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Abstract

We characterize the three generic quasi-reversible instabilities of closed orbits: the quasi-reversible saddle-node, the Krein
collision and the period doubling bifurcation. We show that after a periodic change of variables the asymptotic normal forms of
the last two instabilities are the Maxwell–Bloch and the Lorenz equations. We exhibit a simple example of the quasi-reversible
period doubling bifurcation, the quasi-reversible 2 :1 resonance. 2001 Elsevier Science B.V. All rights reserved.

The study of bifurcations plays a central role in the
modern theory of dynamical systems [1], and allows
one to describe in a universal way phenomena which
belong to different fields [2]. Recently in Ref. [3], we
have characterized the instabilities of stationary solu-
tions, which occur generically in one parameter fam-
ilies of finite-dimensional quasi-reversible dynamical
systems. These are systems in which the terms which
break the time reversal symmetry are small (irre-
versible effects), i.e., the system is in the neighborhood
of a reversible one. The aim of this Letter is the char-
acterization of the instabilities of periodic solutions of
quasi-reversible systems. First, we shall describe the
generic instabilities in one parameter families of peri-
odic solutions for dissipative dynamical systems. Af-
ter, we shall consider the instabilities of periodic solu-
tions of reversible dynamical systems in the presence
of small terms which break the time reversal symme-
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try (quasi-reversible systems). Finally, we shall study
a simple example of the quasi-reversible period dou-
bling instability, the quasi-reversible 2: 1 resonance.

A closed orbit in phase space, that is a periodic
solution, exhibits a bifurcation when the modulus of
a Floquet multiplier associated to this orbit crosses
the unit circle in the complex plane [4]. The local
bifurcations which occur generically in one parameter
families of finite-dimensional dissipative dynamical
system are [4] (a) two complex conjugate Floquet
multipliers cross the unit circle, (b) one real multiplier
crosses the unit circle through+1, and (c) one real
multiplier crosses the unit circle through−1.

The first bifurcation is characterized by the appear-
ance of quasi-periodic motion [5]. The second is the
saddle node bifurcation of a closed orbit, and the last
one is the period doubling instability.

In reversible systems, i.e., systems which are in-
variant under a time reversal transformation (see the
review [6] and references therein), the previous clas-
sification presents some changes. One has that ifλ

is a Floquet multiplier thenλ−1 is also a multiplier
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Fig. 1. Schematic representation of the Floquet multipliers for
the generical instabilities of the reversible systems. (a) Reversible
saddle node bifurcations, (b) Krein collision or or Neimark–Sacker
bifurcation, and (c) the reversible period doubling.

for the reversed closed orbit [7,8]. Therefore the only
“stable” or marginal states are those for which all Flo-
quet multipliers are on the boundary of the unit circle
(cf. Fig. 1), that is their modulus is equal to one. For
this kind of systems the spectral instabilities in one pa-
rameter families are:

• The reversible saddle node bifurcation, i.e., two
Floquet multipliers of modulus one on the unit
circle have a collision in the point+1 of the real
axis (see Fig. 1(a)).

• The Krein collision, which is the collision of two
Floquet multipliers of modulus one and of their
respective complex conjugates on the unit circle as
it is illustrated in Fig. 1(b) [9,10]. This bifurcation
is well known as the reversible Hopf bifurcation [8]
or Neimark–Sacker bifurcation [11].

• The reversible period doubling bifurcation, i.e., two
Floquet multipliers of modulus one which are on the
unit circle become real through a collision at point
−1 of the real axis as shown in Fig. 1(c).

A perturbation of the closed orbit in the direction of
the orbit is marginal and has a Floquet multiplier equal
to one. On the other hand, reversibility implies the
transformationλ → λ−1 for Floquet multipliers, and
consequently the multiplier one is degenerate. This is
a consequence of the fact that, in reversible systems,
one always has families of periodic solutions [7], and
then a perturbation in the direction in which the family
changes gives rise to another periodic solution with a
period close to the period of the unperturbed solution.

