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Lorenz Bifurcation: Instabilities in Quasireversible Systems
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We describe the two generic instabilities which arise in quasireversible systems and show that their
normal forms are the well-known real Lorenz equations and the Maxwell-Bloch equations. We present
for the first time analytic predictions for the appearance of Lorenz chaos and we describe a simple
mechanical system which experimentally displays this chaotic behavior.
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The study of instabilities plays a central role in the mod-
ern theory of dynamical systems [1] and allows one to
describe in a universal way phenomena which belong to
different fields [2]. In one parameter families of dissi-
pative dynamical systems (i.e., in codimension one) only
two local bifurcations occur generically: the saddle node
and the Hopf bifurcations. The presence of symmetries
changes this picture: for example, the reflection symme-
try Z2 leads to the pitchfork bifurcation. In this Letter, we
shall consider some consequences of time reversal symme-
try [3] when it is weakly broken, a situation which occurs
frequently in the macroscopic description of systems. In
their usual versions, the fundamental laws of physics are
time reversible but this symmetry disappears in the macro-
scopic description due to dissipative phenomena which can
vary from weak perturbations (quasireversibility) to strong
dominant effects. Some well-known examples of quasire-
versible behavior in mechanics, fluid mechanics, and optics
are, respectively, the motion of planets in celestial me-
chanics, surface waves in water, and the laser. Generic
or codimension-one instabilities in strictly reversible sys-
tems are associated with resonances which can occur at
either zero or finite frequency. The reduced linear opera-
tor is then given by a semisimple Jordan block a2 (we
use the notation introduced by Arnold [4]), where a � 0
corresponds to zero frequency and a � iv to finite fre-
quency. The finite frequency resonance called “confusion
of frequencies” by Rocard [5] occurs, for example, in lasers
(see, for example, [6] and references therein).

The dissipation and the forcing break the reversibility
symmetry and often their effect is to select particular
solutions of the reversible system. However, in the
situation studied here, the addition of nonreversible terms
will lead to new behaviors. An important question is
how the forcing occurs in “quasireversible” systems, i.e.,
reversible systems to which one adds small terms which
violate time reversal invariance. We remark that for
a large class of physical systems pure static forcing is
involved, i.e., forcing which occurs at zero frequency.
An important example is the laser where the injection
of energy occurs through a population inversion. The
previous observation is related to the fact that zero
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frequency neutral modes provide a natural way to couple
a reversible system with a static source of energy.

Our objective here is to study the weakly dissipative-
forced unfolding of the reversible bifurcations �02� �0� and
�iv�2�0� whose Jordan blocks are

L�0�2�0� �

0
B@ 0 1 0

0 0 0
0 0 0

1
CA,

L�iv�2�0� �

0
B@ iv 1 0

0 iv 0
0 0 0

1
CA .

(1)

We shall see that in these quasireversible systems the
�02� �0� bifurcation in the presence of an additional Z2
symmetry is described by the well-known real Lorenz
equations which are its normal form and that the �iv�2�0�
bifurcation has as its normal form the popular set of
Maxwell-Bloch equations. The latter have been derived
from microscopic physics by many authors to describe
lasers [6]. We shall present a very simple mechanical
system (a rotating pendulum) which is an example of
the �02� �0� quasireversible bifurcation with reflection
symmetry and displays Lorenz chaos. It should be noted
that in reversible systems all modes are neutral, but
generically they do not couple except a zero frequency
mode which has a strong resonant coupling with the
frequency modes. The study presented here is done in
a region of the parameter space in the neighborhood of
the instability point and in this domain we can make
analytical predictions. However, this region where we
find the usual codimension-one Lorenz-type chaos is the
germ of a bigger domain in the space of parameters
where Lorenz-type chaos persists and to which it can be
generically extended. In this bigger region the system
ceases to be quasireversible and we cannot make analytic
calculations anymore since we are far away from the
reversible instability. This is illustrated, for example,
by the historical values of the parameters of the Lorenz
equations [7] and also by the observed experimental
behavior of the pendulum about which a preliminary
report was presented in [8].
© 1999 The American Physical Society
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The �0�2�0� instability is described by three real vari-
ables �x, y, z�. In the case in which we have reflection
symmetry x ! 2x, y ! 2y, z ! z and if the time re-
versal transformation is t ! 2t, x ! x, y ! 2y, z ! z,
the asymptotic supercritical normal form of this instability
is given by

�x � y, �y � ex 2 x3 2 xz, �z � 0 , (2)

where e is the bifurcation parameter, ≠t � O�
p

e �, x �
O�

p
e �, y � O�e�, z � O�e�. If we include dissipation

in the unfolding, Eq. (2) becomes

ẍ � ex 2 x3 2 zx 2 n �x ,

�z � 2mz 1 hx2,
(3)

where the unfolding parameters �n, m, h� are all O�
p

e �.
This set of differential equations is equivalent to a set of
equations which has exactly the Lorenz form [7,9]. The
change of variables

x �
e
p

s
x0, �x �

e2
p

2
� y0 2 x0�,

z � e2

√
z0 2

x02

2s

!
,

(4)

and the rescalings t � �e�
p

s �t0, n � e
s11

s , m �
e�b�

p
s �, h � �e�2s 2 b��

p
s �, and e �

p
R 2 1,

transform Eqs. (3) in

≠tx � s� y 2 x� ,

≠ty � Rx 2 y 2 xz, ≠tz � 2bz 1 xy .
(5)

