parameter µ(x).

φ4 model. Topologically nontrivial solutions of Eq. (5) are
kinks—they correspond to vortex solutions in Eq. (4). When
the kinks are spatially monotone increasing (decreasing),
they are positively (negatively) charged. The inhomogeneous
linear term (proportional to β) causes the kink to move in
the direction of its gradient and its effect is similar to that
in the two-dimensional equivalent. On the other hand, the
forcing term (proportional to α) tends to generate a kink
that is positioned at the origin. Then, the superposition of
these two terms—when α is large enough—must generate a
kink at the origin, i.e., standard kink. Figure 4(a) shows the
typical standard kink obtained from numerical simulations of
model (5). When α is decreased and exceeds a critical value,
the standard kink becomes unstable and begins to move to
the region where the linear parameter µ(x) is negative and is
finally positioned in the corner region. Figure 4(b) shows the
observed shadow kink. Notice that the core of the shadow kink
has an exponentially suppressed amplitude. Due to forcing,
the system always has a solution with at least one zero
(topological solution). Furthermore, the observed stationary

kinks are locally spatially growing, which is consistent with
the two-dimensional observations where induced vortices
only have positive topological charge. Therefore, the shadow
vortices and kinks result from the balance between the
forcing and the drag force caused by the inhomogeneous
parameter µ. When µ changes sign, the drag force is weaker,
and the equilibrium position of defects tends to be located
close to the zero level set of µ as seen in one and two
dimensions.

Conclusions. By using a nematic liquid crystal in a
homeotropic light-valve geometry with optical forcing, we ob-
serve experimentally and explain theoretically a different type
of phase singularity solution, called the shadow vortex, which
is located in a region close to but below the instability thresh-
old, and with a core of exponentially suppressed amplitude.
From an experimental point of view, this solution can only
be identified by means of its trace—molecular orientations—
which it makes in the illuminated region. Considering models
in one and two dimensions, we show that the shadow defects
are a generic behavior. Since the direction of the molecules and
hence the phase of the defect corresponds to the optical axis of
an optically anisotropic medium, it is expected that the light
beam emerging through this region acquires a Pancharatnam-
Berry phase as a result of the shadow vortex, in analogy to
similar effects occurring either in q plates [12] or in subwave-
length dielectric grating phase plates [13]. Recently, in Ref.
[14], using self-induced vortex defects in a liquid-crystal light
valve, the realization of programmable optical vortices lattices
with arbitrary configuration in space has been demonstrated.
The role of shadow vortices can be critical to understand the
emergence and disappearance of these lattices. The possibility
of tuning vortices between the illuminated and shadow region
may allow new applications in astronomy, image processing,
manipulable optical tweezers, quantum computation, and data
transmission.
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