The reversible saddle node bifurcation is described
by four real variables{θ,ρ, x, y}, where {ρ,x, y}
are the variables which describe the evolution in a
neighborhood of the closed orbit [12]. The variables
ρ andθ parametrize the family of periodic solutions
and the closed orbit, respectively, and one has the time

reversal transformation

t → −t, θ → −θ, ρ → ±ρ, x → x, y → −y,
whereθ → −θ comes from the fact that the parame-
trization of the closed orbit changes its sign through
time reversal. For the sake of simplicity henceforth
we consider only the caset → −t , θ → −θ , ρ → ρ,
x → x andy → −y. If the initial system is invariant
under temporal translation (t → t + to) then the phase
variableθ does not couple to the other variables in
the normal form, which is obtained after aT -periodic
change of variables whereT is the period of the closed
orbit [4,13]. This property eliminates nonresonant pe-
riodic perturbations which play a fundamental role in
the presence of structurally unstable objects such as
homoclinic orbits. The asymptotic normal form is

∂tx = y,

∂ty = ε± x2 − ρx + aρ2,

∂tρ = 0,

(1)∂tθ = 2π

T
+ f (ρ, x),

wheref is a polynomial function,ε is the bifurcation
parameter anda is a coefficient of order one. The
scaling which leads to the previous equations is∂ttx ∼
O(ε), ∂tx ∼ O(ε3/4), ∂tρ ∼ O(ε3/4), x ∼ O(ε1/2),
y ∼ O(ε3/4), ρ ∼ O(ε1/2), and∂tθ ∼ O(1). We add
now the small irreversible effects which will appear
as terms of the unfolding of the instability, and obtain
asymptotically

∂ttx = ε± x2 − ρx + aρ2 − ν∂t x,

∂tρ = δ −µρ + ηx,

(2)∂tϕ = cρ + dx,

whereϕ ≡ θ − 2πt/T , δ ∼ O(ε3/4), µ ∼ ν ∼ η ∼
O(ε1/4), d ∼ c ∼ 1, and∂tϕ ∼ O(ε1/2). The para-
metersµ andν correspond to dissipative terms when
they are positive, whileδ and η are responsible for
injection of energy. The dynamics around the closed
orbit is given by the first two equations of the above
set. These equations describe the appearance through a
saddle node bifurcation of stable closed orbits, which
can then lose stability through a Hopf–Andronov bi-
furcation. This corresponds to the appearance of quasi-
periodic motion in the original system. When the sta-
ble limit cycle solution created in the Hopf–Andronov



200 M.G. Clerc et al. / Physics Letters A 287 (2001) 198–204

bifurcation intersects the unstable fixed point of the
first two equations of (2) we have an homoclinic bifur-
cation and for a certain region of parameters the sys-
tem exhibits Shilnikov chaos [14]. Hence, if the bifur-
cation parameter is increased, one peak of the Fourier
spectrum moves towards zero and when it is close to
zero, for certain values of the parameters, the system
(2) shows chaotic dynamics which correspond to the
period doubling route [15]. Note that, from the Fourier
spectrum of a given signal, either experimental or nu-
merical, one can identify the previous universal sce-
narios.

It is important to note that the energy is injected into
the system through a forcing at the same frequency as
the periodic solution. When the reversible system has
more marginal modes (Floquet multipliers) without
resonance between them, the quasi-reversible one is
governed by the above equations, since the intensities
of the other modes decreases in time.

In the case of the quasi-reversible Krein collision or
Neimark–Sacker bifurcation, the system is described
by six variables{A,B,ρ, θ} with A andB complex
amplitudes. We consider the time reversal transforma-
tion

t → −t, θ → −θ, ρ → ρ, A→ Ā, B → B̄.