These equations are in the Lorenz form and the three
new parameters are now of order 1. It should be noted,
however, that the parameter region of the quasireversible
limit which we consider here is far away from the “histori-
cal” region of parameters of the Lorenz model [9]. The
principal advantage of the quasireversible limit of these
equations is that it allows us to make analytic calculations.
One knows that the reversible systems (2) has a planar
homoclinic solution xh �

p
e sec h�t

p
e�2 �, z � 0 (see

Fig. 1). In the weakly dissipative unfolding, this homo-
clinic solution becomes weakly three dimensional. The
Melnikov condition for the persistence of the homoclinic
solution is

n � 2h

√
1 2

m
p

e

R
`
2` dt x2

h�t�
Rt

2` ds em�s2t�x2
h�s�R`

2` dt�≠txh�2

!
,

(6)

which reduces in lowest order in m�
p

e to n � 2h 1

O�m�
p

e �. Since n is a dissipation it is necessarily
positive and, consequently, the Melnikov condition can
be satisfied only for h . 0. This result shows that
chaotic behaviors of the Lorenz type are present in the
asymptotic unfolding of the �0�2�0� instability as it can be
easily checked by numerical simulations of Eqs. (3). It
is remarkable that a perturbation calculation can predict
chaos, and the reason for this here is that due to the
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FIG. 1. Deformation of the planar homoclinic represented by
a dashed line in the �x, xt� plane. The perturbed homoclinic
(solid line) becomes slightly three dimensional at the origin. In
other places the original orbit is simply displaced upwards by
an approximately constant value.

reflection symmetry in order to have chaos one needs
only the original planar homoclinic to become slightly
three dimensional (see Fig. 1), a situation which can
be attained perturbatively. We note that the original
planar homoclinic �xh, z � 0� has equal eigenvalues 6

p
e

and in the perturbed situation the ratio of the absolute
values of these eigenvalues (the smaller over the bigger
one) will be slightly smaller than one and a small
eigenvalue transversal to the �x, y� plane appears: then the
usual analysis with a suitable Poincaré section [1] will
give a mapping which shows that the strange attractor
appears immediately with a large basin of attraction which
explains why it is numerically easy to observe chaos as
soon as one is near the relation n � 2h, i.e., when the
unstable homoclinic disappears.

A nice consequence of these results is the experimental
realization of the �0�2�0� instability by a rotating pendulum
which consists of a support which can rotate around a
vertical axis with angular velocity �w and a pendulum
formed by a mass m at a distance l from the support
which oscillates in a vertical plane fixed with respect to the
support (Fig. 2). The system will dissipate by friction in
the contacts and by the motion of the mass m in a fluid (say
the air) through Stokes law. We inject energy through a
constant torque t applied to the support. In dimensionless
variables, the equations of this system are (I � I 0�ml2,
where I 0 is the inertial moment of the support)

ü �
sin�2u�

2
�w2 2 sin�u� 2 n �u ,

�I 1 sin2�u��ẅ � 22 sin�u� cos�u� �w �u (7)

2 m̃� �w 2 V� 2 n �w sin2�u� ,

where m̃ and n are the damping coefficients (n is related
to Stokes law), and we have written t � m̃V. The
system is described by four variables �u, �u, �w, w�, but w
3821



VOLUME 83, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 8 NOVEMBER 1999
θ

φ

M

FIG. 2. Schematic representation of the pendulum.

is absent in (7) and the system is then a three dimensional
one. The quantity P � �I 1 sin2�u�� �w is the total angular
momentum with respect to the vertical axis which is
conserved in the absence of dissipation and forcing, i.e., if
m̃ � n � 0 (notice that since t � m̃V the applied torque
vanishes with the dissipation) in which case the system is
reversible with respect to the time reversal transformation
t ! 2t, u ! u, �u ! 2 �u, �w ! �w. It is also integrable
since P is constant and (7) reduces to

ü �
sin�2u�

2�I 1 sin2�u��2 P2 2 sin�u� . (8)

In Eq. (7) for n � 0, we see that for V , 1 the
stationary solution �u � �u � 0, �w � V� is stable and it
becomes marginal for V � 1. In the quasireversible case,
the critical spectrum has tree eigenvalues with a Jordan
block of dimension 2, i.e., we have the �0�2�0� instability.
The asymptotic normal form of (7) then has the form (3)
and it can be explicitly written as

ü0 � eu0 2 n �u0 2 u0z 0 2 u03,

�z 0 � 2mz 0 1 hu02,
(9)

where e � V2 2 1, m � m̃�I , h � �12V2�n 2 m���
��4V2 2 1�I 1 12V2�, and �w � V 2 z 0�2V 2 u02�6IV�
�I�4V2 2 1� 1 2V2�	, u � �u0

p
6I ��

p
4V2 2 1 1 12V2.

