
CURVATURE INSTABILITY OF

LOCALIZED STRUCTURES

Tesis

entregada a la

Universidad de Chile

en cumplimiento parcial de los requisitos

para optar al grado de
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Abstract

Curvature instability of localized structures

Ignacio Antonio Bordeu Weldt

The main objective of this thesis was to study the stability of two-dimensional lo-

calized structures, and to investigate how the destabilization due to the curvature

could lead to the formation of extended patterns. This, in the context of macroscopic

physics.

Localized structures are nonlinear peaks or holes in spatially extended systems.

They belong to the general class of dissipative structures found far from equilibrium.

Spatial structures that are not localized and occupy the whole system are called

extended patterns, these patterns posses some characteristic wavelength and usually

emerge from the destabilization of an homogeneous state. One particular extended

pattern in the Labyrinth, this type of pattern is characterized by its spatial disor-

der. In this thesis we focused on the study of the mechanisms by which a localized

structure can turn into an extended pattern.

Considering a variation of the most simple model known to exhibit extended pat-

terns, the Swift-Hohenberg equation. We were able to observe how a two-dimensional

circular localized structure is affected by a curvature instability, which deforms its
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circular shape into an elliptical and later elongated structure. This elongated struc-

ture suffers from a transversal instability, the subsequent pattern formed is also

unstable, thus, generating a complex extended pattern, namely, a labyrinth. This

mechanism occurs far from any pattern forming instability and requires coexistence

of homogeneous state.

In the context of the modified Swift-Hohenberg equation, a special parameter

region was found where labyrinths coexisted with stable localized structures. In

this zone of coexistence another type of localized structures were found to engender

labyrinths. These new localized structures were called Rodlike localized structure.

These, are non-azimuthally symmetric, and exist both in two and three-dimensions.

A complete numerical characterization of their stability, phase diagram and interac-

tion was made. It was shown that this type of structures also develop labyrinths by

the curvature mechanism described before.

The curvature instability mechanism of the destabilization of a localized struc-

ture leading to the formation of extended labyrinthine patterns exist in a wide range

of physical systems. In this thesis we have shown the existence of this mechanism in

the context of vegetation dynamics described by a generic interaction-redistribution

model. It was also observed in autocatalytic chemical reactions described by the

Gray-Scott reaction-diffusion model. This opens the possibility for future interdisci-

plinary theoretical and experimental work.

Depending on the context and model considered, different classes of labyrinthine

structures were shown to emerge from an initial localized structure. The parameters

considered in the simulations also affects the type of pattern generated. By this

observations we were able to classify the labyrinths based on the difference between

the initial and final connectivity of their structures.

In the context of vegetation dynamics described by a generic interaction-redistribution

xii



model, we described the process by which a localized spot destabilizes, elongating

and splitting into two new localized spots, this process is called self-replications.

Field observations of semi-arid ecosystems show that a certain specie of plant ex-

hibits self-replications. Comparison between numerical and field observations show

an underlying process by which self-replication mediates the self-organization of lo-

calized structures leading to extended pattern formation. We consider that this is

a mechanism by which vegetation extends to cover the landscape, and also helps to

explain the emergence of characteristic quantities observed in the statistical analysis

of field observations.

xiii



Resumen

Inestabilidad de curvatura en estructuras

localizadas

Ignacio Antonio Bordeu Weldt

El objetivo principal de esta tesis consistió en el estudio de estabilidad de estructuras

localizadas bidimensionales, en particular se investigó cómo la desestabilización de-

bido a la curvatura puede dar lugar a la formación de patrones extendidos. Esto, en

el contexto de la f́ısica macroscópica.

Las estructuras localizadas son picos o agujeros en los sistemas nolineales espa-

cialmente extendidos. Estas, son parte de la clase general de estructuras disipativas

que es posible encontrar lejos del equilibrio termodinámico. Las estructuras que no

están espacialmente localizados y abarcan al sistema completo son llamados patrones

extendidos. Dichos patrones poseen cierta longitud de onda caracteŕıstica y suelen

surgir de la desestabilización de un estado homogéneo. Un patrón extendido par-

ticular es el Laberinto, este tipo de patrón se caracteriza por su desorden espacial.

En esta tesis nos hemos centrado en el estudio de los mecanismos por los cuales una

estructura localizada se desestabiliza para formar un patrón extendido.

Considerando una ecuación tipo Swift-Hohenberg, ecuación prototipo que exhibe
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coexistencia de estados homogéneos, patrones extendidos y estructuras localizadas,

hemos sido capaces de observar cómo una estructura localizada circular bidimensional

se ve afectada por una inestabilidad debido a su curvatura. Esta inestabilidad se ve

reflejada en un tansición de la forma de la estructura, de circular a eĺıptica, luego,

alargada. La estructura alargada sufre de una inestabilidad transversal. El patrón

formado posteriormente también es inestable, por lo tanto, se genera un patrón

extendido complejo, a saber, un laberinto. Este mecanismo ocurre lejos de cualquier

inestabilidad formadora de patrones (inestabilidad de Turing) y requiere coexistencia

de estados homogéneos.

En el contexto de la ecuación de Swift-Hohenberg generalizada, una región espe-

cial de parámetros fue encontrada, donde, los laberintos coexisten con estructuras

localizadas estables. En esta zona de coexistencia se encontró un nuevo tipo de es-

tructura localizada, llamada estructura localizada tipo Vara. Este objeto, no posee

simetrá azimutal y existe tanto en dos como en tres dimensiones espaciales. Se re-

alizó una caracterización numérica completa de su estabilidad, diagrama de fase e

interacción. Se mostró que este tipo de estructuras también desarrollan laberintos a

través del mecanismo de curvatura descrito anteriormente.

El mecanismo de inestabilidad de curvatura para la desestabilización de una

estructura localizada que conduce a la formación de patrones labeŕınticos extendidos

existe en una amplia gama de sistemas f́ısicos. En esta tesis se mostró la existencia

de dicho mecanismo en el contexto de la dinámica de vegetación descritas por un

modelo de interacción-redistribución genérico. Además, se observó teóricamente en

reacciones qúımicas autocataĺıticas descritas por el modelo de reacción-difusión Gray-

Scott. Esto abre la posibilidad de futuras investigaciones interdisciplinarias tanto

teóricas como experimentales.

Dependiendo del contexto y el modelo considerado, diferentes estructuras labeŕınticas
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pueden emerger de una estructura localizada inicial. Los parámetros considerados

en las simulaciones también influyen en el tipo de patrón resultante. A través de

estas observaciones se logró construir una clasificación de los laberintos basados en

la diferencia entre la conectividad inicial y final de las estructuras que lo componen.

Finalmente, en el contexto de la dinámica de vegetación descritas por un modelo

de interacción-redistribución genérico, se describió el proceso por el cual una estruc-

tura localizada se desestabiliza, alargándose y dividiéndose en dos nuevas estructuras

localizadas. Este proceso, se denomina auto-replicación. Las observaciones de campo

de ecosistemas semiáridos realizadas con el uso de imágenes satelitales, mostraron

que una determinada especie de planta exhibe auto-replicación. La comparación en-

tre las observaciones numéricas y de campo muestran un proceso subyacente por el

cual la auto-replicación media la auto-organización de las estructuras localizadas que

conducen a la formación de patrones extendidos. Consideramos que este es uno de los

mecanismos por medio de los cuales la vegetación se extiende para cubrir áreas ex-

tensas en ambientes áridos o semi-áridos. Esto permite además explicar la aparición

de cantidades caracteŕısticas extráıdas del análisis estad́ıstico de las observaciones

de campo relacionadas a las tamaños y distancias entre las plantas.
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Chapter 1

Introduction

1.1 Motivation

Physics, is the branch of science concerned with the properties of matter and energy,

and the interaction between them. In other words, Physics is everywhere around us,

from the microscopic, in the formation of atoms and molecules, to the macroscopic

world, in the movement of falling apples or the creation of galaxies, even our daily

life develops in this context. Using the language of mathematics, Physics has been

able through the past centuries to not only describe, but to predict the existence and

behaviour of natural phenomena in different contexts, ranging from classical mechan-

ics, and electrodynamics to quantum physics and general relativity. In particular,

Nonlinear Physics—which studies the nature of macroscopic and complex systems—

has achieved the description of collective behaviour, such as, self-organization in

which the different components of a macroscopic system interact, organizing itself

under the conditions of injection and dissipation of energy, matter and momentum,

to create astonishing natural patterns (see Fig. 1.1).

Natural patterns can be observed everywhere around us, fingerprints, and cowlicks
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1) 2)

3) 4)

Figure 1.1: Natural pattern formation. 1) Wind induced patterns in sand dunes [1],
2) skin pattern of Giant Freshwater Puffer fish [2], 3) fractal patterns in Romanesque
cauliflower [3], and 4) labyrinthine pattern in brain structure [4].

are examples of spatial patterns observed in our bodies, while, the heartbeat and

circadian cycle are temporal patterns governed by electrical and chemical signals sent

by our brains. These organizational and synchronization properties of macroscopic

systems emerge from the idea coming from Statistical Physics where the dynamic of

a single particle is not the same as the dynamic of the whole. Interaction between

elements in the context of dissipative systems (i.e with injection and dissipation of en-

ergy) gives rise to emergent physical properties and opens the door to a complete new

perspective regarding the possible equilibriums of a system. Chaotic behaviours, sta-

tionary patterns, intermittency, synchronisation, turbulence or spatiotemporal chaos

are phenomena exhibited by dissipative systems, and its the role of Nonlinear Physics

to unveil their mysteries.
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Localized structures and extended patterns

When sand is vibrated, clusters of grains behave as oscillators, interaction between

grains allow the appearance of interesting spatial structures. In the nineties Paul

Umbanohwar, Fransisco Melo and Harry Swinney [5] observed that under certain

conditions, vibrated grains exhibited a particular type of structure where only a

portion of the gains oscillated with a greater amplitude than the rest of them (see

Fig. 1.2.1), this structure called Oscillon is a particular case of dissipative localized

structures. This type of structure has been observed in a wide variety of physical

systems. Spatial structures that are not localized and occupy the whole system are

called extended patterns [6, 7, 8]. This patterns posses some characteristic wavelength

and usually emerge from the destabilization of an homogeneous state.

One particular extended pattern are Labyrinths, this type pattern are character-

ized by their spatial disorder (see Fig. 1.2.2). These structures, have been observed

1) 2)

Figure 1.2: 1) Oscillon, dissipative localized structure in a vibrated granular system
[5], and 2) Vegetation labyrinth formed in semi-arid environment [9, 10].

in various natural systems, from ferromagnetic [11, 12] fluids to Langmuir monolay-

ers [13, 14] and biological systems [15, 16]. In vegetation, for instance, labyrinthine

3



structures appear when aridity increases and the competition for water resources

becomes important [17, 10]. Also in nonlinear cavity optics this structures appear

naturally as an effect of the external forcing field [18, 19, 20].

1.2 Objectives

The main objective of this thesis is to study the stability of two-dimensional localized

structures, and how the destabilization due to the curvature can lead to extended

patterns. To accomplish this objective, this thesis will fulfil the following specific

objectives:

• Using a canonical model, characterize the process of destabilization by which

a localized structure generates an extended labyrinthine pattern. Extend the

results to several physical contexts.

• To shown that the curvature of the localized structures, inherent to the two-

dimensional system under study favours the existence of a new type of localized

structure.

• Study the self-replication of localized structures in the context of vegetation

dynamics. Compare the results with field observations.

1.2.1 Structure of the thesis

This thesis is organized as follow:

• In Chapter 2: Theoretical Background, the general theoretical concepts that

will be used along this thesis are presented.

The results of this thesis are presented in Chapters 3, 4, 5 and 6.

4



• In Chapter 3: Curvature instability and labyrinthine patterns, the mechanism

by which localized structures generate labyrinthine structures is presented.

• In Chapter 4: Rodlike localized structure, a complete characterization of the

rod localized structure solution is made.

• In Chapter 5: Universality of the curvature mechanism, the curvature mecha-

nism for labyrinth generation is exposed in various physical contexts.

• In Chapter 6: Self-replication in vegetation dynamics, a curvature induced

bifurcation of a localized structure is presented where a localized structure

splits in two new localized structures.

• In Chapter 7: Conclusions, specific and general conclusions are presented.

5



Chapter 2

Theoretical background

Macroscopic phenomena emerge from the collective behaviour of a high number of

underlying constituents. However, the description of macroscopic phenomena start-

ing from the physics of the individual components of a system is thus extremely

complex and in most cases impossible to solve due to the high number of degrees

of freedom that emerge naturally from many-body physics. To describe these type

Figure 2.1: Collective behaviour of Blue Mackerel forming a defensive swarm [21].
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of problems mean field theory arises, originally, to describe phase transitions. This

theory considers the average of microscopic quantities and the approximation of vari-

ables through scale analysis, reducing the system to a simpler dynamical equation,

thus, describing the whole system through one (or more) order parameter whose

evolution is usually described by a nonlinear partial differential equations [22]. This

thesis will study dissipative macroscopic phenomena through nonlinear partial dif-

ferential equations.

2.1 Structure formation

Macroscopic systems under the influence of injection and dissipation of energy and

momenta often lead to the formation of spatial structures o patterns [6, 8]. These

patterns can be extended, this is, they involve the whole spatial physical system, or

localized, which are patterns that exist only on a portion of the spatial system [7,

23, 24].

Localized structures (LSs) are nonlinear peaks or holes in spatially extended

systems. They belong to the general class of dissipative structures found far from

equilibrium [6]. Experimentally most of these localized states are two-dimensional

objects with circular shape as a result of isotropy. In dynamical system theory, one

dimensional localized structures are homoclinic connections of the stationary dynam-

ical system involving a stable and an unstable manifold of a given equilibrium [25].

The possibility of coexistence with different equilibria, enriches the variety of possible

homoclinic structures. For example, in the case of coexistence between a uniform

and a pattern state, the heteroclinic entanglement generates the nucleation of a

family of localized structures [26, 27]. In recent decades, localized structures have

been observed in different fields, such as, in magnetic materials [28], chemical reac-
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tions [29], vertically driven Newtonian fluid [30, 31], granular media [5, 32], liquid

crystals [33], liquid crystal light valve [34, 35, 36], colloidal fluids [37], electrical dis-

charges [38], thermal convection [39, 40], non-linear optics [41, 42], chemistry [43,

44], plant ecology [45], fluid dynamics [30], to mention a few.

Localized structures are particle-type solutions for non-linear equations, as they

exhibit a series of characteristics often attributed to particles, such as size, position,

and velocity defined by the parameters of the system, and an interaction law between

them. Localized structures have attracted the interest of the scientific community

due to their potential applications for all-optical control of light, optical information

storage and processing [46] .

Extended patterns in the other hand emerge typically as the destabilization of

an homogeneous state of the system, from which a structure with a characteristic

wavelength invades the totality of the system under study.

2.2 Swift-Hohenberg equation

Throughout this thesis Swift-Hohenberg type equations will be deeply studied. Here,

some important concepts that will be used along this work will be introduced.

The Swift-Hohenberg equation, named after Jack Swift and Pierre Hohenberg, is

the simplest known equation that exhibits pattern formation and it was deduced in

the hydrodynamic context to describe the amplitude of the patterns generated by

Bénard convection cells in fluids, this equation reads

∂u

∂t
= εu− u3 − ν∇2u−∇4u (2.1)

By the addition of a constant term, a modified Swift-Hohenberg equation can be

written

8



∂u

∂t
= η + εu− u3 − ν∇2u−∇4u (2.2)

where u = u(x, y, t) is a real scalar field, x and y are spatial coordinates and t is time.

The control or the bifurcation parameter ε measures the input field amplitude, the

aridity parameter, or chemical concentration. This equation will be called gener-

alized Swift-Hohenberg equation , the order parameter u(x, y, t), describes the

amplitude of the pattern, ε is the bifurcation parameter, which goes along with the

linear term. This equation possesses also a cubic nonlinear saturation. Spatial cou-

pling is considered in the diffusive and hyperdiffusive terms, where ν is the diffusion

coefficient. The addition of the η term brakes the symmetry u→ −u, and accounts

for the asymmetry between the homogeneous states. Equation (2.2) has been de-

duced in various field on nonlinear science such as chemistry [47], plant ecology [48],

nonlinear optics [49, 50] and material physics [51]. It is important to note that by

the change of variable u→ u′ + q, where q is a constant, the term η from Eq. (2.2),

can be absorbed by the inclusion of a quadratic nonlinearity in the following way

∂u′

∂t
= ε′u′ − αu′2 − u′3 − ν∇2u′ −∇4u′ (2.3)

where q must satisfy q3 − εq − η ≡ 0 then ε′ = ε− 3q2 and α = 3q.

Depending on the context in which this equation has been derived, the physical

meaning of the field variable u(x, y, t) (or u′(x, y, t)) can be the electric field, chemical

concentration or phytomass density, to name a few.
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2.2.1 Imperfect pitchfork bifurcation

The goal now it to study the stability of stationary homogeneous states of the gen-

eralized Swift-Hohenberg equation. The homogeneous states u0 are solutions of

0 = η + εu0 − u30 (2.4)

u

η

u

ε

η

ε
0,6 1,2

0,0

0,5

-0,5
0,0

η=0.1

ε=0.4

a

b

a

ab

1) 2)

3)

Figure 2.2: Imperfect pitchfork bifurcation in 1) (ε, η)-plane. Homogeneous states
amplitudes as function of 2) ε for η = 0.1, and 3) η for ε = 0.4. Stable states are
represented by solid red lines, while unstable states are depicted by dashed lines.

We want to build the—(ε, η)—bifurcation diagram for this states, for this, we con-

sider η = η(u0), such that η(u0) = −εu0 + u30, we want to find now the maximum

value of η for which this equation holds, in consequence we impose

dη

du0

∣∣∣∣
u∗0

≡ 0⇒ u∗0 = ±
√
ε

3
(2.5)

finally, by replacing (2.5) in (2.4) we obtain an expression for the critical curves (see

Fig. 2.2)

η±(ε) = ±2
( ε

3

)3/2
(2.6)
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These curves are plotted in Fig. 2.2.1, and represents the birth of an hysteresis cycle

through an imperfect pitchfork bifurcation.

2.2.2 Spatial instability

The emergence of periodic patterns in a systems is a consequence of the spatial

coupling, the destabilization of an homogeneous state is the simplest mechanism for

their appearance. Following this mechanism it will be shown how the generalized

Swift-Hohenberg equation exhibits pattern formation.

Lets consider first, a homogeneous state perturbed periodically u = u0+up cos(ikx)exp(Λt),

where up << 0 is a small perturbation amplitude, the pattern has been set in the

x-direction without loss of generality. By introducing the perturbed solution into

Eq. (2.2) and linearizing in up, one obtains an equation for Re(Λ) = λ(k),

λ(k) = ε− 3u20 + νk2 − k4 (2.7)

this equation indicates that the system will be unstable for wave numbers k such

that λ > 0. We look now for the critical value k = kc such that λ(kc) = 0, this is

0 = ε− 3u20 + νk2c − k4c . (2.8)

As the dynamics of the system will be dominated by the larger unstable wave number,

one maximizes λ(k), obtaining

dλ

dk

∣∣∣∣
kc

≡ 0⇒ kc = 0 ∨ kc = ±
√
ν

2
(2.9)

11



evaluating the non trivial value of kc in Eq. (2.8) we obtain

ε− 3u20 = −ν
2

4
(2.10)

by replacing in Eq. (2.4) we find the expression for the critical curve

η± = ±
√
ν2 + 4ε

3

(
ν2 − 8ε

24

)
(2.11)

which indicates the onset point where the homogeneous state suffers from a Turing

(or pattern forming) instability, see Fig. 2.3 Γ2-curve.

0.0 2.0 4.0

−1.0

0.0

1.0

η

ε

Γ1
Γ2

Figure 2.3: Bifurcation diagram of Eq. (2.2). Γ1-curve corresponds to the imperfect
pitchfork bifurcation, Γ2-curve corresponds to the spatial instability critical curve.

2.2.3 Variational and nonvariational systems

Variational systems

Classical (non dissipative) mechanics is build over the principle of least action, this

principle states that the dynamics of a system is governed by the minimization of

some quantity, namely the free energy. These type of systems are called variational,
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and their main feature is that they relax to stationary equilibrium states. Though,

in dissipative systems, there is no energy conservation and the notion of free energy

ceases to exist, however, for a rather large amount of problems it is possible to define

a functional—F—such that the evolution of the order parameter is given by the total

derivative of a functional

∂u

∂t
= −1

2

δF [u,∇2,∇4]

δu
(2.12)

where F is often called Lyapunov functional, throughout this thesis we will refer to

it as the energy of the system.

The generalized Swift-Hohenberg equation (2.2) possesses a gradient form, for

this case F reads,

F = −
∫∫ (

ηu+ εu2 − u4

2
+ ν(∇u)2 − (∇2u)2

)
dxdy. (2.13)

Note that this functional satisfies

dF

dt
= −

∫∫
(∂tu)2 dxdy ≤ 0, (2.14)

so F is a Lyapunov functional that can only decrease in the course of time. This

functional guarantees that with temporal evolution, the systems proceeds toward

the state for which the functional has the smallest possible value that satisfy the

specified boundary conditions. Any initial distribution u(x, y, t) evolves towards a

homogeneous or inhomogeneous (periodic or localized) stationary state correspond-

ing to a local or global minimum of F . The analysis of the functional F is provided

in Ref. [52].
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Nonvariational systems

Nonvariational models can exhibit complex temporal and spatial behaviors as they

do not, necessarily, relax to stationary equilibriums. In this sense, nonvariational

systems can exhibit permanent dynamics, such as chaotic behaviors, chimera states,

intermittency and other states with permanent dynamics.

Near a second order critical point and close to long-wave pattern forming regime,

the space-time dynamics of many natural out of equilibrium systems can be described

by a single real order parameter equation that includes non-variational effects. This

equation is refereed to as nonvariational generalized Swift-Hohenberg model or the

so called Lifshitz normal form [34, 53].