Near the threshold of the bifurcation and after making
a T -periodic change of variables and including the
small irreversible terms the system is described by the
asymptotic normal form

∂tA= iΩA+B,

∂tB = −(
ν − i(Ω +∆)

)
B + εA± |A|2A− ρA,

∂tρ = −µρ + η|A|2,
(3)∂tθ = 2π

T
+ f

(
ρ, |A|2),

wheref is a polynomial function, exp(iΩ) the point
of the unit circle where the two Floquet multipliers
collide, ε the bifurcation parameter,∆ the detuning
parameter, and the terms with coefficientsν, η, µ
are irreversible terms. The scalings which lead to the
previous equations are∂tA ∼ O(ε), ∂tB ∼ O(ε3/2),
ρ ∼ O(ε), A ∼ O(ε1/2), B ∼ O(ε), ν ∼ η ∼ µ ∼
∆ ∼ O(ε1/2) and ∂t θ ∼ O(1) and we can see
that one has again the phase invarianceθ → θ + θo
which decouples the first five equations fromθ . These
equations describe the 1: 1 resonance in presence

of a neutral mode and in the absence of resonance,
i.e.,ΩT/2π �= p/q with p andq integers. They are
formally equivalent to the Maxwell–Bloch equations
[16], which describe the interaction between two level
atoms and an electromagnetic field [17].

The quasi-reversible period doubling is described,
as the quasi-reversible saddle node bifurcation, with
four variables{θ,ρ, x, y} which are obtained from
the variables of the original problem through a 2T -
periodic change of variables [13]. But now as a
consequence of the Floquet multiplier at−1, one has
reflection invariance in the variables{x, y}, i.e., the
normal form that describes the instability is invariant
under the transformation(x, y) → (−x,−y). It is
pertinent to recall here that for a stationary solution
the saddle node and Hopf instabilities are the two
local bifurcations which occur generically in one
parameter families of finite-dimensional dissipative
systems, and that the saddle node bifurcation, with the
extra property of reflection symmetry, is the analogous
of the period doubling instability of periodic solutions.
The time reversal symmetry that we consider is

t → −t, θ → −θ, ρ → ρ, x → x, y → −y,
and after taking into account the small quasi-reversible
terms we obtain the following asymptotic normal form
which describes the quasi-reversible system near the
threshold of the instability:

∂tx = y,

∂ty = εx − x3 − ρx − νy,

∂tρ = −µρ + ηx2,

(4)∂tθ = 2π

T
+ f

(
ρ,x2).

Heref is a polynomial function,ε is the bifurcation
parameter, the terms with coefficientsν andµ are dis-
sipative when these coefficients are positive, hence-
forth we assume that they are positive, and the term
proportional toη is a nonlinear injection or dissipa-
tion of energy. In order to obtain the latter equations
we have considered the scalings∂t x ∼ O(ε), ∂ty ∼
O(ε3/2), ∂tρ ∼O(ε3/2), x ∼O(ε1/2), ρ ∼O(ε), y ∼
O(ε), ν ∼ η ∼ µ ∼ O(ε1/2) and ∂tθ ∼ O(1). Intro-
ducing the variableϕ defined byθ = 2πt/T + ϕ the
asymptotic normal form takes the form

∂ttx = εx − x3 − ρx − ν∂tx,
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∂tρ = −µρ + ηx2,

(5)∂tϕ =mρ + lx2,

where∂tϕ is of orderε and we have only kept the
dominant terms in the equations above. The first two
equations are equivalent to the Lorenz model [3,18].

To illustrate the onset of this Lorenz bifurcation
in the quasi-reversible period doubling of a closed
orbit, we shall study as an example the truncated
reversible 2: 1 resonance [19], that is, we consider
the interaction of the fundamental and the second
harmonic mode, which can be written in terms of
two complex amplitudesA andB which satisfy the
equations

i∂tA = iΩA− aBĀ+ |A|2A+ c|B|2A,
(6)i∂tB = i2ΩB − bA2 − |B|2B + d|A|2B,

whereĀ is the complex conjugate ofA. Hencefortha
is considered positive. Close to the stationary solution
A = B = 0, A describes the mode of frequencyΩ
andB describes the mode of double frequency 2Ω .
Introducing the variablesA=AeiΩt andB = Bei2Ωt ,
the preceding equations read

i∂tA= −aBĀ+ |A|2A+ c|B|2A,
(7)i∂tB = −bA2 − |B|2B + d|A|2B,

and are invariant under the time reversal transfor-
mation t → −t , A → Ā, andB → B̄. The system
presents a set of closed orbits of the form