Melnikov condition (6) tells us that we need n . m

in order to have chaos, and we see then that the Stokes
dissipation of the pendulum is essential for the chaotic
behavior. Close to the instability �V 
 1� the Melnikov
3822
condition for the persistence of the homoclinic solution
is n �

6m

42I and preliminary experimental observations
exhibit the predicted chaotic behavior [8]. We have
done numerical simulation of the original Eqs. (7) in the
chaotic regime predicted by our analytic calculation and
we have found the well-known scenario described by
Sparow [7]. In Fig. 3 we show a simulation in which
the characteristic aspect of the Lorenz attractor can be
recognized.

When one has no reflection symmetry, Eqs. (3) are
replaced by (we keep the same time reversal symmetry)

ẍ � e 6 x2 1 azx 6 z2 2 n �x ,

�z � d 2 mz 1 hx ,
(10)

where e is the bifurcation parameter and �d, h, n, m� are
related to dissipative and energy injection terms. In the
reversible limit, one has again a plane homoclinic orbit
and generic arguments indicate that Shilnikov-type chaos
should be observed in Eqs. (10). We have checked this
by numerical simulation. Since we still have a planar
homoclinic, we can write the Melnikov condition for
its persistence in the vicinity of the reversible limit.
However, this information is not useful now since the
Shilnikov scenario needs incoming complex eigenvalues
and is then far away from our perturbed system.

In the case of the �iv�2�0� instability the critical
variables parametrizing the center manifold can be chosen
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FIG. 3. The characteristic Lorenz map (top) and the phase
space trajectory (bottom) obtained from Eqs. (7) for the
parameter values V � 1.4142, n � 0.1210, I � 0.3770, and
m � 0.0037.
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as two complex amplitudes �A, B� and a real amplitude z.
The global characterization of normal forms in [10] gives

At � iVA 1 B, zt � f�jAj2, i�AB 2 AB�, z, �l	� ,

Bt � iVB 1 Ag�jAj2, AB 2 AB, z, �l	� (11)

1 Bh�jAj2, AB 2 AB, z, �l	� ,

where f is a real polynomial function, and g and h are
complex polynomials of their arguments. If we impose
invariance under the tine reversal transformation t ! 2t,
A ! A, B ! 2B, z ! z, we conclude that in Eqs. (11)
the function g is real, h is pure imaginary, and f vanishes
thus reducing the third equation to zt � 0. We see then
that the neutral mode appears as a conserved quantity to
any order of the normal form, i.e., z is constant, and if we
consider jzj ø 1, the asymptotic reversible normal form
reduces to

Att 1 ZA 6 jAj2A � 0, Zt � 0 , (12)

where we have put A � A0eiVt , B � A0
te

iVt (rotating
reference frame) and omitted the primes. The instability
in (12) occurs when one chooses positive values of the
conserved quantity z. In the case of a laser, in the
unrealistic reversible limit, the population inversion is
such a conserved quantity. The presence of this additional
mode thus preserves the integrability of the normal form
[11]. As in the �0�2�0� case, this important property fails
as soon as the forcing and the dissipation are taken into
account since the dynamical system has then a higher
dimension. Adding the small dissipative and forcing
terms consistent with the general form (11) and doing
some scalings, we can write the asymptotic normal form

Att � eA 2 �n 1 iD�At 2 jAj2A 2 zA ,

zt � 2mz 1 hjAj2,
(13)

where all coefficients are small unfolding parameters.
Once again a change of variable and suitable scalings
transform (13) in the complex Lorenz equations [6].

In a series of papers, Gibbon and collaborators [12]
studied exhaustively the dispersive instability with small
dissipation (quasireversibility): they gave conditions for
the occurrence of the instability and showed using multi-
scale analysis that the amplitude equations were those of
the complex Lorenz model. We recover here these re-
sults with a singularity theory approach leading to normal
forms and their unfoldings. We think this gives new in-
sight in the remarkable conclusions of Gibbon. We recall
that the complex Lorenz model equations can be trans-
formed in the Maxwell-Bloch equations of the laser as
shown by Haken [13]. This nice result has from our point
of view a very simple interpretation since one can remark
that the basic mechanism of the laser is the coupling of
two oscillators in the presence of small dissipative terms
and with an energy injection at zero frequency through
population inversion.

We remark that Eqs. (13) with real coefficients corre-
spond to �0�2�0� instability with O�2� symmetry instead of
reflection symmetry. In this case the variables �x, y� of
Eqs. (3) have to be replaced by complex amplitudes and
the normal form will be Eqs. (13) with real coefficients
due to the symmetry A ! A. Physical examples are the
Baroclinic instability with small dissipation [14] and self-
focusing in the quasireversible Ginzburg-Landau equation
studied by Malomed et al. [15].

In conclusion, we have shown that quasireversible sys-
tems present two generic codimension-one instabilities
whose normal forms correspond to two well-known clas-
sical models: the real Lorenz equations and the Maxwell-
Bloch equations which are then universal equations.
Moreover, we propose a very simple experiment with a
rotating pendulum which is by far the most simple me-
chanical device realizing the paradigmatic Lorenz chaos.
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