∂tu = η + εu− u3 − ν∇2u−∇4u+ c(∇u)2 + bu∇2u (2.15)

This model is a non variational extension of Eq. (2.2).

The model Eq. (2.15) has been derived for numerous far from equilibrium sys-

tems such as reaction-diffusion, biological and optical systems [34, 53]. The control

or bifurcation parameter measures the input field amplitude or chemical concentra-

tion. The terms c(∇u)2 and bu∇2u account for the non-variational dynamic, as they

correspond to nonlinear advection and diffusion, respectively. It is important to note

that only for the case where b = 2c, Eq. (2.15) has a Lyapunov functional (or free

energy)

∂tu = −1

2

δF [u,∇u,∇2u]

δu
, (2.16)

where

F = −
∫∫ [

ηu+ εu2 − u4

2
+ ν(∇u)2 − (∇2u)2 − 2cu(∇u)2

]
dxdy. (2.17)
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When b 6= 2c the Eq. (2.15) is generically non-variational, i.e., there is no Lyapunov

functional associated with this equation.

1 2

3

45

Figure 2.4: Classification of defects in 2D systems, 1) dislocation, 2) concave discli-
nation, 3) convex disclination, 4) amplitude domain wall, 5) phase domain wall.

2.2.4 Defects and pinning phenomena

In the context of pattern formation, defects correspond to the local loss of regularity

of the pattern. Defects can turn a rather simple regular pattern into a a complex dis-

ordered structure. Labyrinths are in some way defect dominated structures as only

local regular structures can be defined and the system as a whole is spatially uncor-

related. Defect are classified according to the type of deformation they introduce to

the system (see Fig. 2.4).

Pinning is a phenomenon that occurs to defects in which an effective potential

appears around the defect impairing its movement, thus, generating defect pinning.

This can be induced by interaction between defects and can favour the existence of

defect-dominated patterns as is the case of labyrinths.
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Chapter 3

Curvature instability and

labyrinthine patterns

In this chapter the two-dimensional generalized Swift-Hohenberg equation (2.2) is

considered, in both variational and non-variational forms. Analytical and numerical

analysis are preformed concerning the occurrence of the curvature instability that

affects the circular shape of two-dimensional localized structures engendering finger-

ing instability. Subsequently, it produces undulations in the finger structure, then,

locally forming a pattern, which in turn is also affected by a transversal instability

generating labyrinthine patterns.

Numerically, the phase space has been characterized, focusing on regions where

the emergence of curvature instabilities are relevant and labyrinths emerge from

localized structures. Figure 3.1 illustrates this process in the context of cholesteric

liquid crystals, where an initial nematic phase (Fig. 3.1.1) is invaded by a cholesteric

phase which is induced by applying an external voltage to the cell. The dynamic of

these systems is governed by the minimization of a free energy. These are usually

denominated variational or gradient systems.
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Figure 3.1: Temporal evolution of the growth of the Cholesteric phase in a liquid
crystal, where a defect induced localized spot evolves by elongating and produces an
extended labyrinth pattern (Courtesy of R. Barboza, U. Bortolozzo, S. Residori and
D. Wei). On the right side, a schematic of the experimental setup is shown.

3.1 Preliminary observations

Several spatially extended systems that undergo a symmetry breaking instability

close to a second-order, codimension two point, can be described by real order pa-

rameter equations in the form of Swift-Hohenberg type of models. These models,

have been derived in various fields of nonlinear science such as hydrodynamics [54],

chemistry [47], plant ecology [48], and nonlinear optics [49, 53, 34].

A complex Swift-Hohenberg equation was deduced in the context of lasers [55, 50,

56] and optical parametric oscillators [57]. Moreover, to describe the nascent optical

bistability with transversal effect in nonlinear optical cavities a real approximation

has been deduced [58] from laser equations. This approximation allowed the predic-

tion of stable, single and clustered localized structures [58]. A detailed derivation of
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this equation from first principles can be found in Ref. [55]. In this chapter, we show

that this real modified Swift-Hohenberg equation (2.2) supports a curvature insta-

bility over localized structures that leads to an elliptical deformation, producing an

elongated unstable structure. With the temporal evolution, the elongated structure

exhibits transverse undulations, leading to the formation of invaginated structures.

Such a structure is a labyrinthine pattern, characterized by its interconnected struc-

ture where the field value is high. The outer region or complement to the invaginated

structure corresponds to low field value. This behaviour occurs far from any pattern

forming instability and requires a bistable behaviour between homogeneous steady

states.

For certain ranges of parameter values, Eq. (2.2) exhibits stable circular localized

structures. General properties, such as existence, stability and dynamical evolution

of these structures have been well studied (see Refs. [59, 60, 61, 62, 27, 63, 64, 65]).

For η < 0 localized structures emerge as isolated peaks of the field u(x, y, t), instead,

for η > 0 localized structures appear as holes in the field. These localized structures

have a fixed stable radius for each parameter value. Curvature instability of localized

spot has been experimentally studied or theoretically predicted in magnetic fluids

[12], liquid crystals [66, 67], reaction-diffusion systems [68, 29, 69, 70, 43, 44, 71,

72, 73, 74, 69, 75, 76], plant ecology [17], material science [77, 78], in granular and

frictional fluids [79, 80], and nonlinear optics [81]. The fingering instability of planar

fronts leading to the formation of labyrinth structures has been reported by Hagberg

et al. [82]. In this thesis we shall focus on circular localized states. To avoid numerical

artifacts and to ensure the stability of our simulations, simulations where performed

using both finite differences and pseudo-spectral codes, by carefully choosing the

temporal and spatial scales we where able to maintain the stability of the simulation

while decreasing the simulation times.
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3.2 Stability of localized spots

1          2                              3

 4           5                   6

7         8                              9

8 A.U.

x

y

Figure 3.2: Temporal evolution for; 1) t = 0; 2) t = 125; 3) t = 175; 4) t = 225; 5)
t = 275; 6) t = 340; 7) t = 350; 8) t = 360; 9) t = 400, of a localized spot through
an elliptical deformation into an elongated structure for Eq. (2.2) with: η = −0.065;
ε = 2.45; ν = 2.0. Minima are plain white. The image corresponds to a zoom
of 16 × 16 points of a 512 × 512 point finite-difference simulation, with Neumann
boundary conditions.

We consider fixed parameter values, starting with a stationary azimuthally sym-

metric localized structure. The structure is then perturbed, this perturbation grows

radially as shown in Fig. 3.2 The circular shape becomes unstable at some critical

radius. The elliptical shape elongates into a stripe structure as shown in Fig. 3.2.

This elongation proceeds until a critical size is reached beyond which a transversal

instability onset the appearance of fingers near the midsection of the structure (see

Fig. 3.3.3). The stripe continue its elongation, and the amplitude of oscillation in-

creases (Figs. 3.3.4 and 3.3.5). The dynamic of the system does not saturate and for

a long time evolution, the rod-like structure invades the whole space available in the

(x, y)-plane as shown in Fig. 3.3.6. This invaginated structure is stationary solutions
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Figure 3.3: Transition from a single localized spot to invaginated pattern. Temporal
evolution with Dirichlet boundary conditions and with the same parameters as in
Fig. 3.2. 1) t = 0, Localized spot, 2) t = 600, stripe structure, 3) t = 1900, transverse
undulation of the stripe structure 4) t = 2800, and 5) t = 3700, localized transient
patterns, and 6) t > 15000, stationary invaginated labyrinth pattern. Minima are
plain white and the mesh integration is 512 × 512 points. Simulation done with
finite-difference method.

of the SHE. The dynamic described previously has been observed in cholesteric liquid

crystals under the presence of an external electric field [66, 67], where an initially

circular structure of cholesteric phase suffers from a curvature instability, transversal
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oscillations and develops into an extended labyrinthine structure (see Fig. 3.1). The

characterization of this dynamic is an open problem.

For ν = 2, the bifurcation diagram of the model Eq. (2.2) in the parameter space

(ε, η) is shown in Fig. 3.4. For ε > 0 the system undergoes a bistable regime

between homogeneous steady states. For ε < 0, the system possesses only one

homogeneous steady state. The curve Γ1 represents the pitchfork bifurcation, where,

the coordinates of the limit points of the bistable curve are given by η± = ±2(ε/3)3/2.

The threshold associated with a symmetry breaking or Turing instability is provided

by the curve Γ2. The coordinates of the symmetry breaking instabilities thresholds

are η± = ±
√

(ν2 + 4ε)/3(ν2 − 8ε)/24. The Γ1 and Γ2 curves are well known in the

literature [83, 84]. We have built numerically the curve Γ3, which separates the zone

of bistability where localized structures are stable, zone II, from the zone where

they are unstable, zone I. The transition from localized structures to labyrinthine

pattern takes place when crossing from the I-zone to the II-zone, through the Γ3-

curves indicated in Fig. 3.4. This transition occurs via fingering instability at the Γ3-

curves delimiting the parameter domain I and II. In the limit of the classical Swift-

Hohenberg equation, η = 0, there is no observation of fingering instability, instead,

at the transition from II-zone to I-zone, localized structures only grow radially. The

destabilization of these structures into labyrinthine structures may be observed, as

a result of size effect phenomenon due to boundary conditions. In contrast, for

η 6= 0 the transition from the II-zone to the I-zone of a localized spot induces

a curvature instability, giving rise to an unstable stripe structure which exhibits

transversal oscillations and develops into an extended labyrinthine structure.

In what follows, we first study the stability of a circular localized spot with

respect to azimuthal perturbations. This linear analysis allows us to evaluate the

threshold above which the transition from a localized spot to a elongated structure
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takes place. Then, a linear stability analysis of the stripe structure is performed, to

determine the conditions under which the transversal oscillations occur for the SH

equation.

1 1 2 3 4
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0.2

0.4

I

II

Ε

Η

��

�� ��

Hole LS

Peak LS

Figure 3.4: Bifurcation diagram of Eq. (2.2) in (ε, η) space for ν = 2.0. In II-zone
(dashed black), stable circular localized structures are observed. In I-zone (grey
crosses) generation of labyrinthine structures are observed from localized structures.
Simulations where made using periodic boundary conditions.

Starting from a stationary solution with rotational symmetry (i.e circular local-

ized structure) u = us(r) where r is the radial coordinate. Then, the solution is

perturbed u(r, θ, t) = us(r) + δu(r)eλmt cos(mθ), where θ is the angular coordinate,

and δu(r)� 1. It should be noted that the perturbation mode m = 2 represents an

elongation of the circular structure into an elliptical shape. Using polar representa-

tion of Eq. (2.2), considering the above perturbation and parameters in Eq. (2.2) at

linear order in W one obtains

∂W

∂t
= LW (3.1)

where the linear operator L ≡ ε+ 3u2s(r)− ν∇2 −∇4 is explicitly dependent on the
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Figure 3.5: Dots show the growth rate λm of the most unstable perturbation mode
obtained numerically for different values of ε. Dashed line separates zones of stable
and unstable localized structures. Parameters: ν = 2; dx = 0.5; dt = 0.03. Periodic
boundary conditions were used.

radial coordinate. Analytical calculations are not accessible when the operator is in-

homogeneous. However, by direct simulation of Eq. (2.2) with an initially stationary

localized structure one can find the growth rate of the most unstable mode. First for

fixed values of the parameters {η, ε, ν} a stationary localized spot is considered as

initial condition. Note that the radius of localized spot is determined by a balance

between the interface energy and the energy difference between the homogeneous

states which are proportional to ν and η, respectively. The radius of the localized

structures rs is proportional to ν/η [85]. Afterwards, the system is perturbed by ho-

mogeneous noise, this type of perturbation can be regarded as a linear combination

of all the angular modes m. However, the most unstable mode (the one with largest

eigenvalue λm) dominates the temporal dynamics and is the the only one observable.

By considering the stability of the localized spot for different values of the parameter

η under homogeneous noise perturbations we can determine that the most unstable

mode (λ2 > 0) is m = 2 as observed in Figure 3.5. This mode deforms the circular
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localized spot into an elliptically shaped structure as shown in Fig, 3.3.2.

3.3 Transversal instability

The SHE Eq. (2.2) admits a single stripe like solution [62, 86]. In order to evaluate

the threshold over which transversal oscillations appear, we perform the stability

analysis of a stripe structure, by a method similar to the one performed in Ref. [82].

For this purpose we perturb the single stripe solution as u = uf (ξ)+W (x,X0) where

uf is the single stripe solution and ξ = x −X0(y, t) the relative position, X0 is the

field that accounts for the shape and evolution of the stripe, and W (x,X0) << 1

is a non-linear correction of a single stripe. Applying this ansatz in Eq. (2.2) at

first order in W and applying the solvability condition [8], the following equation is

obtained for the dynamic of X0

∂tX0 = −∆′∂yyX0 + 6β′∂2yX0(∂yX0)
2 − ∂4yX0, (3.2)

where

β′ =
〈∂ξξuf |∂ξξuf〉
〈∂ξuf |∂ξuf〉

, and ∆′ = (ν − 2β′). (3.3)

Thus X0 satisfies a nonlinear diffusion equation. This equation describes the dynam-

ics of an interface between two symmetric states [87, 88]. This model is well known

for exhibiting a zigzag instability. Analogously, to the previous section, when ∆′ < 0

the single stripe solution is stable, and for ∆′ > 0, the solution is unstable as result

of the curvature instability. From equation (3.2) one expects to observe the single

stripe becomes unstable by the emergence of undulations. Figure 3.6 illustrates the

manifestation of this undulations under the consideration of an infinitely long stripe

structure, to avoid border effects. The pseudo-spectral code used prevents us from
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having discretization effects. Note that similar dynamical behavior is observed in

the propagation of cholesteric fingers in liquid crystals [66, 67]. Later, this undulated

stripe is replaced by the emergence of facets that form a zig-zag structure. However

the higher nonlinear terms control the evolution of the single stripe, then the dynam-

ics of the initial zig-zag is replaced by the growth of undulations without saturation

as it is depicted in Fig. 3.3.4. Therefore, the system displays the emergence of a roll-

like pattern which is formed in the middle section of the structure and invades the

system (see Fig. 3.3.5). To understand the complexity exhibited by these patterns,
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Figure 3.6: Transversal instability of a single infinite stripe of Eq. (2.2). Image shows
a section of a 256×256 point simulation with periodic boundary conditions using a
pseudo-spectral code. Parameters: η = −0.065, ε = 2.45, ν = 2, dx = 0.5, and
dt = 0.03.

it will be shown how through a pattern instability this roll structure destabilizes

generating its own oscillations.

3.3.1 Stability analysis of a regular pattern

In this subsection, we perform a linear stability analysis of an extended periodic

pattern. For this purpose, we consider a periodic solution along the x direction

25



10

−1

0

1

y

x

u

30
50

10

30

50

x

y

1
x

u

10 50
-1
0

Figure 3.7: Stripe pattern and its profile obtained from the simulation of Eq. (2.2),
with periodic boundary conditions and parameters: η = −0.065; ε = 2.45; ν = 2.0;
dx = 0.5; dt = 0.03. The insets depict a profile and colormap plot of the regular
pattern.

up = A exp[iq0x] + c.c., where A is the amplitude, q0 is the wave number and

c.c. initials denote complex conjugate. Due to the spatial isotropy of the Swift-

Hohenberg Eq. (2.2) the pattern may be oriented in any specific direction, without

loss of generality. For simplicity we have chosen the pattern fo amplitude A, to be

in the x-direction. Such stripe solution is plotted in Fig. 3.7. We consider a small

perturbation around this periodic solutions as u(r, t) = up(r) + δu(r, t) such that

δu = δ0e
(σq0 t)[exp (iq0x+ K · r) + c.c.] and δ0 � 1, where, K = kxx̂ + kyŷ and

r = xx̂ + yŷ represent the perturbation wave vector and the position, respectively.

σq0 stands for the temporal growth rate. Substituting this finite wavelength per-

turbation in Eq. (2.2), after straightforward calculations we obtain the growth rate

relation

σq0(K) = ε− 3A2 + ν
[
(q0 + kx)

2 + k2y
]
− [(q0 + kx)

4 + (q0 + kx)
2k2y + k4y]. (3.4)
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Hence, the stripe patterns exhibits a spatial instability when σq0(K) > 0, generating
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Figure 3.8: Spatial instability of a stripe pattern of the Swift-Hohenberg Eq. (2.2)
with periodic boundary conditions and parameters: η = −0.065; ε = 2.45; ν = 2.0;
dx = 0.5; dt = 0.03. The image shows in a given time, the appearance of undulations
on the stripes pattern. The inset shows a colormap plot of the undulated stripe
pattern.

oscillations along the y-axis. Figure 3.8 shows at a given time, the emergence of

undulations in the stripe pattern.

The amplitude of the undulations continued to grow until finally the system

finds as equilibrium a labyrinthine pattern [89]. Note that one can derive a nonlinear

equation for the phase of the stripe which have the same form as Eq. (3.2) [90].

Therefore, the dynamics exhibited by a single stripe is similar to those exhibits by a

stripe pattern.

3.4 Non-variational model

Localized structures are persistent in the presence of non-variational extra terms.

As a result of these non variational terms LSs may be exhibit permanent dynamics

as oscillation or chaotic dynamical behavior, among others [34, 91]. The dynamics

of spots deformation, accompanied by the emergence of unstable fingers with the
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final appearance of labyrinthine patterns we also observed in the non variational

Swift-Hohenberg model, Eq. (2.15). Figure 3.9 illustrates the process of emergence

of labyrinthine patterns from a localized structure

3

1 2

5 6

4

Figure 3.9: Transition from a single peak LS to labyrinthine pattern in the non-
variational Swift-Hohenberg Eq. (2.15). Different images sequentially illustrate the
temporal evolution of the structure, with parameters: η = −0.225; ε = 1.0; ν = 2.0;
dx = 0.5; dt = 0.03 c = 0.1 and b = −0.1. 1) Localized structure, 2) stripe structure,
3) undulations in the elongated structure, 4) and 5) localized transient patterns, and
6) stationary labyrinthine pattern.
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3.5 Chapter summary

In this chapter we have described the stability of a localized spot in a modified Swift-

Hohenberg equation. First, the bifurcation diagram was constructed, showing the

possible solutions that appear in different parameter regimes. Afterwards, it was

shown that the angular index m = 2 becomes unstable as consequence of curvature

instability. Such instability leads to an elliptical deformation of the localized spot.

The elliptical deformation leads to the generation of an elongated structure. Sub-

sequently, it causes undulations in the central portion of the stripe structure. The

spatiotemporal evolution leads to the formation of invaginated labyrinthine struc-

tures. To understand this dynamics, we have performed the analytical stability

analysis of a single stripe localized structure.

It should be noted that by an offset transformation, u → u + u0, where u0 is a

constant, Eq. (2.2) can be rewritten in such a way that the constant parameter η

is removed and a quadratic nonlinearity appears, Eq. (2.3). This quadratic model

is equivalent to Eq. (2.2). The model with a quadratic nonlinearity has been well

studied (see the textbook [8] and the references therein). This equivalence implies

that the results presented in this chapter are also valid for physical systems described

by the quadratic model.

The results presented in this chapter have been published, a copy of the article can

be found in Appendix A.
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Chapter 4

Rodlike localized structure

In the previous chapter it was shown how a localized structure suffers from a curva-

ture instability leading to the formation of an extended labyrinthine pattern. How-

ever it was observed that for certain—(η, ε)—parameter values of 2.2, labyrinths

can coexist with localized structures. This favoured the discovery of a new type of

localized structure from which labyrinths can develop. This structure is different

from the already known circular LS.

In this chapter, we show the existence, stability properties, dynamical evolu-

tion and bifurcation diagram of a stationary elongated localized structure, non az-

imuthally symmetric, in the prototype isotropic two-dimensional Swift-Hohenberg

equation (2.2). This structure will be called Rod structure, because of its elongated—

rodlike—shape. Figure 4.2 illustrates the typically observed stable rod structure.

Based on a dimer approximation, interaction properties of rod structures is char-

acterized. Complex network of equilibria are shown, this allows us to configure

different crystallike structures. Numerical simulations show a fair agreement with

these predictions.
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4.1 Preliminary observations

Isotropic dissipative systems usually exhibit localized structures which are azimuthally

symmetric, that is, the localized states have circular symmetry. Spatial breaking of

symmetry tends to deform the localized structures and even can generate propaga-

tion of them, this is the case of the worm structures observed in binary liquids [39,

92] and electro-convection cells [93]. In the liquid crystal light valve experiment tri-

angular localized structures have been observed by controlling the optical feedback

(see Fig. 4.1).

1)

3)

2)

Figure 4.1: Triangular localized structure found in the liquid crystal light valve
experiment. 1) and 2) correspond to numerical simulations [35]. 3) Experimental
observations [94].

Numerical simulations of the model describing this system also exhibits this

type of intrigued localized state. These triangular structures are inherently two-

dimensional due to the spontaneous breaking of symmetry of rotation. There is not

a global geometric theory to explain the origin of this structure and a characterization
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of the different possible localized structures without rotational symmetry.
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Figure 4.2: Stationary rod localized structure for the Swift-Hohenberg model,
Eq. (2.2). 1) In 2D, with ν = 2.0, η = −0.355, ε = 1.2, inset is a colormap of
the rod localized structure, and 2) in 3D, with ν = 2.0, η = −0.065, ε = 2.45

4.2 New localized solution

Considering the generalized Swift-Hohenberg equation (2.2), which exhibits both

localized and extended patterns. This equation generically applies to systems that

undergo a symmetry breaking instability—often called Turing instability [6, 7]—close
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to a second-order critical point marking the onset of a hysteresis loop, which corre-

sponds to a Lifshitz point [7, 22, 95] hence, this equation accounts for a bifurcation

of codimension three.