(8)A= 0, B =Roe
iR2

ot ,

whereRo parametrizes the family of closed orbits
(Ro � 0). In order to study the stability of these
periodic solutions, one can use the following ansatz:

B = (Ro + r)ei(R
2
ot+ϕ),

(9)A= (χ + iy)ei(R
2
ot+ϕ)/2,

which is a 2T -periodic change of variables (T =
2π/R2

o ) from (A,B) to (r, ϕ,χ, y), wherer is a per-
turbation of the amplitude of the solution,R2

ot + ϕ

parametrizes the closed orbit, and{χ,y} describe the
evolution in the other transverse directions. Introduc-
ing the previous ansatz in Eqs. (7) and linearizing we
obtain

∂t r = 0,

Fig. 2. Schematic representation of the Floquet multipliers of
quasi-reversible 2: 1 resonance (Eqs. (6)).

∂tϕ = 2Roρ,

∂ty = −
(
Ro

2
+ cRo − a

)
Roχ,

∂tχ =
(
Ro

2
+ cRo + a

)
Roy.

The system always has a Floquet multiplier in one
with multiplicity two which corresponds to the Jordan
block of the two first equations. Let us define

Ro,c ≡ 2a

(1+ 2c)
,

henceforth we assume that this quantity is positive,
that is c > −0.5. For Ro > Ro,c the system will
exhibit two other complex conjugate multipliers of
modulus one on the unit circle (cf. Fig. 2(a)), which
become real after colliding at−1 on the real axis
whenRo = Ro,c (cf. Fig. 2(b)). ForRo < Ro,c the
two real multipliers start moving away from−1 in the
real axis (cf. Fig. 2(c)). Hence, the periodic solution
shows a period doubling bifurcation forRo = Ro,c.
Using Ansatz (9), the system around the bifurcation
is described asymptotically by

∂tρ = 0,

∂t tx = εx − xρ − x3,

∂tϕ =mρ + lx2,

where

ρ ≡ 4a3

(1+ 2c)

(
r + b(1+ 2c)

4a2 χ2
)
,

x ≡ χ

s
, y = 1+ 2c

4a2
s∂tx = 1+ 2c

4a2
∂tχ,

s ≡
√

4a2

1+ 2c

(
1+ b

4a
(1+ 2c)− d

)
,

ε ≡ 8a3

(1+ 2c)2

(
a − Ro

2
− cRo

)
, l = 1

a2
,
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(10)m=
(
b

2a
(2c− 1)− d

)/
s2.

Here ε is the bifurcation parameter (ε � 1) and
{s,m, l} are parameters of order one. Whenε is
positive theT -periodic closed orbit loses stability and
gives rise to the appearance of a 2T -periodic closed
orbit. Let us consider the Poincaré section which
cuts the closed orbit. At the onset of the bifurcation
the characteristic time scale of the evolution of the
variables {x, y,ρ} is τ ∼ O(ε−1/2) � T and the
Poincaré section will then show the evolution of the
reduced dynamical system{x, y,ρ}.