The generalized Swift-Hohenberg equation exhibits coexistence between homoge-

neous and pattern states, thus allowing the stability of localized structures. These

are localized structures in the sense of integral boundedness

∫∫

R2

|uls(x, y)|2dxdy < +∞, (4.1)

where, uls ≡ u(x, y)−u0 is the relative field of the localized structure with respect to

the homogeneous state u0 which sustains the localized structure. This homogeneous

state is a stable solution to the cubic equation η+ εu0− u30 = 0. For a certain range

of parameters {η, ε} two different localized structures are stable, the first, is the well

known circular (azimuthally symmetric) localized structure [58]. Notwithstanding,

we have found a second type of localized structure corresponds to a novel class of

localized structures at least in two and three-dimensional isotropic systems. This

structure is a rodlike stable localized structure, it break the azimuthal symmetry,

remaining invariant only with respect to a rotation of π around any axis on the

(x, y)-plane which contains the center of the localized structure. Figure 4.2 shows

the typical rodlike stable localized structures exhibited by both the 2D and 3D

Swift-Hohenberg Eq. (2.2). These structures do not correspond to bound states of

two independent circular localized structures. In order to figure out the conditions

under which the rod structure emerges, the analysis of the bifurcation diagram must

be done for the model under study.

For a fixed value of the diffusion coefficient ν = 2.0, typical bifurcation diagram

of the model Eq. (2.2) in the parameter space (ε, η) is shown in Fig. 4.3. The
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Figure 4.3: Bifurcation diagram of the 2D generalized Swift-Hohenberg Eq. (2.2) in
(ε,η) space for ν = 2.0. The light and solid curve Γ1 and Γ2 account for the imperfect
pitchfork bifurcation and the spatial bifurcation of the uniform state, respectively.
The shaded areas account for the zones where localized peaks (LS-zone) and localized
holes (Hole LS-zone) are observed. The painted areas (light-blue and red) stand for
the regions where rod structures have been observed. The insets correspond to the
typical monitored rod structures.

curves Γ1 and Γ2 represent the saddle-node bifurcation and the threshold associated

with a modulation or pattern forming or Turing instabilities of the homogeneous

state, respectively [83, 84]. For negative ε, the system has only one homogeneous

steady state, monostable region. For positive ε the system undergoes a bistable

behavior between homogeneous steady states as result of the saddle-node bifurcation.

Moreover, as a result of the spatial instability of the uniform state, the system also

exhibits coexistence between patterns and uniform states (cf. Fig. 4.3). Near this

type of bistability region one expects to observe localized structures [84]. The shaded

zones in Fig. 4.3 account for the areas where circular localized peaks and holes are

observed. When one decreases the value of the parameter |η| (approaching zero)

circular localized structures become unstable giving rise to labyrinthine pattern as

described in Chapter 3. This transition occurs via fingering instability.
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Unexpectedly, rod structures coexist with isotropic localized structures. Fig-

ure 4.3 depicts the region where the rod structures are observed.

Even though the Swift-Hohenberg model has been extensively studied since its

deduction, no analytic expression is know for the localized solution. It is because

these solutions are homoclinic solutions of the stationary dynamical system (∂tu = 0),

which is chaotic when one replaces the time for the radial coordinate [96]. Under

this consideration, the study of the rodlike structure will not lead to an analytic

expression yet to the full characterization of its characteristic properties, bifurcations,

and interaction. Numerical and geometrical methods are the most suitable tools

for characterizing the localized structures. We have conducted various numerical

simulations to validate our observations, in 2D we used both pseudo-spectral and

finite differences methods, and in 3D we used an adaptive triangular finite element

method. All the simulations exhibited stable rodlike structures.

4.3 One-dimensional interpretation

No definitive theory for two-dimensional localized structures has yet been formulated,

therefore, the required physical and mathematical conditions for their existence and

stability are not known. However, for one-dimensional systems, localized structures

emerge as a family of stable fronts connecting an homogeneous with a pattern state

in a bistable regime [97]. It is now known that coexistence (instead of bistability)

is sufficient for the appearance of one-dimensional localized structures [98]. In this

sense, the generation of two-dimensional localized structures can be regarded as an

extension of one-dimensional localized structure, which is rotated over its axis thus

generating an azimuthally symmetric localized structure. Nevertheless, the rodlike

structure breaks the azimuthal symmetry.
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Projecting over two orthogonal planes (γ1 and γ2). One can generate the equiv-

alent to one-dimensional localized structures. The projection over the γ1-plane (Fig

4.4.1) generates a one wavelength wide localized structure while the projection over

the γ1-plane (Fig 4.4.2) generates a two wavelength wide localized structure [85].

Hence, the two dimensional rod structure can be considered as the composition of

two one-dimensional localized structures with different lengths.

u
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y

u

x y

γ1 γ2

u

y

u

x

1) 2)

γ1-plane γ2-plane

Figure 4.4: One-dimensional projections of the 2D rod structure and the respective
projection over the: a) (x, u)-plane and b) (y, u)-plane. Numerical simulation of
Eq. (2.2) with ν = 2.0, η = −0.355, and ε = 1.2.

As in one-dimensional localized structures of the generalized Swift-Hohenberg

equation, the two dimensional structures possesses spatial oscillation tail of the field,

which propagates radially from the bulk of the structure, these oscillations, that

decay exponentially, stabilize the structure and allow the interaction between two or

more structures by field interference [59].
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4.4 Instabilities and bifurcation diagrams

The characterization of the phase space of the Swift-Hohenberg Eq. (2.2), Fig. 4.3,

shows the existence of the rod structure for a narrow range of parameters η and

ε. In all the range of stability, the rod structure coexists with stable circular local-

ized spots. It was shown in the previous chapter that circular localized structures

suffer from a curvature instability when leaving their stability zone thus generating

an extended labyrinthine structure. In this section its shown how labyrinths can

emerge—in zones where circular localized structures are stable—by the destabiliza-

tion of the rod structure. It is also shown how the rod structure elongate into an

infinite roll structure, decay into the simpler localized spot or even split into a bound

state of two circular localized structures, depending on the parameters varied. Bifur-

cations suffered by the rod structure can be studied through monitoring the energy

(Lyapunov functional) while modifying one parameter and fixing the others.

By variations of the parameters η or ε the rod structure is affected by saddle-node

bifurcations characterized by a change of the energy which follows a square-root law

near the threshold (see dotted lines in Fig. 4.5 and Fig. 4.8), and by a decay rate of

the structure proportional to (α − αc)−1/2, where α is the parameter varied and αc

indicates the critical parameter value for which the bifurcation occurs [99], Figure 4.6

illustrates this type of dynamical behavior. Rod structures that exist at the right

side of Γ2-curve (cf. Fig. 4.3), exhibit only two bifurcations. The first occur when

leaving the stability zone of the rod structure by decreasing ε (increasing η), causing

an increment in the rod structures size and consequently an increment on its energy.

Once the bifurcation takes place through the saddle-node mechanism, the system

falls into the basin of attraction of the labyrinthine pattern.

The transitions from rod to labyrinthine pattern, changing the different control
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Figure 4.5: Bifurcation diagrams of rod structures as function of ε and η parameters.
Saddle-node bifurcations, rod to circular localized structure, rod to labyrinth, and
rod to infinite roll. For 1) η = −0.320 and 2) ε = 1.6 and ν = 2.0.

parameters are depicted in Figure 4.5. As labyrinths are extended patterns, their

energy diverges. The second bifurcation suffered by the rod structure in this zone,

takes place when increasing the value of ε (decreasing η), here, the rod structure

shrinks subsequently reducing its energy, by saddle-node bifurcation rod structures

decay into single localized spots, which are energetically more stable, in the Lyapunov

sense. Figure 4.5 shows the transition from rod to localized spot. This rod to circular
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Figure 4.6: Decay rate as function η from a rod structure into a circular localized
structure for the 2D generalized Swift-Hohenberg Eq. (2.2) with ε = 1.6 and ν = 2.0.
The circles account for decay time obtained numerically. The solid curve is obtained
using the expression τ = τ0/

√
η − ηc with fitting parameters ηc = −0.3444 and

τ0 = 11.61 (R2 = 0.9647).

structure bifurcation continues existing for values of η and ε to the left of Γ2-curve.

The decay rate from rod to localized spot is shown in Fig. 4.6, where, ε = 1.6.

The numeric decay rate law corresponds to the expected theoretical rate from a

saddle-node bifurcation theory [99].

Another scenario emerges for values of η and ε to the left side of Γ2-curve. Other

two bifurcations are observed when overstepping the boundaries of the stability zone

for the rod structure. For fixed values of ε and decreasing values of |η| (see the

transition ζ4-curve in Fig. 4.7), the rod structure exhibits a continuous elongation

similar to the case of the rod to labyrinth bifurcation, though in this case the elon-

gation is permanent generating an infinitely long roll structure without transversal

oscillations (see the inset in Fig. 4.5.2).

Different is the scenario when leaving the stability zone of the rod structure by

the interior of the horseshoe-like arc, see Figure 4.7 for more detail, where a zoomed

phase diagram of the rod structure is shown. By following the Γ5-curve, a fourth

bifurcation appears, where the rod structure becomes unstable, surface tension is
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Figure 4.7: Zoomed phase diagram of rod structure. The different outcomes possible
form the destabilization of a rod structure are shown. ζ1-curve indicates the transi-
tion form rod to labyrinth bifurcation, ζ2 and ζ3-curves account for the transitions
from rod to circular localized structure, ζ4-curve stands for the transition from rod
to infinite roll, and ζ5-curve accounts for the transition between rod to binary state,
for ν = 2.0.

unable to keep the structure together leading to its splitting. Figure 4.8 depicts the

bifurcation diagram observed in the horseshoe-like zone. Through this bifurcation

two circular localized structures are generated by the collapse of the central part of

the structure.

It is important to note that there is no transition from circular to rod struc-

ture, as the circular structure has always a lower energy. However, transitions from

labyrinthine to rod structures are observed when entering with a labyrinth to the

stability zone of the rod structure.
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Figure 4.8: Saddle-node bifurcations for the splitting of a rod structure into a binary
structure of the generalized Swift-Hohenberg Eq. (2.2) for ν = 2.0 and η = −0.350.
The inset corresponds to a zoom of the tip, where the dotted line depicts the square-
root change in the energy proper of a saddle node bifurcation.

4.5 Interaction properties of the rod structure:

dimer approach

It has been shown that the generalized Swift-Hohenberg model, allows the existence

of multiple stable localized structures [58]. These (one or two dimensional) struc-

tures posses no compact support, thus, the frontier between the homogeneous state

u0 and the localized structure is not defined. Instead, the field oscillates decaying

exponentially with the distance from the localized structure, these oscillations fluctu-

ate around the homogeneous state with the characteristic wavelength of the system.

The exponentially decaying tails will be addressed as the interaction field [31, 59,

100, 101].
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4.5.1 Localized spots interaction

As mentioned before, no analytical expression is know for the localized structures

in the generalized Swift-Hohenberg model, Eq. (2.2). Nevertheless, for long distance

interaction only matters the asymptotic approximation of the decaying field is rel-

evant. For circular localized structures, based on the linear perturbation theory, it

is easy to show that the field u(r) for distances from the localized structure much

greater than the size of its core d, has the form

u(r � d) ≈ u0 + e−c1r cos(c2r) (4.2)

where, r =
√
x2 + y2 is the radial coordinate, u0 is the homogeneous state and

c1 = Re

[√
1

2
(
√
ν2 + 4ε± ν)

]
,

c2 = Im

[√
1

2
(
√
ν2 + 4ε± ν)

]
.

A system with two (or more) circular localized structures with initial given positions

r1 and r2, respectively, evolves to a stationary equilibrium by the change of relative

position between the structures R = r2 − r1. The corresponding interaction fields

from each particle interfere with each other generating interaction forces, which in

turn, induce movement of the particle-like solutions. Aranson et al. in Ref. [59]

showed that for two circular localized structures with interaction fields given by

expression (4.2), the temporal evolution of R is

dR

dt
=

R

R2

d

dR

[
e−c1R cos(c2R)

]
, (4.3)

where R = ||R|| is the magnitude of the vector of relative position.
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4.5.2 Dimer approach
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Figure 4.9: Dimer approach to rod structure. 1) Rod-LS numerical equilibrium
points (black dots) and dimer-LS approximated analytical equilibriums (blue dots),
the dimer is represented by black dashed lines. 2) Some characteristic points of equi-
librium between rod structures. Simulations of the Swift-Hohenberg model, Eq. (2.2),
with ν = 2.0, η = −0.355, ε = 1.2, and specular boundary condition, considering
only two structures at a time, central rod structure is considered static.

The extension of the above calculation for rod structures requires the derivation

of the asymptotic field for the rod structure, which must include an azimuthal de-
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pendency given by the shape of the structure, not having this information makes the

calculations non-viable. To avoid this impediment, the rod structure can be modeled

as a dimer state, that is, the rod structure will be regarded as the composition of two

circular localized spots separated by a distance d between the centers. Figure 4.9.1

shows a rodlike structure and the respective approximation of two localized spots,

which are emphasized by dashed lines. Therefore, the interaction field of the rod

structure is constructed by the composition of the corresponding interaction fields

of the two localized spots. With the dimer approximation, considering a diluted

regime, this is, evaluating the field at a distance r from the middle of the rod much

larger than the size of the spots (r � d), the force field can be written as

F dimer(r, θ) =
R−

R2
−

d

dR−

[
e−c1R− cos(c2R−)

]

+
R+

R2
+

d

dR+

[
e−c1R+ cos(c2R+)

]
,

where R± = r±d/2, and d is a vector of size d, which points in the semi-major axis

of the rodlike structure and r is the radial unit vector.

This field approximation yield the equilibrium points for a test structure shown

as small blue spots in Fig. 4.9.1. Agreement with numerical observations for the

interaction between a rod and a circular localized structure can only be seen for the

structures further from the origin, as the validity of the force field approximation is

valid only for r � d, however the approximation does not predict the existence of

multiple diagonal equilibriums as observed in Fig. 4.9.1. More complex is the rod-

rod interaction, for their azimuthal asymmetry reflected on its axial elongation. This

adds and angular degree of freedom for the positioning of a rod structure at each

equilibrium point (see Fig. 4.9.2). The variety of equilibriums exhibited by this new

type of structure allow the existence of diverse complex arrangements when multiple
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Figure 4.10: Tailored crystal-type configurations generated by the collocation of rod
structures for the Swift-Hohenberg model, Eq. (2.2) with ν = 2.0, η = −0.355,
ε = 1.2 and periodic boundary conditions.

rod structures are considered. Figure 4.10 shows some of the stable crystal-type

structures, that we have constructed from rod-rod interaction.

The interaction of a larger number of rods (i.e. covering all the available space)

increases the number of possible equilibrium configurations. The multiple interaction

drives the system sometimes to equilibriums which were unstable in the rod-rod

interaction scenario, in Figs. 4.10.1, 4.10.2, and 4.10.3, dashed lines indicate rod-

rod equilibriums which are unstable in an isolated environment and stabilize under

the presence of multiple structures. Crystal-type structure shows in Fig. 4.10.4

is constructed based on the T-like equilibrium position, orthogonal rod structures,

exhibited by the rod-rod interaction.
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4.6 Non-variational stabilization

The generalized Swift-Hohenberg model, Eq. (2.2), has a non-variational extension

deduced in the context of liquid crystals for bouncing localized states [34] and de-

duced from chemical, biological and optical models [53] this equation reads (Lifshitz

normal form)

∂u

∂t
= η + εu− u3 − ν∇2u−∇4u+ bu(∇2u) + c(∇u)2, (4.4)

which (excluding the case where b = 2c) is non-variational, this is, it is not derived

from a Lyapunov functional. Thus, this model can exhibit complex and permanent

behaviors, such as, the propagation of localized objects, oscillations, chaos and other

spatiotemporal dynamics. The last two terms of Eq. (4.4) correspond, respectively,

to nonlinear diffusion, being b the nonlinear diffusion coefficient, and nonlinear ad-

vection. Numerically, we have observed that for small range of parameters b and c,

4
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Figure 4.11: Stationary rod localized structure for the nonvariational Swift-
Hohenberg model, Eq. (4.4), with b = 0.01, c = −0.005, ν = 2.0, η = −0.355,
and ε = 1.2.

the rod structure remains stable by only changes on its dimensions (see Fig. 4.11).
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For constant values of ε and η, increasing b or decreasing c affects the structure, by

making it shorter. While decreasing b or increasing c enlarges the structure. For

parameter b and c where the rod structures are larger, the evolution of the system

is faster, for example, in the labyrinth formation or splitting process.

For fixed values of the parameters, ε = 1.2, η = −0.355 and ν = 2.0 the range of

b and c for which the rod structure is stable are approximately b = [− 0.017, 0.015]

and c = [ − 0.007, 0.008]. Despite the small range of b and c for which the rod is

stable, the possibility of existence of rod structures in non variational systems opens

the possibility for searching this structure in a wider variety of experiments.

4.7 Chapter summary

An asymmetric localized solution for the isotropic generalized Swift-Hohenberg model

in two and three spacial dimensions has been revealed. This solution called rod

structure breaks the azimuthal symmetry, remaining invariant only with respect to

a rotation of π around any axis on the (x, y)-plane which contains the centre of the

localized structure. The existence, bifurcation diagram, stability properties and in-

teraction have been addressed. The question if this type of solution exist in other

isotropic systems remains, so is the possibility of experimental observation.

The results presented in this chapter are under revision for publishing, a copy of the

manuscript can be found in Appendix B.

47



Chapter 5

Universality of the curvature

mechanism

The destabilisation of circular localized structures and the subsequent formation of

labyrinthine structures has been deeply studied in the previous chapters in the con-

text of the generalized Swift-Hohenberg equation (2.2). It has been shown that the

localized structure to labyrinth transition occurs under the existence of bistability

between homogeneous states and far from any pattern forming instability. In this

chapter it will be shown that the curvature instability leading to labyrinths is uni-

versal and common to a wide variety of natural systems. First, the existence of the

curvature mechanism will be presented in the context of vegetation dynamics though

a generic interaction-redistribution model, then it will be shown that the mechanism

is also present in chemical reactions through the Gray-Scott model.
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5.1 Interaction-redistribution model

In this section a minimal but general model for vegetation pattern forming systems

will be introduced. In this model the curvature instability mechanism also emerges

in a regime of bistability of homogeneous steady states far from the pattern forming

instability.

500 m

1)

2)

Figure 5.1: 1) Tiger bush patterns in central Australia [102], 2)Fairy circles in the
desert of Namibia [103].

The emergence of spatial organization in extended landscapes has been an in-
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triguing phenomena for both botanists and the non-linear science community for

decades and is still a matter of great discussion [104, 105, 106]. One of the transver-

sal agreements among scientists is that competition for soil resources such as water

and nutrients leads to the self-organization of vegetation. Depending on the topog-

raphy of the terrain, the climate conditions and the vegetation specie, the process

of self-organization can lead to the formation of a wide variety of patterns, such as,

tiger bush (see Fig. 5.1.1) [104], or fairy circles (see Fig. 5.1.2) [105, 106].

Taking into account the relation that exists between the structure of individual

plants and the competition-facilitation interactions in a vegetation community is

that generic interaction-redistribution models emerge [104, 107]. These models have

been successful in the prediction of the existence of localized structures in arid and

semi-arid environments where the resource scarcity induces high competition between

plants through their root networks. In this context, a localized structure emerges as a

patch of vegetation in an unpopulated homogeneous state. By considering a logistic

equation with nonlocal coupling between plants, Tlidi et al. [45] where able via a

weak gradient approximation, to deduce a mean-field nonlinear partial differential

equation for the temporal evolution of the phytomass density ρ(x, y, t):

∂tρ = −ρ
(
η − κρ+ ρ2

)
+ (∆− Γρ)∇2ρ− αρ∇4ρ, (5.1)

where (x, y) and t are the spatial coordinates and time, respectively. This equation

supposes an homogeneous and isotropic environment. The parameters: η accounts

for the decrease-to-growth rate ratio; κ is the facilitation-to-competition suscepti-

bility ratio; ∆ is proportional to the square root of the facilitation-to-competition

range ratio, this three parameters are positive-defined. The parameters Γ and α

are the nonlinear diffusion coefficients. The existence of a nonlinear diffusion and
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hyperdiffusion is fundamental for Eq. (5.1) to satisfy the physical constrain for the

phytomass density ρ(x, y, t) ≥ 0. However, presence of non-linear diffusion terms

u∇2u and u∇4u render Eq. (5.1) nonvariational, thus, it cannot be written as the

variation of a Lyapunov functional. Nonvariational systems can exhibit complex

spatiotemporal dynamics, such as chaos, intermittency, among others. These nonva-

riational terms are imputable to the dispersion process. If the dispersion is negligible

then equation (5.1) is similar to the variational Swift-Hohenberg, Eq. (2.1) where

the coefficients of ∇2u and ∇4u are both independent of the field variable. The real

order parameter equation (5.1) constitutes the simplest model of spatial dynamics

in which competitive interactions between individuals occur locally.
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Figure 5.2: Bifurcation diagram of homogeneous plant population states (purple),
dashed lines indicate unstable regime, and curve of stability of localized structures
(dots). When the aridity η is decreased below ηc the curvature instability mechanism
is observed.

The homogeneous solutions of Eq. (5.1) are (i) ρ0s = 0, which correspond to

a territory without vegetation, a bare state (ii) an two non-zero states given by

ρs± = (κ±
√
κ2 − 4η)/2. For physical reasons phytomass density can only be positive

or zero (see Fig. 5.2). When κ ≤ 0, only the homogeneous steady state ρs+, defined

is consistent, for η < 0. It decreases monotonously with µ and vanishes at η = 0.
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When κ > 0, the viable homogeneous solution extends up to the limit point ρL = κ/2

and ηL = κ2/4. In the range 0 < η < ηL, the biomass density exhibits a bistable

behavior: the stable homogeneous branches of solutions ρ0s and ρs+ coexist with the

intermediate unstable branch ρs−.. The upper homogeneous state ρs+ undergoes a

Turing instability characterized by the wavelength

Λm = 2π
√

2α/
√

Γ/α−∆/ρm (5.2)

which measure the distance between two maxima or minima of the plant distribu-

tion. The threshold associated with this instability is solution of the following cubic

equation:

(2Γρm −∆)2 = 4αρ2m(2ρm − k). (5.3)

There exist more than one threshold associated with the modulational instability.