We consider now the effect of the small terms which
break the time reversal symmetry (quasi-reversible
system). Eqs. (7) take the form

i∂tA= −aBĀ+ |A|2A+ c|B|2A
− iγA+ ie|A|2A− ih|B|2A,

i∂tB = −bA2 − |B|2B + d|A|2B
(11)+ iδ

(
R2
o − |B|2)B + iJ |A|2B,

where γ, δ, e,h, J � 1. The terms proportional to
γ and h are dissipative when these coefficients are
positive, the linear term proportional toδR2

o is the
injection of energy to the system and the nonlinear
term proportional toδ is dissipative. Due to the
irreversible terms, i.e., the ones proportional toγ , δ,
e, h, andJ , the family of closed orbits disappears and
only one closed orbit persists, which has the form of
(8), but nowRo is fixed. When one considersRo close
toRo,c (|Ro−Ro,c| � 1), the system exhibits a period
doubling bifurcation. In contrast to the reversible case,
the Floquet multiplier related to the variabler is now
inside the unit circle, but near its boundary.

In order to study the dynamics around this bifurca-
tion we make a 2T -periodic change of variables (9)
after which the system is described asymptotically by
Eqs. (5), wherex, ρ, ϕ, ε,m, andl are defined in (10),
and

ν = 2
(
γ + hR2

o,c

)
, µ= 8a2δ

1+ 2c
,

η= 8a3

(1+ 2c)s2

(
δb+ Ja

1+ 2c

)
− 2b

s2

(
γ + hR2

o,c

)
.

Note that the term proportional toe in Eqs. (11) does
not play any role around the bifurcation. One could
expect this result because this term gives rise to a

cubic dissipative term. Since the irreversible terms
do not break the phase invariance of the amplitudes
A andB (A → Aeiθo , B → Bei2θo ), the variableϕ,
which describes the phase, is not coupled to the
other equations and does not appear in the first two
equations. These are equivalent to the Lorenz model
[20,21]

ẋ ′ = σ(y ′ − x ′),
ẏ ′ = rx ′ ∓ y ′ − x ′z′,

(12)ż′ = −bz′ + x ′y ′,
through the change of variables

ρ = z′ (η+µ)

τo
− x ′2

τ2
o

, x = x ′

τo
,

∂tx = (y ′ − x ′) (η+µ)

τo
,

whereτo = |(η+ µ)/(ν − (η+ µ))|, σ = η + µ, r =
ε−(η+µ)2+ν(η+µ), b= µ/τo, and “∓” is the sign
of the expression−ν + (η+µ). When−ν + (η+ µ)

is negative andσ positive the system can exhibit a
stable homoclinic solution and in opposite case the
homoclinic solution is unstable (σ positive). Therefore
the system will show different routes to chaos. For the
sake of simplicity, henceforthσ is assumed positive.

The classical scenario of Lorenz corresponds to
−ν + (η+ µ) negative. The solutionx ′ = y ′ = z′ = 0
represents the periodic solution and goes through a
pitchfork bifurcation which corresponds to the period
doubling of the closed orbit. For a particular region of
parameters, when the bifurcation parameter increases
the system exhibits an unstable homoclinic bifurca-
tion. The disappearance or explosion of this solution
gives rise to two unstable periodic solutions [20] and
to a chaotic saddle responsible for a chaotic transient
[22], this type of behavior is usually called metastable
chaos [23]. Then, a strong perturbation of the 2T -
periodic solution can display a chaotic transient. When
one continues increasing the bifurcation parameter the
unstable chaotic set changes its stability giving rise to
the appearance of a stable strange attractor. The lat-
ter scenario is known as acrisis [24]. Thus, in this
region of parameters the system will show as stable
solutions the closed orbit of period 2T and a strange
attractor around this periodic solution characterized by
a Poincaré section which shows the Lorenz strange at-
tractor. The unstable periodic solutions, created by the
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disappearance of the homoclinic pair, disappears when
the control parameter is increased through a subcritical
Hopf–Andronov bifurcation, with the stationary solu-
tions created in the pitchfork bifurcation. Beyond this
bifurcation the only stable solution exhibited by the
system is chaotic [20].

When−ν + (η + µ) is positive model (12) differs
from the Lorenz model in a sign [21]. We have a
different route to chaos, in which the solutionx ′ =
y ′ = z′ = 0 still undergoes a pitchfork bifurcation
(period doubling), the bifurcated solutions can exhibit
a supercritical Hopf–Andronov bifurcation, and the
2T -periodic solution loses stability and gives rise to
a quasi-periodic motion (torus) with frequenciesπ/T
and

ω= 2µε

µ+ η
+ νµ.