In the following, we focus on parameter regime where the uniform plant distribu-

tion exhibit bistability (κ > 0) and a portion of this state becomes unstable with

respect to the Turing bifurcation (ηm < η < ηL). In this parameter range, any small

fluctuation around the uniform plant distribution ρs+ will trigger spontaneously the

evolution of the system towards stationary, spatially periodic distributions of the

biomass density which will invade the whole territory. However, when a stable lo-

calized vegetation patch is considered as an initial condition (high aridity), see Fig.

5.3.t1, and the aridity is then varied in such quantity that the system reaches the

coexistence of homogeneous states, then the localized structure suffers and elliptical

deformation caused by the curvature instability and elongates into a rod structure

(see Fig. 5.3.t2) in a process identical as previously observed for the Swift-Hohenberg

Eq. (2.1). Afterwards, the rod structure suffers from a transversal instability, here,

the whole structure is compromised (see Fig. 5.3.t3) and not only the central por-
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Figure 5.3: Curvature instability mechanism for the generation of a labyrinth from a
localized patch as initial condition for the interaction-redistribution model Eq. (5.1).
Simulation made for parameters η = 0.085, ε = 0.6, ∆ = 0.005, Γ = 0.5 and
α = 0.125. Finite differences method was used with periodic boundary conditions,
grid of 200×200 points and spacing dx = 0.5. Green indicates higher field values.

tion as in the Swift-Hohenberg case (Fig. 5.6.t3). As time further increases, the

labyrinthine structure invades all the system.

Here we have showed the appearance of the curvature instability mechanism over

a localized vegetation patch which in turn generates the emergence of a labyrinthine

structure in a generic interaction-redistribution model.

5.2 Gray-Scott model

Figure 5.4: Belousov-Zhabotinsky chemical reaction, concentrations of chemicals
oscillate in time displaying astonishing spatial patterns [108].
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Pushing further the idea of universality of the curvature instability mechanism

for the formation of labyrinths we now enter the domain of chemical reactions. It is

well known that the reaction and diffusion of the chemical components of a reaction

can produce an immense variety of spatial structures, such as lamelar structures and

self-replicating spots [109, 110], localized structures [111, 112] and Turing structure

[113, 109, 114], and exhibit complex spatiotemporal dynamics, such as oscillatory

dynamics (see Fig. 5.4), breathing localized structure and spatiotemporal chaos

[115, 116, 117].

In a series of seminal works Peter Gray and Stephen K. Scott introduced a variant

of the autocatalytic model of glycolisis first proposed by Evgeni Sel’kov [115]. This

prototype autocatalytic reaction (i.e. the product of the reaction is also the catalyst)

is described by two irreversible processes:

A+ 2B → 3B (5.4)

B → C

where A, B and C are chemical species, C is a non-reactive product (inert) and the

system is kept out-of-equilibrium by a constant injection of A (feeding) [118, 119,

116]. It has been shown that this simple model presents multistability, hysteresis

cycles, patterns, oscillatory dynamics and other exotic patterns.

Through a rescaling and including the diffusion phenomena in the reactions, a

non-linear partial differential equation can be deduced for the temporal evolution

of the concentrations U and V of A and B, respectively [109]. This set of coupled

equations are given by
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∂U

∂t
= Du∇2U − UV 2 + F (1− U), (5.5)

∂V

∂t
= Dv∇2V + UV 2 − (F + k)V

and are an example of reaction-diffusion equations, as they model the local evo-

lution U and V, and the diffusion process of the chemical species. In Eq. (5.5)

Du and Dv correspond to the diffusion coefficients associated to U and V, respec-

tively. F represents the feed rate of the reactive A and the dimensionless constant

k (killing rate) accounts for the rate of the second reaction in Eq. (5.4). Alike the

interaction-redistribution model presented for vegetation dynamics Eq. (5.1), the

Gray-Scott model Eq. (5.5) does not have a known variational structure, which is

the reason behind its rich phenomenology which includes, from oscillatory dynamics,

self-replication [109] and chaos [117] and others mentioned before.

The existence and stability of patterns and localized spots (or single pulses) as

homoclinic solutions of Eq. (5.5) has been well studied both in 1 and 2-dimensional

cases [111, 120, 121, 122, 123]. This system supports a trivial homogeneous steady

state (U0, V0) = (1, 0) which is always stable. When the discriminator d = 1− 4(F +

k)2 > 0 two additional homogeneous steady states (U±, V±) appear, the first

(U−, V−) =

(
1

2
(1 +

√
d),

F

2(F + k)
(1−

√
d)

)
(5.6)

is always unstable. The second state

(U+, V+) =

(
1

2
(1−

√
d),

F

2(F + k)
(1 +

√
d)

)
(5.7)

is stable when −V 2 + k < 0 and (F + k)(V 2 − F ) > 0. For F > 1/4 the system
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only exhibits the trivial steady state. For F < 1/4 and k < 1/16 the system exhibits

three homogeneous steady states (one unstable). The bifurcation diagram for the

homogeneous states is shown in Fig. 5.5. For a detailed study on the bifurcations

and instabilities of Eq. (5.5) see ref. [114].
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Localized spotLabyrinth
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( F < FR)

V+

V-

V0

Fh

Figure 5.5: Bifurcation diagram for the concentration V for k = 0.061, homogeneous
states (blue), dashed lines indicate unstable regime. The

√
F -curve shows the po-

sition of the saddle-node bifurcation. For Fc < F < Fh stable localized structures
are observed (numerically). When changing the feeding parameter for a localized
structure to values Fr < F < Fc, the curvature instability mechanism is observed.
Reconnection zone indicates the zone where a radial instability is observed and struc-
tures can reconnect (see. Fig. 5.7). Here Fh = 0.097, Fc = 0.085 and Fr = 0.078.

As indicated in Fig. 5.5, we have found that localized structures are stable when

Fc < F < Fh. If F is increased further the system falls to the homogeneous state

V = 0. When the parameter F is reduced below Fc, perturbations become unstable

and the structure suffers a curvature instability characterized by the elongation of the

structure (see Fig. 5.6). As observed for the modified Swift-Hohenberg equation (2.1)

and for the interaction-redistribution model (5.1) the concentration field suffers then

a transversal instability characterized by the wiggling of the central section of the

structure. Non saturating evolution leads to the formation of a complex labyrinthine
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structure as seen in Fig. 5.6.t5.

t1 t2 t3 t4 t5

x

y

10240
0

1024

temporal evolution

Figure 5.6: Curvature instability mechanism for the generation of a labyrinth from
a localized concentration peak as initial condition for the Gray-Scott model (5.5).
Simulation made for parameters F = 0.080, k = 0.061. Finite differences method
was used with periodic boundary conditions, grid of 1024×1024 points and spacing
dx = 1. Black indicates higher values of concentration V.

When the feeding parameter is decreased further (F < Fr), an initially circular

localized structure suffers from a radial instability as seen in Fig. 5.7.t2, there two

spots where given as initial conditions. As the radius of the structures grow, they

suffer from a curvature instability. Non saturation causes the structure to propa-

gate. Differently from what is observed from every labyrinthine structure showed

previously, here the tips merge, this causes reconnection of the structures. In the

transition from t4 to t5 one can realize that the two initially distinct structures

reconnect into one single labyrinth.

5.3 Labyrinth connectivities

The curvature instability of a localized structure was observed in the three sys-

tems presented previously which describe at least three different physical contexts.

In the three cases (modified Swift-Hohenberg, interaction-redistribution and Gray-

Scott models) an initially localized structure suffers from the curvature instability

mechanism to finally fall into an extended labyrinthine structure. However each of

these structures are different (see Figs. 3.3.6, 5.3.t5, 5.6.t5 and 5.7.t6). Starting
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Figure 5.7: Alternative mechanism for the generation of a labyrinth from a localized
concentration peak as initial condition for the Gray-Scott model (5.5). Simulation
made for parameters F = 0.070, k = 0.061. In this parameter zone occurs reconnec-
tion between structures. Finite differences method was used with periodic boundary
conditions, grid of 1024×1024 points and spacing dx = 1. Black indicates higher
values of concentration V.

from a single localized structure the Swift-Hohenberg model Eq. (2.1), generates a

single fully connected structure, this is, starting from any point of the labyrinth, one

can go over the whole structure without leaving the higher value field. The same

happens in the first labyrinth from the Gray-Scott model (c.f Fig. 5.6) only that in

this case the structure shows no dislocations as the structure remains in a single line

labyrinth. In the case of the interaction-redistribution model Eq. (5.3), starting from

a single localized structure, the final labyrinthine state is disintegrated into a high

number of small structures, thus, this labyrinth is highly disjoint. On contrary, when

considering two initial structures in Fig. 5.7, the structures where able to reconnect

increasing the connectivity from the initial state.
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A classification of the labyrinth structures originated from localized initial states

can be done based on the connectivity difference between the initial and the final

states. Defining ∆ = Cf − Ci as the difference between final Cf and initial Ci

connectivities, where the connectivity is simply the number of disjoint structure in

the system. Then, if ∆ > 0 we will say labyrinth is dissociative (the structure tends

to divide), if ∆ = 0 it is neutral (each structure preserves its identity) and if ∆ < 0

the labyrinth is associative (structures tend to merge). We can conjecture after the

previous observations that the type of labyrinth that a system exhibits will depend

on the capacity of a structure of preserving its integrity, here, surface tension (or

line tension) which keeps the structure together will play a fundamental role. In

this sense, the type of labyrinths a system exhibits can give information of the line

tension properties of the system.

5.4 Chapter summary

In this chapter the curvature instability mechanism for the destabilization of a local-

ized structure leading to the formation of extended labyrinthine patterns has been

shown to exist in a wide range of physical systems including in vegetation dynamics

through a general interaction-redistribution model and in chemical reactions through

the Gray-Scott reaction diffusion equations. It has been shown that depending not

only in the context in which labyrinths emerge but also on the parameters considered

for simulation/experimentation, different labyrinths emerge and even more, they can

be classified as associative, neutral or dissociative, based on the difference between

the initial and final connectivity of their structures.

The results presented in this chapter are under revision for publishing, a copy of the

manuscript can be found in Appendix C.
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Chapter 6

Self-replication in vegetation

dynamics

In this chapter, we study a robust phenomenon observed in semi-arid ecosystems,

by which localized vegetation patches split in a process called self-replication. By

observation of real ecosystems and comparing with theoretical and numerical analysis

we show an underlying process of self-organization leading to pattern formation

mediated by the self-replication of patches.

6.1 Preliminary observations

In arid and semi-arid landscapes of the African, American, Asian and Australian

continents, it is common to encounter a non-uniform vegetation cover which exhibits

large spatial scale structures, generically called vegetation patterns [124, 125, 126].

These landscapes are characterized by either water limited resources and/or nutrient-

poor territories. In the former case, the potential evapo-transpiration of the plants

exceeds the water supply provided by rainfalls. At the level of individual plant,
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the water scarcity provokes an hydric stress that affects both the plants survivability

and the plant growth. At the community level, this hydric stress promotes clustering

behaviour which induces the fragmentation landscapes. It is now generally admit-

ted that this adaptation to hydric stress involves a symmetry-breaking modulational

instability or Turing instability that leads to the establishment of a stable periodic

pattern in an isotropic environmental conditions [104, 127, 126]. Vegetation patterns

1 m

300 m

2 m

2)
1)

3)

Figure 6.1: Localized patch instability. 1) Spinifex grassland, Yakabindi station,
Western Australia (courtesy of Villis and Magi Nams). 2) Patterns of P. bulbosa
observed in the Northern Negev [17]. 3) Satellite image showing localized vegetation
patches, Zambia (Google Earth).

are not always periodic. The spatial distribution of vegetation cover, may consists

of isolated or randomly distributed patches or gaps. Such patterns can form systems

such as groves within grasslands [45, 128] or spots of bare soil within a grass matrix

[129]. They consist of patches which are either isolated or part of large systems. In

both cases, such patterns have been interpreted as localized structures. A well docu-

mented example are the so-called fairy circles, which consist of circular areas devoid

of vegetation embedded in an herbaceous vegetation field. The aperiodic patterning
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phenomenon is not specific to particular soils or plants. Localized vegetation patches

or gaps may develop on soil ranging from sandy and silty to clayey and the nature

of vegetation may consist of grasses, shrubs and trees. The surface of vegetation

patch can vary from small clumps of grasses (0.5-2 m2) to large groves of mulga

(Acacia aneura) trees (100-1000 m2), such as those observed in central Australia

[130], see Fig. 6.1. On the other hand, the formation of localized pattern is an im-

portant issue not only in plant ecology context and environment science but also it

is a multidisciplinary area of research involving physics, chemistry and mathematics

[128].

However, localized vegetation patches may be unstable, and exhibit a curvature

instability that leads to a splitting of the patch into two new patches. Examples of

such behavior are shown in Fig. 6.1. This intriguing phenomenon often called spot-

replication is well documented issue in the context of magnetic fluids [12], liquid

crystals [66, 67], Chemical systems [68]-[76], in plant ecology [17], material science

[77, 78], granular fluid systems [79, 80], and nonlinear optics [81].

In this chapter, we investigate the self-replication mechanism in natural ecosys-

tems, and show that this phenomena is robust as it is observed in a wide range

of species and size scales. We consider a general interaction-redistribution model,

where simulations show that there exist a critical value of the level of the aridity

under which a single circular patch grows up to a maximal diameter, the curvature

instability leads to an elliptical deformation followed by patch multiplication. This

process continue in time until the system reaches a self-organized vegetation pattern

in an hexagonal structure. Afterwards, we address the spatial organization problem

and show how self-replication mediates the spatial distribution and propagation of

the vegetation.
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6.2 Field observations

6.2.1 Location

a.

b.

c.

10 m

1)

2)

3)

20 cm

Figure 6.2: Study site, dark spots correspond to Festuca orthophylla tussocks. 1)
Satellite image showing localized vegetation patches (Google Earth) in the Cata-
marca region, Argentina. b) Zoom of the region under study. c) Average size tus-
socks of Festuca orthohylla in the Sajama National Park in the Bolivian Altiplano
[131].

The Andes highlands are semi-arid ecosystems with low amounts of available

resources. In particular, the Catamarca region in NW-Argentina (-23.436253◦, -

65.976767◦ at 3424 m a.s.l.), the average annual rainfall reaches 369 mm (source

CRU CL 2.0), with a maximum in January of 71 mm and a minimum in July

of 6 mm, temperature varies from warm in the day to freezing temperatures in

the night. Here, it is well known that Festuca orthophylla which produces tall,

evergreen tussocks dominates the landscape over extended areas and periods of time
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at elevations between 3225 and 4860 m a.s.l [132, 131]. This specie is present in a

variety of cold climates, adapting to diverse rainfall and soil moisture conditions.

Festuca tussocks arrange in circular shape compact structures composed by thou-

sands of tightly packed tillers. The size of the tussocks depends on the resources

available and weather conditions of their location, for instance, in western Bolivia

they can reach heights of 1.6 m [131]. An important characteristic of Festuca is their

shallow rooting system, which has been reported to cover an area 6-fold the area

of the above ground canopy [131]. This quality allows each plant to have access to

the resources in a total area equivalent to 6-fold the area of the projected canopy,

which is well known to be the most important mechanism to capture resources in

highlands [131, 133]. This root distribution also allows tussock-tussock competition

for resources, this will be important later on for understanding the spatial organiza-

tion of the tussocks. The study site, was selected in order to have a minimal slope,

and no topographic perturbations such as mountains, canyons, river or highways.

The image obtained from Google Earth consists on a 4800x3562 pixels image (with

a spatial resolution of 30cm), which corresponded to an area of 109.4 km2 (384m x

285m), see Fig. 6.2.1.

Festuca structures are easily recognizable in the images for their high light ab-

sorption (they appear as black spots). As mentioned previously Festuca organizes

in tightly packed structures of circular shape, however, there is an important num-

ber of structure that have lost their circular shape, this modulational instability

is the mechanism by which a tussock deform into an elliptical shape and conse-

quently splits into two independent tussocks, we term this process self-splitting (see

Fig. 6.2.2). This process is common to a wide range of species and scales, as observed

in Fig. 6.1, where self-replication can be observed for structures in the scale of meters

to hundreds of meters.
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6.2.2 Spatial distribution analysis

The field image (Fig. 6.2.1) was used to study the spatial distribution of the tus-

socks. Detection of patches was performed through filtering, noise reduction and

contrast enhancement of the image. Objects touching the border of the image were

removed as they may not be completely observed, thus, they could introduce erro-

neous measurements to the analysis. The size of the structures that can be detected

is lower-bounded by the satellite spatial resolution, nevertheless, we can hypothesize

that the spatial distribution will be dominated by the bigger tussocks as a conse-

quence of their fully developed shallow root systems.

After the detection of the patches, the boundaries of each object and their prop-

erties (area, centroid position, perimeter and equivalent diameter) can be precisely

computed. The relation of meters per pixel is extracted directly from the image (20

m/250 pixels). A total of 3204 structures where detected. The first analysis, corre-

sponded to detailed characterization of individual plant properties such as nearest

neighbor distance (NND), area covered and equivalent radius of each structure, this

radius is calculated by comparing the area of the structure with that of a circle of

that equivalent radius. The nearest neighbour distance is computed as the minimal

boundary-to-boundary distance, this will allow us to extract some conclusions on the

NND versus root sphere size. Canopy area and radius will be useful in understanding

the underlying pattern emerging from redistribution and competition for resources.

To expose the emergent spatial order in tussocks distribution, spatial Fourier analy-

sis was performed in order to determine a characteristic wave number. For the effect

of Fourier analysis, a square sub-figure was selected from the original one. Finally,

we have computed the Voronoi tessellation for the centres of the structures. This

analysis, suitable for studying the regularity of a pattern has been used previously
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in aerial analysis to address pattern formation in vegetation structures [134]. For

both NND and Voronoi cell computation, a subset of structures where selected such

that they where far enough from the images border to avoid error induced from non

visible structures.

6.2.3 Nearest neighbor distance and structure properties

From the remote sensing image analysis of the Catamarca region in NW-Argentina

a total area of 109.4 km2 (384m x 285m) was studied. Structures found in the

analysis ranged from an area of 0.0128 m2 to maximum area of 6.2528 m2 with a

mean of 0.95±0.79 m2. By visual inspection, we have noticed that bigger structures

are most probably evolving clusters of structures. The average equivalent radius

was found to be 0.50±0.22 m. For calculating the minimal distance between the

objects boundaries, only structures which are far enough from the image’s border

are considered, as the objects not captured in the image could be closer to these

structures than the other observable ones. By this consideration, distances between

2837 objects are used. The distance between objects vary from 0.25 m to 4.63 m,

and averaged a distance of 1.83±0.77 m (see. Fig. 6.3).

Considering the average size and NND, and assuming that the distance between

tussock is set under the constrain that the root spheres do not overlap, we can

estimate the projected root sphere size of an average tussock as the half of the NND,

this results in a root sphere of 1.4 m radius and 6.3 m2 area, which corresponds to an

area of 6.7-fold the area of the average structure. This is in agreement with previous

field observations [135].
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Figure 6.3: Histograms for 1) area, and 2) radius of the detected structures, and 3)
nearest neighbour distance between them.

6.2.4 Fourier analysis

For the spatial Fourier analysis, we considered a square sub-figure of the original.

This figure contained 1510 structures. The spatial Fourier transform is extensively
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used by pattern formation community to evaluate the degree of order. Pronounced

peaks in the 2D Fourier amplitude indicate not only the existence of a characteristic

length in the system but also a preferred spatial direction for the formation of the

pattern. From our spatial Fourier analysis we are unable to detect pronounced
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Figure 6.4: Circular integration for spatial Fourier transform. Inset shows the full
spectrum of the detected structures.

peak in the spectrum, indicating that there in no preferred direction for a pattern

to form, this is the same type of spectrum as the one observed for labyrinthine

patterns [89]. However, in the circular integration of the spectrum, we observe a

maximum wavenumber at k=2.4 m−1 (see Fig. 6.4), this is the first sign that the

system is arranging in such a way that a characteristic length emerges (Lc = 2π/k =

2.6 m). As one would expect this characteristic length is related to the interaction

between tussocks, no-overlap (between tussock root spheres) is achieved in average

if the distance between the centres of the structures is at least 2.4 m according

to estimations made in the previous section from the histogram analysis. Root

competition between plants generates a minimal distance between tussocks.
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6.2.5 Voronoi cells characterization

One of the problems of detecting patterns in natural ecosystems is the existence of

high scale perturbations such as terrain inhomogeneities, weather conditions, wind,

animal presence, among others. All this external noise, alters the interaction between

tussocks therefore, mangles their ability to form a regular pattern. With no regular

pattern, the task of finding some type of unitary cell in the tussoks arrangement can

be facilitated by the introduction of the Voronoi tessellation [136]. Considering the

centre of a structures, the Voronoi cell associated with that structure will correspond

to all the points that are closer to its centre than to the center of any other structure.

In this sense, the Voronoi tessellation gives us information of the most probable cell
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Figure 6.5: 1) Voronoi cell tessellation, 6-sided tiles are painted red. Histograms for
2) the number of vertices in each cell, and 3) the tile area.

arrangement. As it is observed in Fig. 6.5, the most probable vertex number is 6,
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which strengthen the idea of the underlying tendency of Festuca tussocks to arrange

in hexagons, this is reinforces by observing that 6-sided cells are clearly not randomly

distributed but rather cluster in groups. Important data can also be extracted from

the tile area, each tile represent the amount of land that is closer to a certain tussock

than to any other, thus the nutrients present in that portion of soil will be more

accessible for the center tussock. The average tile area is 21.8 m2, which corresponds

to equivalent radius of 2.63 m, almost twice the radius estimated for the root spheres.

This means that even though when considering nearest neighbors, roots seem to

determine the minimum distance, in a large scale, tussock disperse through the

terrain. This can be understood as an exponential decay of the interaction between

tussocks, where depending on the amount of space available, they will spread or

tighten provided that the root spheres do not overlap.

6.3 Model equation for vegetation dynamics

In this section we will reintroduce the generic interaction-redistribution model (Eq. (5.1)

presented in Chapter 5, here we will focus in the self-replication regime.

Pattern formation in vegetated environments has been extensively studied both

experimentally and theoretically. It is well known that competition for resources

such as water leads to self-organization phenomenon. This process leads to the

formation of a wide range of patterns that depends on the characteristics of both

the environment and the spatial distribution of underground root networks.

Several models describing vegetation patterns and self-organization in arid and

semiarid landscapes have been proposed during last two decades. They can be classi-

fied into three types. The first approach often called generic interaction-redistribution

models, are based on the relationship between the structure of individual plants and

70



the facilitation-competition interactions existing within plant communities [104, 137,

138, 107].The second approach is based on reaction-diffusion type of models, these

take into account the influence of water transport by below ground diffusion and/or

above ground run-off [139, 10]. The third approach focuses on the role of environ-

mental randomness as a source of noise that induces symmetry breaking transitions

[140, 141, 127].

In particular, the formation of localized structures in vegetation, also called lo-

calized vegetation patches has been studied in the case of poor resources, isotropic

and homogeneous environment via a weak gradient approximation of the generalized

logistic equation that described the non-local interaction between plants, a non-

variational equation for the phytomass density ρ(x, y, t) was derived in [45]

∂tρ = −ρ
(
η − κρ+ ρ2

)
+ (∆− Γρ)∇2ρ− αρ∇4ρ, (6.1)

where (x, y) and t are the spatial coordinates and time, respectively. As stated in

the previous chapter, this equation contains three positive defined control param-

eters: η that account for the decrease-to-growth rate ratio; κ is the facilitation-

to-competition susceptibility ratio; ∆ is proportional to the square root of the

facilitation-to-competition range ratio. The parameters Γ and α are the nonlin-

ear diffusion coefficients. The real order parameter equation (6.1) constitutes the

simplest model of spatial dynamics in which competitive interactions between indi-

viduals occur locally.

The homogeneous steady states; ρs; solutions of Eq. (6.1) are (i) no plant state,

ρ0s = 0, which correspond to a territory devoid of vegetation and (ii) an homogeneous

plant population ρs± = (κ ±
√
κ2 − 4η)/2 where at each point of the territory, the

vegetation production and death are exactly balanced. They should be real and
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Figure 6.6: Bifurcation diagram of homogeneous plant population states (purple
and black), dashed lines indicate unstable regime, and curve of stability of localized
structures. The darkened area accounts for the region where localized patches (LP)
are observed.

positive. Two situations must be distinguished according to the sign of κ. When

κ ≤ 0, only the homogeneous steady state ρs+, defines the biomass density, for

η < 0. It decreases monotonously with µ and vanishes at η = 0. When κ > 0,

the physical part of homogeneous branch of solution extends up to the limit point

ρL = κ/2 and ηL = κ2/4. In the range 0 < η < ηL, the biomass density exhibits a

bistable behavior: the stable homogeneous branches of solutions ρ0s and ρs+ coexist

with the intermediate unstable branch ρs− as shown in Fig. 6.6. The former solution

is always unstable even in the presence of homogeneous fluctuations.

The upper homogeneous state ρs+ undergoes a modulational instability charac-

terized by an intrinsic wavelength

Λm = 2π
√

2α/
√

Γ/α−∆/ρm (6.2)

which measure the distance between two maxima or minima of the plant distribution.
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The threshold associated with the modulational instability is solution of the following

cubic equation:

(2Γρm −∆)2 = 4αρ2m(2ρm − k) (6.3)

There exist more than one threshold associated with the modulational instability.

In the following, we focus on parameter regime where the uniform plant distribution

exhibit bistability (κ > 0) and a portion of this state becomes unstable with respect

to the Turing bifurcation (ηm < η < ηL) as shown in Fig. 6.6. In this parameter

range, any small fluctuation around the uniform plant distribution ρs+ will trigger

spontaneously the evolution of the system towards stationary, spatially periodic dis-

tributions of the biomass density which will invade the whole territory. A detailed

nonlinear analysis of two-dimensional periodic vegetation patterns such as stripes

(often called Tiger bush, see Fig. 5.1.1), and hexagons consisting of either sparsely

populated or bare areas alternate with dense vegetations patches have been reported

in [137].

6.4 Field observations vs model

When increasing the aridity parameter η, the structures that appear first are gaps.

They consist of spots of spare vegetation. The region where these localized patches

are observed is depicted in Fig. 6.6. They are stable until they lose their stability

towards the formation of localized patches. When decreasing the aridity, a single

patch exhibits an elliptical deformation followed by splitting as shown in Fig. 6.7.t3.

This self-replicating process continues until the system is entirely occupied by spots.

Only spots which have available space around them are able to replicate, because of

this, only spots located in the edges can replicate. In the real ecosystem available

space can be generated by the death of a plant by natural or external perturbations
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Figure 6.7: Temporal evolution of a single localized patch self-replication for the
vegetation model Eq. (6.1). With η = 0.1, κ = 0.6, ∆ = 0.02 Γ = 0.5, and α = 0.125,
integration grid 200× 200.

(animals, fires) this is the reason we can observe self-replication throughout all the

territory analyzed previously.

The pattern obtained from the replication of a single spot is an hexagonal con-

figuration, defects observed are induced by the boundary conditions, nevertheless,

after a sufficiently long simulation time, the system arrives to a regular hexagonal

pattern (Fig. 6.7.t8). This regularity is not observed in the arrangement of Festuca

tussocks observed in Fig. 6.2 as vegetation in a real ecosystem is not nucleated

by a single spot but rather developed by the seed spreading by wind and animals

thus generating multiple tussocks in different locations, each with the possibility of

splitting to spread through the terrain.

To numerically test the effect of seed spreading, we have studied the evolution

of the model with the initial condition of 155 randomly distributed spots (cf. Fig.

6.8.1), the aridity level allows each of the spots to self-replicate. With temporal

evolution, communities of spots interact as the replicating process continues (see Fig.
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6.8.2). By observing the evolution of these spots we can show that the self-replication

process favors a spatial organization similar to the field observation. Initially, as seen
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Figure 6.8: Numerical simulations of non-variational phytomass model (6.1) with 155
randomly distributed localized patches as initial conditions, with η = 0.1, κ = 0.6,
∆ = 0.02 Γ = 0.5, and α = 0.125, integration grid of 1000×1000 points. At different
evolution times, the Voronoi cell tessellation, histograms for number of vertices in
each cell, tile area, nearest neighbor distance, and structure areas are analyzed for
each time.

in Fig. 6.8, the system has no particular order, histograms do not show any clear

trend, however, further evolving in time, (t=6000) self-replication has generated

1060 spots, for which characteristic values emerge for the areas of the structures

and NND. The number of vertices histogram behave as observed for the Festuca

tussocks. At time t=12000 the structure count is 3641, their areas and NND show a

clear maximum value indicating an emergent ordering, the process of self-replication

favors a dispersion of the structures and tile areas from the mean, as the observed
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in the real ecosystem. In this line, the process of self-replication allows the system

to spatially organize.

6.5 Chapter summary

In this chapter we have studied the self-replication phenomenon through a vegeta-

tion point of view. Observations made through remote sensing analysis of the Andes

semi-arid ecosystem we have localized Festuca tussocks which by a modulational in-

stability deform from circular to an elliptical shape, process after which the tussocks

split into two new structures, we have observed this process in a variety of species

and size scales. By statistical analysis we have encounter characteristic distributions

which are signatures of an underlying self-organization process. Though a general

interaction-redistribution model we have shown the existence of self-replication and

the mechanism by which this phenomenon leads to the formation of an extended pat-

tern. Comparison between numerical and field observations indicate intriguing simi-

larities in the distribution of areas and distance between structures. Self-replication

in vegetation give new lights on the way plants propagate and populate the semi-arid

terrains. The results presented in this chapter are being prepared for publishing, a

copy of the manuscript can be found in Appendix D.
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Chapter 7

Conclusions and perspectives

The main objective of this thesis was to study the stability of two-dimensional lo-

calized structures, and to investigate how the destabilization due to the curvature

could lead to the formation of extended patterns. To accomplish this objective,

we first studied a prototype Swift-Hohenberg model, and then extended the result

obtained to a wider variety of physical contexts. Later, through a generic interaction-

redistribution model for vegetation dynamics we studied the curvature induced pro-

cess of self-replication of localized spots.

In what follows we present the conclusions and perspectives of this thesis.

Curvature instability and labyrinthine patterns

• Using a canonical model, the process of destabilization by which a two-dimensional

localized structure generates an extended labyrinthine pattern has been char-

acterized. This process can be divided in different stages.

• The curvature of the localized spot induces the destabilization of an unstable

mode of angular index m = 2. Such instability leads to an elliptical deforma-
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tion of the localized spot leading to the generation of an elongated structure.

Subsequently, it causes transversal oscillations. The local patterns formed are

in turn unstable unchaining the formation of the labyrinth. This mechanism

occurs far from any pattern forming instability and requires coexistence of

homogeneous states.

• The phase space was characterized. Through numerical simulations we were

able to construct the phase transition curve where an initially stable local-

ized structure destabilized falling into the attraction basin of the labyrinthine

extended pattern.

• The transition from localized structure to extended patterns can be observed

in both variational and non-variational systems, thus it is not necessarily dom-

inated by the minimization of a free energy.

Future research in this topic includes:

. Study through numerical linearization the stability of two dimensional localized

structures and the unstable modes growth rates.

. Seek to describe the localized to extended pattern dynamics in cholesteric

liquid-crystals from first principles.

. Define labyrinthine patterns. And explore the importance of pinning phenom-

ena in the stabilization of labyrinthine structures.

. Study the instabilities of three-dimensional localized structures, preliminary

work shows a rich variety of bifurcations.
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Rodlike localized structure

• A non azimuthally symmetric localized solution for the prototype isotropic two

and three dimensional Swift-Hohenberg equation has been found. This type of

structures where reported for the first time in this work, they have been called

rodlike or simply Rod localized structures.

• Numerically, the stability properties of two-dimensional rod localized struc-

tures was characterized. By the construction of the bifurcation diagram it was

observed that he parameter region where 2D Rod localized structures exist is

narrow, this can explain why they haven’t been observed experimentally.

• The interaction properties of the structure were studied. The elongated shape

of the structure allows for a wide variety of equilibriums. Complex lattices of

equilibria can be constructed.

Future research in this topic includes:

. Search for experimental evidence of the Rod localized structure. We propose

that the Liquid-Crystal Light Valve (LCLV) experiment is suitable for this task

as it is a controlled and well known environment.

. Find Rod localized structures in other physical contexts.

. Study the three-dimensional case, this includes: stability, bifurcation diagram,

interaction.
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Universality of the curvature mechanism

• The curvature instability mechanism for the destabilization of a localized struc-

ture leading to the formation of extended labyrinthine patterns exist in a wide

range of physical systems. In particular, in the context of vegetation dynamics,

and autocatalytic chemical reactions.

• Depending on the model used different labyrinthine structures emerge from an

initial localized structure. The parameters considered also affect the resulting

patterns. These can be classified as associative, neutral or dissociative, based

on the difference between the initial and final connectivity of their structures.

Future research in this topic includes:

. Find experimental evidence of the numerical observations made both in vege-

tation dynamics and chemical reactions.

. Study the importance of surface tension in the destabilization and labyrinth

formation processes.

Self-replication in vegetation dynamics

• Self-replication of localized structures exists and was studied in the context of

vegetation dynamics through a generic interaction-redistribution model.

• Field observations of semi-arid ecosystems show that a certain specie of plant

exhibit self-replications process, plant tussocks suffer from a modulational in-

stability which deforms their circular shape to an elliptical structure, process

after which the tussocks split into two new structures, this process was observed

in a variety of species and size scales.
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• Comparison between theoretical, numerical analysis and field observations,

show an underlying process by which self-replication mediates self-organization

of structures leading to extended pattern formation. This is a mechanism by

which vegetation extends to cover vast areas. It explains also the emergence

of characteristic quantities observed in the statistical analysis of field observa-

tions.

Future research in this topic includes:

. Development of a complete theoretical analysis of the stability of localized

structures. Preliminary work shows that localized structures can suffer from

different modulational instabilities depending on the simulation parameters

considered.

. Consider more realistic conditions, such as, spatial-dependence of resources and

allometric factors in the theoretical description of the vegetation dynamics.
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[132] J.C. Ospina González, S.S. Aliscioni, and S.S. Denham. “Estudios taxonómicos
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a b s t r a c t

The stability of a circular localized spot with respect to azimuthal perturbations is studied in a

prototype variational model, namely, a Swift–Hohenberg type equation. The conditions under

which the circular shape of the spot undergoes an elliptical deformation which transforms it

into a rod-shaped structure are analyzed. As it elongates, the rod structure exhibits a transver-

sal instability, generating an invaginated labyrinthine structure which invades all the space

available.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Several spatially extended systems that undergo a symmetry breaking instability close to a second-order critical point can be
described by real order parameter equations in the form of Swift–Hohenberg type of models. These models, have been derived in
various fields of nonlinear science such as hydrodynamics [1], chemistry [2], plant ecology [3], nonlinear optics [4–6], and elastic
materials [7].

A complex Swift–Hohenberg equation was deduced in the context of lasers [8–10] and optical parametric oscillators [11].
Moreover, to describe the nascent optical bistability with transversal effect in nonlinear optical cavities a real approximation
has been deduced [12] from laser equations. This approximation allowed the prediction of stable, single and clustered localized
structures [12]. A detailed derivation of this equation from first principles can be found in Ref. [8]. In the present work, we show
that this real modified Swift–Hohenberg equation (SHE) of the form

∂t u = η + ϵu − u3 − ν∇2u − ∇4u (1)

supports a curvature instability over localized structures that lead to an elliptical deformation, producing a rod-like structure.
With the temporal evolution, the rod-like structure exhibits a transverse undulation, leading to the formation of invaginated
structures. Such a structure is a labyrinthine pattern, characterized by its interconnected structure where the field value is high.
The outer region or complement to the invaginated structure corresponds to low field value. This behavior occurs far from any
pattern forming instability and requires a bistable behavior between homogeneous steady states. In Eq. (1), u = u(x, y, t) is a real
scalar field, x and y are spatial coordinates and t is time.

The parameter η represents the external forcing field which brakes the reflection symmetry u → −u. The bifurcation param-
eter is ϵ. The coefficient ν may change the sign of the diffusive term ∇2, and allows the pattern forming to take place [4,13–17].
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Fig. 1. Temporal evolution for; (1) t = 0; (2) t = 125; (3) t = 175; (4) t = 225; (5) t = 275; (6) t = 340; (7) t = 350; (8) t = 360; (9) t = 400, of a localized spot

through an elliptical deformation into a rod-like structure for Eq. (1) with: η = −0.065; ϵ = 2.45; ν = 2.0. Minima are plain white. The image corresponds to a

zoom of 16 × 16 points of a 512 × 512 points finite-difference simulation, with Neumann boundary conditions.

Depending on the context in which this equation is derived, the physical meaning of the field variable and parameters adopt par-
ticular meanings, for instance, in cavity nonlinear optics u(x, y, t) corresponds to light field intensity, while parameters {η, ϵ,ν}
are associated with the injection field, the deviations of the cavity field, and cooperativity, respectively [12].

For certain ranges of parameter values, Eq. (1) exhibits stable circular localized structures. General properties such as exis-
tence, stability and dynamical evolution of these structures have been well studied (see Refs. [18–27]). Recent review on local-
ized structures can be found in [28]. For η < 0 localized structures emerge as isolated peaks of the field u(x, y, t), instead, for
η > 0 localized structures appear as holes in the field. These localized structures have a fixed stable radius for each parameter
value. Curvature instability of localized spot has been experimentally studied or theoretically predicted in magnetic fluids [29],
liquid crystals [30,31], reaction–diffusion systems [32–40,40–43], plant ecology [44], material science [45,46], granular fluid sys-
tems and frictional fluids [47,48], and nonlinear optics [49]. The fingering instability of planar fronts leading to the formation of
labyrinth structures has been reported by Hagberg et al. [50]. In this manuscript we shall focus on circular localized states.

2. Stability of localized spots

Considering fixed parameter values, starting with an azimuthally symmetric stationary localized structure. The structure is
then perturbed, this perturbation grows radially as shown in Fig. 2(1). The circular shape becomes unstable at some critical
radius. The elliptical shape elongate into a rod-like structures as shown in Fig. 1. This elongation proceeds until a critical size
is reached beyond which a transversal instability onset the appearance of fingers near the midsection of the structure (see Fig.
2(3)). The finger continues their elongation, and the amplitude of oscillation increases (Fig. 2(4) and (5)). The dynamic of the
system does not saturate and for a long time evolution, the rod-like structure invades the whole space available in (x, y)-plane
as shown in Fig. 2(6). This invaginated structure is stationary solutions of the SHE. The dynamic described previously has been
observed in cholesteric liquid crystals under the presence of an external electric field [30,31], where an initially circular structure
of cholesteric phase suffers from a curvature instability, transversal oscillations and develops into an extended labyrinthine
structure. The characterization of this dynamic is an open problem.

For ν = 2, the bifurcation diagram of the model Eq. (1) in the parameter space (ϵ, η) is shown in Fig. 3. For ϵ > 0 the system
undergoes a bistable regime between homogeneous steady states. For ϵ < 0, the system possesses only one homogeneous steady
state. The curve %1 represents the pitchfork bifurcation, where the coordinates of the limit points of the bistable curve are given
by η± = ±2(ϵ/3)3/2. The threshold associated with a symmetry breaking or Turing instability is provided by the curve %2. The

coordinates of the symmetry breaking instabilities thresholds are η± = ±
√

(ν2 + 4ϵ)/3(ν2 − 8ϵ)/24. The %1 and %2 curves are
well known in the literature [51,52]. We have built numerically the curve %3, which separates the zone of bistability where
localized structures are stable, zone II, from the zone where they are unstable, zone I. The transition from localized structures
to labyrinthine patterns take place when crossing from the I-zone to the II-zone, through the %3-curves indicated in Fig. 3. This
transition occurs via fingering instability at the %3-curves delimiting the parameter domain I and II. In the limit of the classical
Swift–Hohenberg equation, η = 0, there is no observation of fingering instability, instead, at the transition from II-zone to I-zone,
localized structures only grow radially. The destabilization of these structures into labyrinthine structures may be observed, as a
result of size effect phenomenon due to boundary conditions. In contrast, for η ̸= 0 the transition from the II-zone to the I-zone
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Fig. 2. Transition from a single localized spot to invaginated pattern. Temporal evolution with Neumann boundary conditions and with the same parameters as

in Fig. 1. (1) t = 0, localized spot, (2) t = 600, rod-like structure, (3) t = 1900, transverse undulation of the rod-like structure, (4) t = 2800, (5) t = 3700, localized

transient patterns, and (6) t > 15,000, stationary invaginated labyrinth pattern. Minima are plain white and the mesh integration is 512 × 512 points. Simulation

done with finite-difference method.

Fig. 3. Bifurcation diagram of Eq. (1) in (ϵ, η) space for ν = 2.0. In II-zone (dashed black), stable circular localized structures are observed. In I-zone (gray crosses)

generation of labyrinthine structures are observed from localized structures. The transition curve %3 was constructed numerically.

of a localized spot induces a curvature instability, giving rise to an unstable rod structure which exhibits transversal oscillations
and develops into an extended labyrinthine structure.

In what follows, we first study the stability of a circular localized spot with respect to azimuthal perturbations. This linear
analysis allows us to evaluate the threshold above which the transition from localized spot to a rod-like structure takes place.
Then, a linear stability analysis of the rod-like structure is performed, to determine the conditions under which the transversal
oscillations occur for the SH equation.

Starting from a stationary solution with rotational symmetry (i.e. circular localized structure) u = us(r) where r is the radial
coordinate. Then, the solution is perturbed u(r, θ , t) = us(r) + δu(r)eλmt cos(mθ ), where θ is the angular coordinate, and δu(r)
≪ 1. It should be noted that the perturbation mode m = 2 represents an elongation of the circular structure into an elliptical
shape. Using polar representation of Eq. (1), considering the above perturbation and parameters in Eq. (1) at linear order in W
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Fig. 4. Dots show the growth rate λm of the most unstable perturbation mode obtained numerically for different values of ϵ. Dashed line separates zones of

stable and unstable localized structures (see Fig. 3). Parameters: ν = 2; dx = 0.5; dt = 0.03. Periodic boundary conditions were used.

one obtains

∂W

∂t
= LW (2)

where the linear operator L ≡ ϵ + 3u2
s (r) − ν∇2 − ∇4 is explicitly dependent on the radial coordinate. Analytical calculations

are not accessible when the operator is inhomogeneous.
However, by direct simulation of Eq. (1) with an initially stationary localized structure one can find the growth rate of the

most unstable mode. First for fixed values of the parameters {η, ϵ,ν} a stationary localized spot is considered as initial condition.
Note that the radius of localized spot is determined by a balance between the interface energy and the energy difference between
the homogeneous states which are proportional to ν and η, respectively. The radius of the localized structures rs is proportional
to ν/η [53]. Afterwards, the system is perturbed by homogeneous noise, this type of perturbation can be regarded as a linear
combination of all the angular modes m. However, the most unstable mode (the one with largest eigenvalue λm) dominates
the temporal dynamics and is the only one observable. By considering the stability of the localized spot for different values of
the parameter η under homogeneous noise perturbations we can determine that the most unstable mode (λ2 > 0) is m = 2 as
observed in Fig. 4. This mode deforms the circular localized spot into an elliptically shaped structure as shown in Fig 2(2).