Increasing the bifurcation parameter the two symmet-
ric periodic solutions of Eqs. (5) meet and give rise to a
pair of homoclinic solutions (homoclinic bifurcation).
Increasing further the bifurcation parameter, the sys-
tem will display chaotic behavior through a cascade of
homoclinic bifurcations, through a scenario known as
a gluing [25]. Hence, when the bifurcation parameter
is increased one frequency of the quasi-periodic solu-
tion vanishes (homoclinic bifurcation, gluing). Subse-
quently, the system will show a new quasi-periodic so-
lution with a Poincaré section which is more complex
than the previous one. Then, in the original system,
if one increases the bifurcation parameter, the torus
becomes unstable and gives rise to two symmetrical
tori which after further increase of the parameter be-
come an asymmetrical tori, i.e., the Poincaré section
displays a pair of asymmetric periodic solutions. If one
still increases the parameter these tori meet again, that
is the Poincaré section exhibits an homoclinic bifurca-
tion (gluing), and the explosion of this homoclinic so-
lution pair gives rise to a more complex quasi-periodic
motion, and it continues in the same way (cascade of
gluings). As a result of this cascade the system exhibits
a chaotic behavior which is characterized by a Lorenz
strange attractor on the Poincaré section of the initial
periodic solution (see Fig. 3).

In Refs. [26,27] a model of four variables has
been considered which is a two mode truncation of
the complex Ginzburg–Landau equation. This model
has a quasi-periodic solution which disappears giving

Fig. 3. Poincaré section at the onset of chaotic behavior obtained
from numerical simulation of the quasi-reversal 2: 1 resonance by
the parametersa = 0.5, b = 1, c = 0, µ = 0.001, e = 0, h = 0,
d = 0, δ = 0.0446,J = 0, andRo = 0.92. The Poincaré section is
defined byBy = 0 and∂tBy > 0.

rise to chaotic behavior. Using a Poincaré section
the author [27] has identified the topology of Lorenz
and constructing the mapping of the consecutive
maxima of one variable finds the characteristic Lorenz
mapping [21]. This provides evidence that the motion
is in a strange attractor, but it is important to remark
that in the region of the parameters where the chaotic
motion has been observed the model is not quasi-
reversible. Summarizing, we have shown that at the
onset of the quasi-reversible period doubling the
normal form of the system is the Lorenz model,
but the characteristic behavior with its topology can
well persist far from the quasi-reversible region as
illustrated in the model of references [26,27].

The dynamical behavior of the 2: 1 resonance has
been extensively studied (see, for example, [19]). The
quasi-reversible limit of this resonance allows us to
characterize its dynamical behavior and in particular
the chaotic one. Hence, the consideration of the quasi-
reversible limit is a good strategy which permits
to characterize a complex dynamical behavior of a
system under study.

In general, it is very difficult to obtain the set of
Eqs. (2)–(4) since one needs to know the periodic
change of variables and consequently to solve explic-
itly a linear problem with periodic coefficients [4,13].
The example presented here is one of the few which
can be described analytically. It is important to remark
that the Floquet multipliers, the numerical simulations
and the Poincaré sections, are the basic implements to
describe the dynamic behavior near the closed orbit.
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In conclusion, we have characterized the three
generic codimension-one quasi-reversible instabilities
of closed orbits: the quasi-reversible saddle-node, the
Krein collision or Neimark–Sacker bifurcation and the
period doubling bifurcations. The asymptotic normal
forms of the last two bifurcations, obtained after a
periodic change of variables, are equivalent to the
Maxwell–Bloch equations and the Lorenz equations.
Moreover, we have described the different dynamical
scenarios which occur in the quasi-reversible period
doubling bifurcation and illustrated the results with a
simple example: the quasi-reversible 2: 1 resonance.
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