3. Transversal instability of rod structures and emergence of labyrinthine patterns

The SHE Eq. (1) admits a single stripe-like solution [21,54]. In order to evaluate the threshold over which transversal os-
cillations appear, we perform the stability analysis of a rod-like structure, by a method similar to the one performed in Ref.
[50]. For this purpose we perturb the single stripe solution as u = u f (ξ) + W (x, X0) where uf is the single stripe solution and
ξ = x − X0(y, t) the relative position, X0 is the field that accounts for the shape and evolution of the rod, and W(x, X0) ≪ 1 is a
non-linear correction of a single stripe. Applying this ansatz in Eq. (1) at first order in W and applying the solvability condition
[16], the following equation is obtained for the dynamic of X0

∂t X0 = −)′∂yyX0 + 6β ′∂2
y X0(∂yX0)

2 − ∂4
y X0, (3)

where

β ′ =
⟨∂ξξ u f |∂ξξ u f ⟩
⟨∂ξ u f |∂ξ u f ⟩

, and )′ = (ν − 2β ′). (4)

Thus X0 satisfies a nonlinear diffusion equation. This equation describes the dynamics of an interface between two symmetric
states [55,56]. This model is well known for exhibiting a zigzag instability. Analogously, to the previous section, when ) < 0
the single stripe solution is stable, and for ) > 0, the solution is unstable as result of the curvature instability. From Eq. (3) one
expects to observe the single stripe becomes unstable by the emergence of undulations. Fig. 5 illustrates the manifestation of this
undulations under the consideration of an infinitely long rod-like structure, to avoid border effects. Note that similar dynamical
behavior is observed in the propagation of cholesteric finger in liquid crystals [30,31]. Later, this undulated stripe is replaced
by the emergence of facets that form a zigzag structure. However the higher nonlinear terms control the evolution of the single
stripe, then the dynamics of initial zigzag is replaced by the growth of undulations without saturation as it is depicted in Fig. 2(4).
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Fig. 5. Transversal instability of a single infinite stripe of Eq. (1). Image shows a section of a 256 × 256 points simulation with boundary conditions using a

pseudo-spectral code. Parameters: η = −0.065, ϵ = 2.45, ν = 2, dx = 0.5, and dt = 0.03.

Therefore, the system displays the emergence of a roll-like transverse pattern which is formed in the midsection of the structure
and invades the system generating invaginated structure (see Fig. 2(5)).

4. Conclusions

In this paper we have described the stability of localized spot in a modified Swift–Hohenberg equation. First, the bifurcation
diagram was constructed, showing the possible solutions that appear in different parameter regimes. Afterwards, it was shown
that the angular index m = 2 becomes unstable as consequence of curvature instability. Such instability leads to an elliptical
deformation of the localized spot.

When angular index m = 2 becomes unstable, the curvature instability of localized spot produces an elliptical deformation
leading to the generation of a rod-like structure. Subsequently, it causes undulations in the rod-like structure. The spatiotemporal
evolution leads to the formation of invaginated labyrinthine structures. To understand this dynamics, we have performed the
analytical stability analysis of a single stripe localized structure.

It should be noted that by an offset transformation, u → u + u0, where u0 is a constant, Eq. (1) can be rewritten in such a way
that the constant parameter η is removed and a quadratic nonlinearity appears. This quadratic model is equivalent to Eq. (1). The
model with a quadratic nonlinearity has been well studied (see the textbook [16] and the references therein). This equivalence
implies that the results of the present work are also valid for physical systems described by the quadratic model.
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Stationary two dimensional localized structures have been observed in a wide range of dissipa-
tive systems. The existence, stability properties, dynamical evolution and bifurcation diagram of
an azimuthal symmetry breaking, rod-like, localized structure in the isotropic prototype model of
pattern formation, the Swift-Hohenberg model, is studied. These rod-like structures persist under
the presence of non gradients perturbations. Based on a dimer approximation, the interaction of
rod-like structures is studied. This allows us to envisage the possibility of different crystal-like
configurations. Numerical simulations show a fair agreement with the theoretical predictions.

PACS numbers: 05.45.Yv, 05.45.-a, 89.75.Kd

I. INTRODUCTION

Macroscopic systems under the influence of injection
and dissipation of energy, momenta, and matter often
lead to the formation of spatial structures [1–3]. These
patterns can be extended, this is, they involve the whole
spatial physical system, or localized, which are patterns
that exists only on a portion of the spatial system [4–6].
From the dynamical system point of view, one dimen-
sional localized structures are homoclinic connections of
the stationary dynamical system involving a stable and
an unstable manifold of a given equilibrium [7, 8]. The
possibility of coexistence with different equilibria enriches
the variety of possible homoclinic structures. For ex-
ample, in the case of coexistence between a uniform
and a pattern state, the heteroclinic entanglement gen-
erates the nucleation of a family of localized structures
[8, 9], which are organized by a snaking bifurcation di-
agram [10, 11]. In recent decades, localized structures
have been observed in different fields such as in magnetic
materials [12], chemical reactions [15], vertically driven
Newtonian fluid [13, 14], granular media [16, 17], liquid
crystals [18], liquid crystal light valve [19–21], colloidal
fluids [22], electrical discharges [23], thermal convection
[24, 25], and non-linear optics [26, 27], to mention a few.
In most of these observations the localized states are two-
dimensional objects with circular symmetry.

Localized structures are particle-type solutions for
nonlinear equations, as they exhibit a series of charac-
teristics often attributed to particles such as a size, a
position, and a velocity defined by the parameters of the
system, and an interaction law between them. Local-
ized structures have attracted the interest of the scien-
tific community because of their potential applications in
optical information storage and processing [28]. Isotropic
systems, systems with translational and rotational in-
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FIG. 1. (Color online) Stationary rod localized structure of,
a) 2D Swift-Hohenberg model, Eq. (1), with ν = 2.0, η =
−0.355, and ε = 1.2. Inset is a colormap of the rod localized
structure, and b) 3D Swift-Hohenberg model, image shows
the iso-surface for u = 0.2 with ν = 2.0, η = −0.37, and
ε = 1.5. Simulations in 2D and 3D where made using pseudo-
spectral and adaptive finite elements methods, respectively.
Both with Neumann boundary conditions.

variance, usually exhibit localized patterns which are az-
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imuthally symmetric, that is, the localized states have a
circular symmetry. Spatial breaking of symmetry tends
to deform the localized structures and even can gener-
ate propagation of them, this is the case of the worm
structures observed in binary liquids [24, 29] and electro-
convection cells [30]. In the liquid crystal light valve
experiment triangular localized structures have been ob-
served by controlling the optical feedback [20]. Numerical
simulations of the model describing this system also ex-
hibits this type of intriguing localized state. Indeed, tri-
angular structures are inherently two-dimensional due to
the rotational symmetry breaking. There is not a global
geometric theory to explain the origin of these structures
and a characterization of the different possible localized
structures without rotational symmetry.

In this paper, we show the existence, stability prop-
erties, dynamical evolution and bifurcation diagram of
an elongated structure, non azimuthally symmetric, in
a prototype isotropic two-dimensional model, The Swift-
Hohenberg equation. We call this structure a rod struc-
ture. Figure 1 illustrates the typical observed rod struc-
ture in 2D and 3D systems. For 2D structures, based on
the dimer approximation, we study the complex interac-
tion scenario of rod structures. Which have a complex
network of equilibria. This allows us to imagine the pos-
sibility of different crystal-like configurations. Numerical
simulations show a fair agreement with these predictions.

The manuscript is organized as follows: In Sec. II,
the generalized Swift-Hohenberg model and its dynami-
cal evolution features are introduced. In particular, the
phase space for the rod localized structures is presented.
In Sec. III, the composition of the rod-like structure is
analyzed as composition of one-dimensional structures.
The different instabilities and bifurcation diagrams of rod
structures are analyzed in Sec. IV. Interaction proper-
ties of rod structures using dimer approach is studied in
Sec. V. Our conclusions and remarks are left to the final
section.

II. GENERALIZED SWIFT-HOHENBERG
EQUATION

Let us consider a prototype model which exhibits both
localized and extended patterns. This is a natural vari-
ant of the Swift-Hohenberg equation [31], which is an
isotropic, reflection symmetry, and real order param-
eter nonlinear equation deduced originally to describe
the pattern formation of Benard convection [31]. This
generalization includes an extra term which breaks the
field reflection symmetry. It has been deduced in var-
ious field on nonlinear science such as chemistry [32],
plant ecology [33], and nonlinear optics [34, 35]. This
equation applies to a wide range of systems that un-
dergo a symmetry breaking instability—often called Tur-
ing instability[2, 4]—close to a second-order critical point
marking the onset of a hysteresis loop, which corresponds
to a Lifshitz point [4, 36, 37]. The generalized Swift-

Hohenberg equation reads

∂u

∂t
= η + εu− u3 − ν∇2u−∇4u, (1)

where u = u(x, y, t) is a real scalar field, x and y are
spatial coordinates and t is time. Depending on the con-
text in which this equation has been derived, the physical
meaning of the field variable u(x, y, t) could be the elec-
tric field, deviation of molecular orientations, phytomass
density, or chemical concentration. The control or the
bifurcation parameter ε measures the input field ampli-
tude, the aridity parameter, or chemical concentration.
The η parameter breaks the reflection symmetry u→ −u,
thus it accounts for the asymmetry between homoge-
neous states. When this parameter is ignored, η = 0, one
gets the Swift-Hohenberg equation [31]. The parameter
ν stands for the diffusion coefficient, when this parame-
ter is negative, it realizes anti diffusion process (ν > 0).
The 2D Laplacian operator ∇2 = ∂2xx + ∂2yy and the 2D

bilaplacian operator ∇4 act on the plane (x, y). Thus the
first three terms on the right hand side of Eq. (1) account
for homogeneous or local nonlinear dynamics, the fourth
and the fifth term stand for the transport mechanisms
or spatial coupling via diffusion and hyperdiffusion, re-
spectively. It should be noted that by a displacement of
the field u→ u+ u0, where u0 is a constant, Eq. (1) can
be rewritten by removing the parameter η but including
an extra term quadratic in u, the equation including the
quadratic term has been widely studied in various con-
texts (see the textbook [3] and references therein). An
important property of Eq. (1) is that it possess a gradient
form, i.e.

∂u

∂t
= −δF [u,∇u,∇2u]

δu
, (2)

with the functional

F ≡
∫∫

R2

(
−ηu− εu

2

2
+
u4

4
− ν (∇u)2

2
+

(∇2u)2

2

)
dxdy.

(3)
Note that using the solutions of Eq. (1), this functional
satisfies

dF

dt
= −

∫∫

R2

dxdy (∂tu)
2 ≤ 0. (4)

Hence, F is a Lyapunov functional that can only decrease
in the course of time. This functional guarantees that
time evolution proceeds toward the state for which the
functional has the smallest possible value which is com-
patible with the system boundary conditions. Any ini-
tial distribution u(x, y, t) (or u(x, y, z, t) in the 3D case)
evolves towards a homogeneous or inhomogeneous (pe-
riodic or localized) stationary state corresponding to a
local or global minimum of F . The analysis of the func-
tional F is provided in Ref. [38].

The generalized Swift-Hohenberg equation exhibits
coexistence between homogeneous and pattern states
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[39, 40], thus allowing the stability of localized struc-
tures. These are localized structures in the sense of inte-
gral boundedness

∫∫

R2

|uls(x, y)|2dxdy < +∞, (5)

where, uls ≡ u(x, y) − u0 is the relative field of the lo-
calized structure with respect to the homogeneous state
wherein sustained the localized structure u0. This ho-
mogeneous state is a stable solution to the cubic equa-
tion η + εu − u3 = 0. For a certain range of parameters
{η, ε} two different localized structures are stable, the
first, is the well known circular (azimuthally symmet-
ric) localized structure [47]. Notwithstanding, we have
found a second type of localized structure corresponds to
a novel class of localized structures at least in two and
three-dimensional isotropic systems. This structure is a
rod-like stable localized structure, it break the azimuthal
symmetry, remaining invariant only with respect to a ro-
tation of π around any axis on the (x, y)-plane which
contains the center of the localized structure. Figure 1
shows the typical rod-like stable localized structures ex-
hibited by both the 2D and 3D Swift-Hohenberg Eq. (1).
In order to figure out the conditions under which the rod
structure emerges, the analysis of the bifurcation diagram
must be done for the model under study.

0.0 2.0 4.0

−1.0

0.0

1.0

η

ε

LS

Labyrinths

Hole LS

u

x y

u

x y

η>0

η<0

Γ 1
Γ 2

FIG. 2. (Color online) Bifurcation diagram of the 2D general-
ized Swift-Hohenberg Eq. (1) in (ε,η) space for ν = 2.0. The
light and solid curve Γ1 and Γ2 account for the saddle-node
bifurcation and the spatial bifurcation of the uniform state,
respectively. The shaded areas account for the zones where
localized peaks (LS-zone) and localized holes (Hole LS-zone)
are observed. The painted areas stand for the region where
rod structures have been observed. The insets correspond to
the typical monitored rod structures.

For a fixed value of the diffusion coefficient ν = 2.0,
typical bifurcation diagram of the model Eq. (1) in the
parameter space (ε, η) is shown in Fig. 2. The curves
Γ1 and Γ2 represent the saddle-node bifurcation and the
threshold associated with a modulation or pattern form-
ing or Turing instabilities of the homogeneous state ob-
served for large negative ε, respectively [39, 40]. For nega-
tive ε, the system has only one homogeneous steady state,

monostable region. For positive ε the system undergoes a
bistable behavior between homogeneous steady states as
result of the saddle-node bifurcation (cf. Fig. 2). More-
over as a result of the spatial instability of the uniform
state (cf. Fig. 2), the system also exhibits coexistence
between patterns and uniform states. Near this type of
bistability region one expects to observe localized struc-
tures. The shaded zones in Fig. 2 account for the areas
where localized peaks and localized holes are observed.
When one decreases the parameter η localized structures
become unstable giving rise to labyrinthine pattern [41].
This transition occurs via fingering instability. Unex-
pectedly, rod structures coexist with isotropic localized
structures. Figure 2 depicts the region where the rod
structures are observed.

Even though the Swift-Hohenberg model has been ex-
tensively studied since its deduction, no analytic expres-
sion is know for the localized solution. It is because these
solutions are homoclinic solutions of the stationary dy-
namical system (∂tu = 0), which is chaotic when one re-
places the time for the radial coordinate [42]. Under this
consideration, the study of the rod-like structure will not
lead to an analytic expression yet to the full character-
ization of its characteristic properties, bifurcations, and
interaction. Thus the numerical and geometrical meth-
ods are the most suitable tools for characterizing the lo-
calized structures. We have conducted numerical simula-
tions using a pseudo-spectral method, and verified with
a finite-difference method.

III. COMPOSITION OF THE ROD
STRUCTURE: ONE-DIMENSIONAL

CORRESPONDENCE

No definitive theory for two-dimensional localized
structures has yet been formulated, therefore, the re-
quired physical, hence, mathematical conditions for their
existence and stability are not known. However, for one-
dimensional systems, localized structures emerge as a

u

x
y

u

x y

γ1 γ2

u

y

u

x

a) b)

γ1-plane γ2-plane

FIG. 3. (Color online) One-dimensional projections of the 2D
rod structure and the respective projection over the: a) (x, u)-
plane and b) (y, u)-plane. Numerical simulation of Eq. (1)
with ν = 2.0, η = −0.355, and ε = 1.2.
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family of stable fronts connecting an homogeneous with
a pattern state in a bistable regime [43]. It is now
known that coexistence (instead of bistability) is suf-
ficient for the appearance of one-dimensional localized
structures [44]. In this sense, the generation of two-
dimensional localized structures can be regarded as an
extension of one-dimensional localized structure, which
is rotated over its axis thus generating an azimuthally
symmetric localized structure. Nevertheless, the rod-like
structure has no azimuthal symmetry. We can projected
over two orthogonal planes (γ1 and γ2). These projec-
tions generate the equivalent to one-dimensional local-
ized structures. The projection over the γ1-plane (Fig
3a) generates a one wavelength wide localized structure
while the projection over the γ1-plane (Fig 3b) generates
a two wavelength wide localized structure [8]. Hence, the
two dimensional rod structure can be considered as the
composition of two one-dimensional localized structures
with different lengths.

As in one-dimensional localized structures of the gen-
eralized Swift-Hohenberg equation, the two dimensional
structures possesses spatial oscillation tail of the field,
which propagates radially from the bulk of the structure,
these oscillations, that decay exponentially, stabilize the
structure and allow the interaction between two or more
structures by field interference [45].

IV. INSTABILITIES AND BIFURCATION
DIAGRAMS

The characterization of the phase space of the Swift-
Hohenberg Eq. (1), see Fig. 2, shows the existence of the
rod structure for a wide range of parameters η and ε. In
all these zones of stability the rod structure coexists with
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FIG. 4. Decay rate as function η from a rod structure into
a circular localized structure for the 2D generalized Swift-
Hohenberg Eq. (1) with ε = 1.6 and ν = 2.0. The circles
account for decay time obtained numerically. The solid curve
is obtained using the expression τ = τ0/

√
η − ηc with fitting

parameters ηc = −0.3444 and τ0 = 11.61 (R2 = 0.9647).
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rod to circular localized structure, rod to labyrinth, and rod
to infinite roll. For 1) η = −0.320 and 2) ε = 1.6 and ν = 2.0.

stable localized spots. It has been shown that circular lo-
calized structures suffer from a curvature instability when
leaving their stability zone thus generating an extended
labyrinthine structure [41]. In this section its shown how
labyrinths can emerge—in zones where circular localized
structures are stable—by the destabilization of the rod
structure. Its also shown how the rod structure elongate
into an infinite roll structure, decay into the simpler local-
ized spot or even split into a bound state of two circular
localized structures, depending on the parameters varied.
Bifurcations suffered by the rod structure can be stud-
ied through monitoring the energy (Lyapunov functional)
while modifying one parameter and fixing the others.

By variations of the parameters η or ε the rod struc-
ture is affected by saddle-node bifurcations characterized
by the square-root law of the energy near the thresh-
old and by a decay rate of the structure proportional to
(α − αc)

−1/2, where α is the parameter varied and αc

indicates the critical parameter value for which the bi-
furcation occurs [46]. Figure 4 illustrates this type of
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dynamical behavior. Rod structures that exist at the
right side of Γ2-curve (cf. Fig. 2), exhibit only two bifur-
cations. The first occur when leaving the stability zone of
the rod structure by decreasing ε (increasing |η|), causing
an increment in the rod structure size and consequently
an increment on its energy. Once the bifurcation takes
place through the saddle-node mechanism, the system
falls into the basin of attraction of labyrinthine pattern.
Figure 5 depicts the transition from rod to labyrinthine
pattern, changing the different control parameters. As
labyrinths are extended patterns, their energy diverges.
The second bifurcation suffered by the rod structure in
this zone, takes place when increasing the value of ε (de-
creasing |η|), here, the rod structure shrinks subsequently
reducing its energy, by saddle-node bifurcation rod struc-
tures decay into single localized spots, which are energet-
ically more stable in the Lyapunov sense. Figure 5 shows
the transition from rod to localized spot. This rod to
circular structure bifurcation continues existing for val-
ues of η and ε to the left of Γ2-curve. The decay rate
from rod to localized spot is shown in Fig. 4, where,
ε = 1.6. The numeric decay rate law corresponds to the
expected theoretical rate from a saddle-node bifurcation
theory [46].
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FIG. 6. (Color online) Zoomed phase diagram of rod struc-
ture, which shows the different outcomes possible form the
destabilization of a rod structure. ζ1-curve indicates the
transition form rod to labyrinth bifurcation, ζ2 and ζ3-curve
account for the transition between rod to circular localized
structure, ζ4-curve stands for the transition from rod to infi-
nite roll, and ζ5-curve accounts for the transition between rod
to binary state, for ν = 2.0.
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ized Swift-Hohenberg Eq. (1) for ν = 2.0, η = −0.350For 1)
η = −0.320 and 2) ε = 1.6. The inset corresponds to a zoom
of the tip of the saddle-node bifurcation.

Another scenario emerges for values of η and ε to the
left side of Γ2-curve. Other two bifurcations are observed
when overstepping the boundaries of the stability zone for
the rod structure. For fixed values of ε and decreasing
values of |η| (see the transition ζ4-curve in Fig. 6), the
rod structure exhibits a continuous elongation similar to
the case of the rod to labyrinth bifurcation, though in
this case the elongation is permanent generating an in-
finitely long roll structure without transversal oscillations
(see the inset in Fig. 5.2). Different is the scenario when
leaving the stability zone of the rod structure by the in-
terior of the horseshoe-like arc. Figure 6 shows a zoomed
phase diagram of rod structure, the horseshoe-like arc is
represented by ζ5-curve. Following this route, a fourth
bifurcation appears, where the rod structure becomes un-
stable, surface tension is unable to keep the structure
together leading to its splitting. Figure 7 depicts the
bifurcation diagram observed in the horseshoe-like zone.
Through this bifurcation two circular localized structures
are generated by the collapse of the central part of the
structure.

V. INTERACTION PROPERTIES OF ROD
STRUCTURE: DIMER APPROACH

It has been shown that the generalized Swift-
Hohenberg model, allows the existence of multiple stable
localized structures [47]. These (one or two dimensional)
structures posses no compact support, thus, the fron-
tier between the homogeneous state u0 and the localized
structure is not defined. Instead, the field oscillates de-
caying exponentially with the distance from the localized
structure, these oscillations fluctuate around the homo-
geneous state with the characteristic wavelength of the
system. The exponential tail will be addressed as the
interaction field [14, 45, 48, 49].
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A. Localized spots interaction

As mentioned before, no analytical expression is know
for the localized structures in the generalized Swift-
Hohenberg model, Eq. (1). Nevertheless, for interac-
tion matter only the asymptotic approximation of the
decaying field is relevant. Based on the linear perturba-
tion theory, it is easy to show that the field u(r) (with

r =
√
x2 + y2 is the radial coordinate) has the form

u(r) ≈ u0 + e−c1r cos(c2r) (6)

where, u0 is the homogeneous state, and

c1 = Re

[√
1

2
(
√
ν2 + 4ε± ν)

]
,

c2 = Im

[√
1

2
(
√
ν2 + 4ε± ν)

]
.

A system with two (or more) localized structures with ini-
tial given positions r1 and r2, respectively, evolves to a
stationary equilibrium by the change of relative position
between the structures R = r2 − r1. The corresponding
interaction fields from each particle interfere with each
other generating interaction forces, which in turn, induce
movement of the particle-like solutions. Aranson et al.
in Ref. [51] showed that for two circular localized struc-
tures with interaction fields given by expression (6), the
temporal evolution of R is

dR

dt
=

R

R2

d

dR

[
e−c1R cos(c2R)

]
, (7)

where R = ||R|| is the magnitude of the vector of relative
position.

B. Dimer approach

The extension of the above calculation for rod struc-
tures requires the derivation of the asymptotic field for
the rod structure, which must include an azimuthal de-
pendency given by the shape of the structure, not having
this information makes the calculations non-viable. To
avoid this impediment, the rod structure can be mod-
eled as a dimer, that is, the rod structure is composed by
two localized spots separated by a distance d between the
centers. Figure 8.1 shows a rod-like structure and the re-
spective approximation of two localized spots, which are
emphasized by dashed lines. Therefore, the interaction
field of the rod structure is constructed by the compo-
sition of the corresponding interaction fields of the two
localized spots. With the dimer approximation, consid-
ering a diluted regime, this is, evaluating the field at a
distance r from the middle of the rod much larger than
the size of the spots (r � d), the force field can be written
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-30

30

0

1)

x

y

30-30 0

-30

FIG. 8. (Color online) Dimer approach to rod structure.
1) Rod-LS numerical equilibrium points (black dots) and
dimer-LS approximated analytical equilibriums (blue dots),
the dimer is represented by black dashed lines. 2) Some char-
acteristic points of equilibrium between rod structures. Sim-
ulations of the Swift-Hohenberg model, Eq. (1), with ν = 2.0,
η = −0.355, ε = 1.2, and specular boundary condition, con-
sidering only two structures at a time, central rod structure
is considered static.

as

F dimer(r, θ) =
R−
R2

−

d

dR−

[
e−c1R− cos(c2R−)

]

R+

R2
+

d

dR+

[
e−c1R+ cos(c2R+)

]
,

where R± = r ± d/2, and d is a vector of size d, which
points in the semi-major axis of the rod-like structure
and r is the radial unit vector.

This field approximation yield the equilibrium points
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for a test structure shown as small blue spots in Fig. 8.1.
Agreement with numerical observations for the interac-
tion between a rod and a circular localized structure can
only be seen for the structures further from the origin,
as the validity of the force field approximation is valid
only for r � d, however the approximation does not pre-
dict the existence of multiple diagonal equilibriums as
observed in Fig. 8.1. More complex is the rod-rod inter-
action, for their azimuthal asymmetry reflected on its ax-
ial elongation. This adds and angular degree of freedom
for the positioning of a rod structure at each equilibrium
point (see Fig. 8.2). The variety of equilibriums exhib-
ited by these new type of structure allow the existence of
diverse complex arrangements when multiple rod struc-
tures are considered. Figure 9 shows some of the stable
crystal-type structures, that we have constructed from
rod-rod interaction.

The interaction of a larger number of rods (i.e. cover-
ing all the available space) increases the number of possi-
ble equilibrium configurations. The multiple interaction
drives the system sometimes to equilibriums which were
unstable in the rod-rod interaction scenario, in Figs. 9.1,
9.2, and 9.3, dashed lines indicate rod-rod equilibriums
which are unstable in an isolated environment and stabi-
lize under the presence of multiple structures. Crystal-
type structure shows in Fig. 9.4 is constructed based
on the T-like equilibrium position, orthogonal rod struc-
tures, exhibited by the rod-rod interaction.

4)

1) 2)

x

y

3)

FIG. 9. (Color online) Tailored crystal-type configurations
generated by the collocation of rod structures for the Swift-
Hohenberg model, Eq. (1) with ν = 2.0, η = −0.355, ε = 1.2
and periodic boundary conditions.

VI. NON-VARIATIONAL STABILIZATION

The generalized Swift-Hohenberg model, Eq. (1), has a
non-variational extension deduced in the context of liq-
uid crystals for bouncing localized states [52] and de-
duced from chemical, biological and optical models [53]
this equation reads (Lifshitz normal form)

∂u

∂t
= η+εu−u3−ν∇2u−∇4u+bu(∇2u)+c(∇u)2, (8)

which (excluding the case where b = 2c) is non-
variational, this is, it is not derived from a Lyapunov
functional. Thus, this model can exhibit complex and
permanent behaviors such as oscillations, chaos and other
spatiotemporal dynamics. The last two terms of Eq. (8)
correspond, respectively, to nonlinear diffusion, being b
the nonlinear diffusion coefficient, and nonlinear advec-
tion.

Numerically, we have observed that for small range of
parameters b and c, the rod structure persists by only
changes on its spatial size. For constant values of ε and
η, increasing b or decreasing c, affects the structure, by
making it shorter. While decreasing b or increasing c
enlarges the structure, making it longer. For a larger
stable rod structure, the bifurcation characteristic times
τ are smaller, thus, decreasing b (or increasing c) trig-
gers a faster dynamic of the system, for example, in
the labyrinth formation process or splitting. For fixed
values of the parameters, ε = 1.2, η = −0.355 and
ν = 2.0 the range of b and c for which the rod struc-
ture is stable are approximately b = [− 0.017, 0.015] and
c = [ − 0.007, 0.008]. Despite the small range of b and
c for which the rod is stable, the possibility of existence
of rod structures in non variational systems opens the
possibility for searching this structure in a wider range
of experimental set-ups.

VII. CONCLUSIONS

An asymmetric localized solution for the isotropic gen-
eralized Swift-Hohenberg model in two and three space
dimensions has been found. This solution called rod
structure breaks the azimuthal symmetry, remaining in-
variant only with respect to a rotation of π around any
axis on the (x, y)-plane which contains the centre of
the localized structure. The existence, bifurcation dia-
gram, stability properties and interaction have been ad-
dressed. The question if this type of solution exist in
other isotropic systems remain, so is the possibility of
experimental observation.
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Abstract. A wide range of physical systems exhibit labyrinthine patterns as transient or
steady states. One of the routes by which labyrinths emerge is through the destabilization of
a localized structure through a curvature instability. In this work we will study the emergence
of labyrinths through this mechanism in different physical contexts, ranging from non-linear
cavity optics, vegetation dynamics and chemical reactions. Furthermore it will be shown that
the resulting labyrinths can be classified depending on their connectivity properties.

1. Introduction
Systems which are kept out of thermodynamic equilibrium can exhibit multistability of states.
These states can be homogeneous or inhomogeneous. The latter are sustained by the injection
and dissipation of energy and/or momentum, and correspond to a mechanism by which systems
self-organize [1, 2], minimizing–at least locally–some physical quantity. In variational systems
this quantity is their energy, sometimes called nonequilibrium or Lyapunov potential [3]. Is in
this context that spatial structures emerge. These structures can be localized, this is, they are
finite domains that occupy only a portion of the available space, or extended, corresponding to
periodic spatial structures which possess a characteristic wavelength that define them [4, 5, 6].

x

y

xy

u

Curvature instability 
mechanism

Localized spot Labyrinth pattern

Figure 1. Curvature instability mechanism: Initially circular localized structure (left) and time
evolved extended labyrinthine pattern final state (right) for Eq. (1). Parameters η = −0.065,
ε = 2.45, ν = 2.0. Pseudo-spectral simulation (periodic boundary conditions), grid of 1024×1024
points and spacing dx = 0.5. Black indicates higher field values.

It has been observed that a wide range of dissipative systems exhibit a state (or multiple
states) of equilibrium in which labyrinth structures are formed, such as, experimental
observations in magnetic fluids [7], cholesteric liquid crystals [8, 9], Langmuir monolayers



[10], vegetation patterns [11], nonlinear cavity optics [12], among others. Such structures are
characterized by having a well defined wavelength but a small correlation length, this is, the
pattern has no privileged direction, generating in this way a sophisticated spatial structure
[13]. This definition is purely statistical, thus, based on the average spatial distribution of
the structure. In this work it will be shown that the route by which a localized structure
evolves into a labyrinth reported in ref. [14] is universal, thus, observed in a wide range of
physical systems. First, through a paradigmatic nonlinear equation, a modified Swift-Hohenberg
equation [15], the route by which a localized spot loses stability to form a labyrinth pattern
will be introduced. Here, an initially localized structure suffers an elliptical deformation and
elongates, this elongation generates a rod-like structure, which in turn, suffers from a transversal
instability propagating to all available space in the form of a labyrinth structure [14]. Based
on this result, I will test the universality of the mechanism presented by showing its existence
in other physical contexts. Namely, through a general competition-redistribution type of model
and through the Gray-Scott reaction-diffusion model it will be shown that the transition from
localized to extended structure is also observed in the context of dynamic vegetation and chemical
reactions, respectively. The different types of labyrinths observed will lead us to define a simple
classification of the labyrinth structures based on their connectivity properties.

2. From a localized spot to a extended labyrinth
2.1. Modified Swift-Hohenberg equation
It has been recently described how a localized structure loses stability, elongating and suffering
a transversal instability to then generate an extended labyrinthine pattern [14]. Here, a
generalization of the Swift-Hohenberg equation is presented. This is a real isotropic, symmetric
under reflection, nonlinear partial differential equation. It was deduced originally to describe the
amplitude of the pattern formed by Benard convection cells [15]. The modified Swift-Hohenberg
equation includes an extra term which breaks the field reflection symmetry. It was deduced as
an approximation to the Maxwell-Bloch equations, in the context of non-linear cavity optics
to describe the nascent optical bistability with transversal effect [16, 17]. The modified Swift-
Hohenberg equation reads

∂u(x, y, t)

∂t
= η + εu(x, y, t)− u(x, y, t)3 − ν∇2u(x, y, t)−∇4u(x, y, t), (1)

where u = u(x, y, t) is a real scalar field, x and y are spatial coordinates and t is time. The field
u(x, y, t) accounts for the amplitude of the electric field and the bifurcation parameter ε measures
the input field amplitude. The η parameter breaks the field reflection symmetry u→ −u. The
parameter ν stands for the diffusion coefficient, positive values of ν lead to a pattern forming
instability. The 2D Laplacian operator ∇2 = ∂2xx + ∂2yy and the 2D bilaplacian operator ∇4 act
on the transverse plane (x, y), and they stand for the transport mechanisms or spatial coupling.
It should be noted that by a displacement of the field u→ u+ u0, where u0 is a constant term,
Eq. (1) can be rewritten by removing the parameter η but including a term proportional to u2,
the equation including the quadratic term has been widely studied in various contexts (see the
textbook [4] and the references therein).

The modified Swift-Hohenberg equation (1) possess a gradient form, i.e.

∂u

∂t
= −δF [u,∇u,∇2u]

δu
, (2)

where F is the Lyapunov functional or energy [18] and reads

F ≡
∫∫

R2

dxdy

[
−ηu− εu

2

2
+
u4

4
− ν (∇u)2

2
+

(∇2u)2

2

]
(3)



here its clear that the η term accounts for the asymmetry between the homogeneous states. By
using the solutions of Eq. (1), this functional satisfies

dF

dt
= −

∫∫

R2

dxdy (∂tu)2 ≤ 0. (4)

This property guarantees that a system described by Eq. (1) evolves towards a state of
minimal energy. The modified Swift-Hohenberg equation exhibits for ε > 0 coexistence between
homogeneous and pattern states [19, 20], this allows the existence of stable localized structures.

This localized structures are azimuthally symmetric and occupy only a portion of the available
space (see Fig. 1 left image).
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Figure 2. Curvature instability mechanism for the generation of a labyrinth from a localized
structure as initial condition for the modified Swift-Hohenberg equation (1). Simulation made
for parameters η = −0.065, ε = 2.45, ν = 2.0. Pseudo-spectral method was used by periodic
boundary conditions, grid of 1024×1024 points and spacing dx = 0.5. Black indicates higher
field values.

As described in reference [14] Eq. (1) supports a curvature instability over localized spots.
This instability deforms the spot into an elongated elliptical shape, producing a rod-like
structure. This rod structure suffers from a transversal instability, undulations appear in its
core. The non-saturating dynamics that follow take the system into an extended seemingly
disordered structure that covers all the available space. Such structure shall be called a
labyrinthine pattern or simply labyrinth, which is characterized for not having a global order.
Due to the variational origin of Eq. (1) and given that the temporal dynamic moves towards
a minimum of the Lyapunov functional Eq. (4), we know that the labyrinthine structure will
reach a stationary state asymptomatically. In this case, the labyrinth is composed by a single
interconnected structure or invaginated structure [14] (which protrudes from the more stable
homogeneous state). Defects such as, dislocations, disinclination, and phase fronts contribute
to the spatial disorder of the labyrinth. This behaviour occurs far from any pattern forming
instability and exists in a regime of bistability between homogeneous steady states.

3. Vegetation and chemical reaction models
The curvature instability mechanism for the formation of labyrinthine patterns from initially
localized structures requires of few ingredients as the phenomena is observed even in the simplest
of the pattern forming equations as is Eq. (1).

3.1. Competition-redistribution model
In this section, a minimal but general model for vegetation pattern forming systems will be
introduced. In this model the curvature instability mechanism also emerges in a regime of
bistability of homogeneous steady states far from the pattern forming instability.



The emergence of spatial organization in extended landscapes has been an intriguing
phenomena for both botanists and non-linear science community for decades and are still a
matter of great discussion [21, 22, 23]. One of the transversal agreements among scientists
is that competition for soil resources such as water and nutrients leads to self-organization
of vegetation. Depending on the topography of the terrain, the climate conditions and the
vegetation specie, the process of self-organization leads to the formation of a wide variety of
patterns, such as, tiger bush [21], or fairy circles [22, 23].

0.05-0.05
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Figure 3. Bifurcation diagram of homogeneous plant population states (purple), dashed lines
indicate unstable regime, and curve of stability of localized structures (dots). When the aridity
η is decreased below ηc the curvature instability mechanism is observed.

Taking into account relation that exists between the structure of individual plants and the
competition-facilitation interactions in a vegetation community is that the generic interaction-
redistribution models emerge [24, 26]. These models have been successful in the prediction of
formation of localized structures in arid and semi-arid environments where the resource scarcity
induces high competition between plants through their root networks. In this context, a localized
structure emerges as a patch of vegetation in an unpopulated homogeneous state. By considering
a logistic equation with nonlocal coupling between plants, Tlidi et al. [27] where able via a weak
gradient approximation, to deduce a mean-field nonlinear partial differential equation for the
temporal evolution of the phytomass density ρ(x, y, t):

∂tρ = −ρ
(
η − κρ+ ρ2

)
+ (∆− Γρ)∇2ρ− αρ∇4ρ, (5)

where (x, y) and t are the spatial coordinates and time, respectively. This equation supposes
an homogeneous and isotropic environment. The parameters: η accounts for the decrease-to-
growth rate ratio; κ is the facilitation-to-competition susceptibility ratio; ∆ is proportional
to the square root of the facilitation-to-competition range ratio, this three parameters are
positive-defined. The parameters Γ and α are the nonlinear diffusion coefficients. The existence
of a nonlinear diffusion and hyperdiffusion is fundamental for Eq. (5) to satisfy the physical
constrain for the phytomass density ρ(r, t) ≥ 0. However presence of non-linear diffusion terms
u∇2u and u∇4u render Eq. (5) nonvariational, thus, it cannot be written ar the variation of
a Lyapunov functional. Nonvariational systems can exhibit complex spatiotemporal dynamics,
such as chaos, intermittency, among others. These nonvariational terms are imputable to the
dispersion process. If the dispersion is negligible then equation (5) is similar to the variational



Swift-Hohenberg, Eq. (1) where the coefficients of ∇2u and ∇4u are both independent of the
field variable.

The real order parameter equation (5) constitutes the simplest model of spatial dynamics in
which competitive interactions between individuals occur locally.

temporal evolution
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Figure 4. Curvature instability mechanism for the generation of a labyrinth from a localized
patch as initial condition for the interaction-redistribution model Eq. (5). Simulation made for
parameters η = 0.085, ε = 0.6, ∆ = 0.005, Γ = 0.5 and α = 0.125. Finite differences method
was used by periodic boundary conditions, grid of 200×200 points and spacing dx = 0.5. Green
indicates higher field values.

The homogeneous solutions of Eq. (5) are (i) ρ0s = 0, which correspond to a territory without

vegetation (ii) an two non-zero states given by ρs± = (κ ±
√
κ2 − 4η)/2. For physical reasons

phytomass density can only be positive or zero (see Fig. 3). When κ ≤ 0, only the homogeneous
steady state ρs+, defined is consistent, for η < 0. It decreases monotonously with µ and vanishes
at η = 0. When κ > 0, the viable homogeneous solution extends up to the limit point ρL = κ/2
and ηL = κ2/4. In the range 0 < η < ηL, the biomass density exhibits a bistable behaviour:
the stable homogeneous branches of solutions ρ0s and ρs+ coexist with the intermediate unstable
branch ρs−..

The upper homogeneous state ρs+ undergoes a Turing instability characterized by the
wavelength

Λm = 2π
√

2α/
√

Γ/α−∆/ρm (6)

which measure the distance between two maxima or minima of the plant distribution. The
threshold associated with the this instability is solution of the following cubic equation:

(2Γρm −∆)2 = 4αρ2m(2ρm − k). (7)

There exist more than one threshold associated with the modulational instability. In the
following, we focus on parameter regime where the uniform plant distribution exhibit bistability
(κ > 0) and a portion of this state becomes unstable with respect to the Turing bifurcation
(ηm < η < ηL). In this parameter range, any small fluctuation around the uniform plant
distribution ρs+ will trigger spontaneously the evolution of the system towards stationary,
spatially periodic distributions of the biomass density which will invade the whole territory.

However, when a stable localized vegetation patch is considered as an initial condition (high
aridity), see Fig. 3, and the aridity is then varied in such quantity that the system reaches the
coexistence of homogeneous states, then the localized structure suffers and elliptical deformation
caused by the curvature instability and elongates into a rod structure (see Fig. 4.t2) in a
process identical as previously observed for Eq. (1). Afterwards, the rod structure suffers from a
transversal instability, only that in this case, the whole structure is compromised (see Fig. 4.t3)
and not only the central portion as in the Swift-Hohenberg case (Fig. 6.t3). As time further
increases, the labyrinthine structure invades all the system.



Here we have showed the appearance of the curvature instability mechanism over a localized
structure which by turn generates the emergence of a labyrinthine structure.

3.2. Gray-Scott model
Pushing further the idea of universality of the curvature instability mechanism for the formation
of labyrinths we now enter the domain of chemical reactions. It is well known that the reaction
and diffusion of the components of a chemical reaction can produce an immense variety of spatial
structures, such as lamelar structures and self-replicating spots [31, 28], localized structures
[29, 30] and Turing structure [32, 31, 33], and exhibit complex spatiotemporal dynamics, such
as oscillatory dynamics, breathing localized structure and spatiotemporal chaos [34, 35, 36].

In a series of seminal works P. Gray and S.K. Scott introduced a variant of the autocatalytic
model of glycolisis first proposed by E.E. Sel’kov [34]. This prototype autocatalytic reaction
(i.e. the product of the reaction is also the catalyst) is described by two irreversible processes:

A+ 2B → 3B (8)

B → C

where A, B and C are chemical species, C is a non-reactive product (inert) and the system is
kept out-of-equilibrium by a constant injection of A, called feeding [37, 38, 35]. Here, they show
that this simple model presents multistability, hysteresis cycles, patterns, oscillatory dynamics
and other exotic patterns.

Through a rescaling and including the diffusion phenomena in the reactions, a non-linear
partial differential equation can be deduced for the temporal evolution of the concentrations U
and V of A and B, respectively [31], this set of equations

∂U

∂t
= Du∇2U − UV 2 + F (1− U), (9)

∂V

∂t
= Dv∇2V + UV 2 − (F + k)V

are an example of reaction-diffusion equations, as they model the local evolution U and V, and
the diffusion process of the chemical species. In Eq. (9) Du and Dv correspond to the diffusion
coefficients associated to U and V, respectively. F represents the feed rate of the reactive A and
dimensionless constant k (killing rate) accounts for the rate of the second reaction in Eq. (8).
Alike the interaction-redistribution model presented for vegetation dynamics Eq. (5), the Gray-
Scott model Eq. (9) does not have a known variational structure, which is the reason behind its
rich phenomenology which includes, from oscillatory dynamics, self-replication [31] and chaos
[36] and others mentioned before.

The existence and stability of patterns and localized spots (or single pulses) as homoclinic
solutions of Eq. (9) has been well studied both in 1 and 2-dimensional cases [29, 39, 40, 41, 42].
This system supports a trivial homogeneous steady state (U0, V0) = (1, 0) which is always stable.
When the discriminator d = 1−4(F+k)2 > 0 two additional homogeneous steady states (U±, V±)
appear, the first

(U−, V−) =

(
1

2
(1 +

√
d),

F

2(F + k)
(1−

√
d)

)
(10)

is always unstable. The second state



(U+, V+) =

(
1

2
(1−

√
d),

F

2(F + k)
(1 +

√
d)

)
(11)

(12)

is stable when −V 2 +k < 0 and (F +k)(V 2−F ) > 0. For F > 1/4 the system only exhibits the
trivial steady state. For F < 1/4 and k < 1/16 the system exhibits three homogeneous steady
states (one unstable). The bifurcation diagram for the homogeneous states is shown in Fig. 5.
For a detailed study on the bifurcations and instabilities of Eq. (9) see ref. [33].
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Figure 5. Bifurcation diagram the concentration V for k = 0.061, homogeneous states
(blue), dashed lines indicate unstable regime. The

√
F -curve shows the position of the saddle-

node bifurcation. For Fc < F < Fh stable localized structures are observed (numerically).
When changing the feeding parameter for a localized structure to values Fr < F < Fc, the
curvature instability mechanism is observed. Reconnection zone indicates the zone where a
radial instability is observed and structures can reconnect (see. Fig. 7). Here Fh = 0.097,
Fc = 0.085 and Fr = 0.078.

As indicated in Fig. 5, localized structures live in Fc < F < Fh, is F is increased further
the system falls to the homogeneous state V = 0. When the parameter F is reduced below Fc,
perturbations become unstable and the structure suffers a curvature instability characterized
by the elongation of the structure (see Fig. 6). As observed for the modified Swift-Hohenberg
equation (1) and for the interaction-redistribution models (5) the concentration field suffers then
a transversal instability characterized by the wiggling of the central section of the structure. Non
saturating evolution leads to the formation of a complex labyrinthine structure as seen in Fig.
6.t5.

When the feeding parameter is decreased further (F < Fr), an initially circular localized
structure suffers from a radial instability as seen in Fig. 7.t2, there two spots where given as
initial conditions. As the radius of the structures grow, they suffer from a curvature instability.
Non saturation causes the structure to propagate. Differently from what is observed from every
labyrinthine structure showed previously, here the tips merge, this causes reconnection of the
structures. In the transition from t4 to t5 one can realize that the two initially distinct structures
reconnect into one single labyrinth.
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Figure 6. Curvature instability mechanism for the generation of a labyrinth from a localized
concentration peak as initial condition for the Gray-Scott model (9). Simulation made for
parameters F = 0.080, k = 0.061. Finite differences method was used with periodic boundary
conditions, grid of 1024×1024 points and spacing dx = 1. Black indicates higher values of
concentration V.
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Figure 7. Alternative mechanism for the generation of a labyrinth from a localized
concentration peak as initial condition for the Gray-Scott model (9). Simulation made for
parameters F = 0.070, k = 0.061. In this parameter zone occurs reconnection between
structures. Finite differences method was used with periodic boundary conditions, grid of
1024×1024 points and spacing dx = 1. Black indicates higher values of concentration V.

4. Labyrinth connectivities
The curvature instability of a localized structure was observed in the three systems presented
previously. In the three cases (modified Swift-Hohenberg, interaction-redistribution and Gray-
Scott models) an initially localized structure suffers from the curvature instability mechanism
to finally fall into an extended labyrinthine structure. However each of these structures are
different (see Figs. 2.t5, 4.t5, 6.t5 and 7.t6). Starting from a single localized structure the Swift-
Hohenberg model Eq. (1), generates a single fully connected structure, this is, starting from any



point of the labyrinth, one can go over the whole structure without leaving the higher value field.
The same happens in the fist labyrinth from the Gray-Scott model (c.f Fig. 6) only that in this
case the structure shows no dislocations as the structure remains in a single line labyrinth. In the
case of the interaction-redistribution model Eq. (4), starting from a single localized structure,
the final labyrinthine state is disintegrated into a high number of small structures, thus, this
labyrinth is highly disjoint. On contrary, when considering two initial structures in Fig. 7, the
structures where able to reconnect increasing the connectivity from the initial state.

A classification of the labyrinth structures originated from localized initial states can be done
based on the connectivity difference between the initial and the final states. If ∆ = Ci − Cf ,
where Ci and Cf are the initial and final number of disjoint structure, then, if ∆ < 0 we will
say labyrinth is dissociative (the structure tends to divide), if ∆ = 0 it is neutral (structures
preserve their identity) and if ∆ > 0 the labyrinth is associative (structures tend to merge). We
can conjecture after the previous observations that the type of labyrinth that a system exhibits
will depend on the capacity of a structure of preserving its integrity, here, surface tension (or
line tension) which keeps the structure together will play a fundamental role. In this sense, the
type of labyrinths a system exhibits can give information of the line tension properties of the
system.

5. Conclusions
In this work the curvature destabilization of a localized structure had been show as a mechanism
for the generation of extended labyrinthine patterns. Furthermore, the mechanism has been
showed to exist in a wide range of physical systems including in vegetation dynamics through
a general interaction-redistribution model and in chemical reactions through the Gray-Scott
reaction diffusion equations. It has been shown that depending not only in the context in
which labyrinths emerge but also on the parameters considered for simulation/experimentation
different labyrinths emerge and even more, they can be classified as associative, neutral or
dissociative, based on the difference between the initial and final connectivity of their structures.
Future work will address quantitatively the effect of surface tension in the type of labyrinth
formed.
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Appendix D

This appendix is a copy of the manuscript entitled: Self-replication of localized

vegetations patches in scarce environments.

In preparation for being submitted to the Physical Review X.

This work will show the results presented in Chapter 6.
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Desertification and the loss of fertile soil is a worldwide problem for
both ecology and economy. Our ability to understand how vegetation
manages to survive in arid and semiarid ecosystems can help in the
development of future strategies to preserve or make use of scarce
resources soil. In this article, we study a robust phenomena observed
in semi-arid ecosystems, by which localized vegetation patches split
in a process called self-replication. By observation of real ecosystems
and comparing with theoretical and numerical analysis we show an
underlying process of self-organization leading to pattern formation
mediated by the self-replication process.

Vegetation | pattern formation | competition and facilitation | nonlinear dy-

namics

Abbreviations: NND, nearest neighbor distance

In arid and semi-arid landscapes of the African, American,
Asian and Australian continents, it is common to encounter

a non-uniform vegetation cover which exhibits large spatial
scale structures, generically called vegetation patterns [1, 2].
These landscapes are characterized by either water limited re-
sources and/or nutrient-poor territories. In the former case,
the potential evapo-transpiration of the plants exceeds the wa-
ter supply provided by rainfalls. At the level of individual
plant, the water scarcity provokes an hydric stress that af-
fects both the plants survival capacity and the plant growth.
At the community level, this hydric stress promotes clustering
behavior which induces spatial landscapes fragmentation. It is
now generally admitted that this adaptation to hydric stress
involves a symmetry-breaking modulational instability lead-
ing to the establishment of a stable spatial periodic pattern
[3]-[23].

Vegetation patterns are not always periodic. The spatial
distribution of vegetation cover, may consists of isolated or
randomly distributed patches or gaps. Such irregular patterns
can involve groves within grasslands [24, 25] or spots of bare
soil within a grass matrix [26]. They consist of patches which
are either isolated or in the form by clusters of patches . In
both cases, such patterns have been interpreted as localized
structures [24, 26, 8, 25] . A well documented example is the
so-called fairy circles. They consist of circular areas devoid of
vegetation embedded in an herbaceous vegetation. The aperi-
odic patterning phenomenon is not specific to peculiar soils or
plants. Localized vegetation patches or gaps may develop on
soil ranging from sandy and silty to clayey and the nature of
vegetation may consist of grasses, shrubs and trees. The sur-
face of vegetation patch can vary from small clumps of grasses
(0.5-2 m2) to large groves of mulga (Acacia aneura) trees (100-
1000 m2), such as those observed in central Australia [27]. On
the other hand, the formation of localized pattern is an impor-
tant issue not only in plant ecology context and environment
science but also it is a multidisciplinary area of research in-
volving physics, chemistry and mathematics [32].

Localized vegetation patches may exhibit a curvature in-
stability that leads to a splitting of the patch into two new
patches. An example of such behavior is shown in Fig. 1.

This intriguing phenomenon often called spot-replication or
fingering is well documented issue in the context of magnetic
fluids [33], liquid crystals [34, 35], Chemical systems [36]-[47],
in plant ecology [48], material science [49, 50], granular fluid
systems [51, 52], and nonlinear optics [53]. The fingering in-
stability of planar fronts leading to the formation of labyrinth
structures has been reported by Hagberg et al. [54].

1 m

300 m

2 m

2)
1)

3)

Fig. 1. (Color online) Localized patch instability. 1) Spinifex grassland, Yak-

abindi station, Western Australia (courtesy of Villis and Magi Nams). 2) Patterns of

P. bulbosa observed in the Northern Negev [48]. 3) Satellite image showing localized

vegetation patches, Zambia (Google Earth).

We investigate here the self-replication mechanism in the
case of natural vegetation ecosystems. We show that this phe-

Significance

The stability of localized vegetation patches in semi-arid and arid
landscapes is studied. Our analysis reveals that when the size
of a single or more patches exceeds some critical size, an ellipti-
cal deformation affecting the circular shape of localized patches
may occur. Splitting of the patches follows this curvature insta-
bility. Spots replicate themselves until they occupy the whole
space available in a strictly isotropic environmental condition.
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nomena is robust as it is observes in a wide range of species and
size scales. We consider a general interaction-redistribution
model, where numerical simulations and analytical analysis
show that there exist a critical value of the level of the aridity
under which a single circular patch grows up to a maximal di-
ameter, the curvature instability leads to an elliptical deforma-
tion followed by patch multiplication. This process continue in
time until the system reaches a self-organized vegetation pat-
tern in an hexagonal form. Afterwards, we address the spatial
organization problem and show how self-replication mediates
the spatial distribution and propagation of the vegetation.

Field observations of self-replication
Location. Andes highlands are semi-arid ecosystems with a low
amount of available resources. In particular, the Catamarca
region in NW-Argentina (-23.436253◦, -65.976767◦ at 3424 m
a.s.l.), the average annual rainfall reaches 369 mm (source
CRU CL 2.0), with a maximum in January of 71 mm and
a minimum in July of 6 mm, temperature varies from warm in
the day to sub-zero in the night. Here, it is well known that
Festuca orthophylla which produces tall, evergreen tussocks
dominates the landscape over extended areas and periods of
time at elevations between 3225 and 4860 m a.s.l [55, 56].

a.

b.

c.

10 m

1)

2)

3)

20 cm

Fig. 2. Study site in the Catamarca region, dark spots correspond to Festuca
orthophylla tussocks. 1) Satellite image showing localized vegetation patches

(Google Earth) in the Catamarca region, Argentina. 2) Zoom of the region under

study. 3) Average size tussocks of Festuca orthohylla in the Sajama National Park in

the Bolivian Altiplano [56].

This specie is present in a variety of cold climates, adapting
to diverse rainfall and soil moisture conditions. Festuca tus-
sock arrange in circular shape compact structures composed
by thousands of tightly packed tillers. The size of the tussocks
depends on the resources available and weather conditions of
their location, for instance, in western Bolivia they can reach
1.6 m [56]. An important characteristic of Festuca is their
shallow rooting system, which has been reported to cover an
area 6-fold the area of the above ground canopy [56]. This
quality allows each plant to have access to the resources in a
total area equivalent to 6-fold the area of the projected canopy,
which is well known to be the most important mechanism to

capture resources in highlands [56, 58]. This root distribution
also allows tussock-tussock competition for resources, this will
be important later on for understanding the spatial organiza-
tion of the tussocks.

This site, was selected in order to have a minimal slope,
and no topographic perturbations such as mountains, canyons,
river or highways. The image obtained from Google Earth con-
sists on a 4800x3562 pixels image, which corresponded to an
area of 109.4 km2 (384m x 285m), see Fig. 2.1.

Festuca structures are easily recognizable in the images
for their high light absorption (they appear as black spots).
As mentioned previously Festuca organizes in tightly packed
structures of circular shape. An example of isolated circular
patch is shown in Fig. 2.3. However, there is an important
number of structure that have lost their circular shape. This
modulational instability is the mechanism by which a tussock
deform into an elliptical shape and consequently splits into two
independent tussocks, we term this process self-splitting (see
Fig. 2.2). This process is common to a wide range of species
and scales, as observed in Fig. 1, where self-replications can
be observed for structures in the scale of meters to hundreds
of meters.

Spatial distribution analysis. The field image (Fig. 2.1) was
used to study the spatial distribution of the tussocks. Detec-
tion of patches was performed through filtering, noise reduc-
tion and contrast enhancement of the image. Objects touching
the border of the image were removed as they may not be com-
pletely observed, thus, they could introduce erroneous mea-
surements to the analysis. The size of the structures that can
be detected is lower-bounded by the satellite spatial resolution,
nevertheless, we can hypothesize that the spatial distribution
will be dominated by the bigger tussocks as a consequence of
their fully developed shallow root systems.

After the detection of the patches, the boundaries of each
object and their properties (area, centroid position, perime-
ter and equivalent diameter) can be precisely computed. The
relation of meters per pixel is extracted directly from the im-
age (20 m/250 pixels). A total of 3204 structures where de-
tected. The first analysis, corresponded to detailed character-
ization of small distance properties such as nearest neighbor
distance (NND), area covered and equivalent radius of each
structure, this radius is calculated by comparing the area of
the structure with that of a circle of that equivalent radius.
The nearest neighbor distance is computed as the minimal
boundary-to-boundary distance, this will allow us to extract
some conclusions on the NND versus root sphere size. Canopy
area and radius will be useful in understanding the underly-
ing pattern emerging from redistribution and competition for
resources. To expose the emergent spatial order in tussocks
distribution, spatial Fourier analysis was performed in order to
determine a characteristic wave number, circular integration
was performed for a better presentation of the results. For
the effect of Fourier analysis, a square sub-figure was selected
from the original one. Finally, we have computed the Voronoi
tessellation for the centres of the structures. This analysis,
suitable for studying the regularity of a pattern has been used
previously in aerial analysis to address pattern formation in
vegetation structures [59]. For both NND and Voronoi cell
computation, a subset of structures where selected such that
they where far enough from the images border to avoid error
induced from non visible structures.

2 www.pnas.org — — Footline Author
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Fig. 3. Histograms for the 1) areas and 2) equivalent radius of the structures and

3) nearest neighbour distance between them.

Nearest neighbor distance and structure properties. From the
image analysis of the aerial image from the Catamarca region
in NW-Argentina a total area of 109.4 km2 (384m x 285m)
was studied. Structures found in the analysis ranged from an
area of 0.012 m2 to maximum area of 6.25 m2 with a mean
of 0.95±0.79 m2 (see Fig. 3.1). By visual inspection, we have
noticed that bigger structures are most probably evolving clus-
ters of structures. The average equivalent radius was found to
be 0.50±0.22 m as can be seen in Fig. 3.2. For calculating
the minimal distance between the objects boundaries, only
structures which are far enough from the image’s border are
considered, as the objects not captured in the image could be
closer to these structures than the other observable ones. By
this consideration, distances between 2837 objects are used.
The distance between objects vary from 0.25 m to 4.63 m,
and averaged a distance of 1.83±0.77 m (see Fig. 3.3).

Considering the average size and NND, and given that the
distance between tussock is set under the constrain that the
root spheres do not overlap, we can estimate the projected
root sphere size of an average tussock as the half of the NND,
this results in a root sphere of 1.4 m radius and 6.3 m2 area,
which corresponds to an area of 6.7-fold the area of the aver-
age structure. This is in agreement with previous field obser-
vations [57].

0 2 4 6 8 100

3000

6000

wavenumber (m-1)

Fo
ur

ie
r a

m
pl

itu
de

 

0 10-10
-10

0

10

Fig. 4. Circular integration for spatial Fourier transform.

Fourier analysis. For the spatial Fourier analysis, we consid-
ered a square sub-figure of the original. This figure contained
1510 structures. The spatial Fourier transform is extensively
used by pattern formation community to evaluate the degree
of order. Pronounced peaks in the 2D Fourier amplitude in-
dicate not only the existence of a characteristic length in the
system but also a preferred spatial direction for the formation
of the pattern.

From our spatial Fourier analysis we are unable to detect
pronounced peak in the spectrum, indicating that there in no
preferred direction for a pattern to form. However, in the
circular integration of the spectrum, we observe a maximum
wavenumber at k=2.4 m−1 (see Fig. 4), this is the first sign
that the system is arranging in such a way that a character-
istic length emerges (Lc = 2Π /k = 2.6 m). As one would
expect this characteristic length y related to the interaction
between tussocks, no-overlap (between tussock root spheres)
is achieved in average if the distance between the centres of the
structures is at least 2.4 m according to estimations made in
the previous section from the histogram analysis. Root com-
petition between plants generates a minimal distance between
tussocks.

Voronoi cells characterization. One of the problems of detect-
ing patterns in natural ecosystems is the existence of high scale
perturbations such as terrain inhomogeneities, weather condi-
tions, wind, animal presence. All this external noise, alters the
interaction between tussock therefore, mangles their ability to
form a regular pattern. With no regular pattern, the task
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of finding some type of unitary cell in the tussoks arrange-
ment can be facilitated by the introduction of the Voronoi
tessellation [60]. Considering the centre of a structures, the
Voronoi cell associated with that structure will correspond to
all the points that are closer to its centre than to any other
centre (see Fig. .1). In this sense, the Voronoi tessellation
gives us information of the most probable cell arrangement.
As it is observed (Fig. .2) the most probable vertex number
is 6, which drive us to conjecture in a underlying tendency
of Festuca tussocks to arrange in hexagons, this is reinforces
by observing that 6-sided cells are clearly not randomly dis-
tributed but rather cluster in groups. Important data can
also be extracted from the tile area (Fig. .3), each tile rep-
resent the amount of land that is closer to a certain tussock
than to any other, thus the nutrients present in that portion
of soil will be more accessible for the center tussock. The
average tile size is 21.8 m2, which corresponds to equivalent
radius of 2.63 m, almost twice the radius estimated for the
root sphere. This means that even when considering nearest
neighbors, roots seem to determine the minimum distance, in
a large scale, tussock disperse through the terrain. This can be
understood as an exponential decay of the interaction between
tussocks, where depending on the amount of space available,
they will spread or tighten provided that the root spheres do
not overlap.

Model equation for vegetation dynamics
Pattern formation in vegetated environments has been exten-
sively studied both experimentally and theoretically. It is well
known that competition for resources such as water leads to
self-organization phenomenon. This process leads to the for-
mation of a wide range of patterns that depends on the char-
acteristics of both the environment and through root spatial
underground distribution.

Several models describing vegetation patterns and self-
organization in arid and semiarid landscapes have been pro-
posed during last two decades. They can be classified
into three types. The first approach often called a generic
interaction-redistribution models. It is based on the re-
lationship between the structure of individual plants and
the facilitation-competition interactions existing within plant
communities [3]-[12]. The second approach is based on the
reaction-diffusion type of models. It takes into account of the
influence of water transport by below ground diffusion and/or
above ground run-off [13]-[19]. The third approach focuses
on the role of environmental randomness as a source of noise
induced symmetry breaking transitions [20, 21, 23].

In particular, the formation of localized structures in vegeta-
tion, also called localized vegetation patches has been studied
in the case of poor resources, isotropic and homogeneous envi-
ronment via a weak gradient approximation of the generalized
logistic equation that described the non-local interaction be-
tween plants, a non-variational equation for the phytomass
density ρ(r, t) was derived in [24]

∂tρ = −ρ
(
η − κρ+ ρ2

)
+ (∆− Γρ)∇2ρ− αρ∇4ρ, [1]

where r and t are the spatial coordinates and time, respec-
tively. This equation contains three positive defined control
parameters: η that account for the decrease-to-growth rate
ratio; κ is the facilitation-to-competition susceptibility ratio;
∆ is proportional to the square root of the facilitation-to-
competition range ratio. The parameters Γ and α are the non-
linear diffusion coefficients. The real order parameter equation
(1) constitutes the simplest model of spatial dynamics in which
competitive interactions between individuals occur locally. An

important feature of this equation is the presence of nonlinear
diffusion terms u∇2u and u∇4u that render it non-gradient
or nonvariational. These nonvariational terms are imputable
to the dispersion process. If the dispersion is negligible then
equation (1) is similar to the variational Swift-Hohenberg that
is regularly derived in spatially extended systems. In that case,
the coefficients of ∇2u and ∇4u are both independent of the
biomass density.

0.05-0.05
0.0

0.4

0.8

ηm 
η

0.0 0.10 0.15

ρ

ρm 
LP

Replication

Fig. 6. (Color online) Bifurcation diagram of homogeneous plant population

states (purple and black), dashed lines indicate unstable regime, and curve of stability

of localized structures. The darkened area accounts for the region where localized

patches (LP) are observed.

The homogeneous steady states; ρs; solutions of Eq. (1)
are (i) no plant state, ρ0s = 0, which corresponds to a terri-
tory devoid of vegetation and (ii) an homogeneous plant pop-

ulation ρs± = (κ ±
√
κ2 − 4η)/2 where at each point of the

territory, the vegetation production and death are exactly bal-
anced. They should be real and positive. Two situations must
be distinguished according to the sign of κ. When κ ≤ 0, only
the homogeneous steady state ρs+, defines the biomass den-
sity, for η < 0. It decreases monotonously with µ and vanishes
at η = 0. When κ > 0, the physical part of homogeneous
branch of solution extends up to the limit point ρL = κ/2 and
ηL = κ2/4. In the range 0 < η < ηL, the biomass density ex-
hibits a bistable behaviour: the stable homogeneous branches
of solutions ρ0s and ρs+ coexist with the intermediate unstable
branch ρs− as shown in Fig. 6. The former solution is always
unstable even in the presence of homogeneous fluctuations.

The upper homogeneous state ρs+ undergoes a modula-
tional instability characterized by an intrinsic wavelength

Λm = 2π
√

2α/
√

Γ/α−∆/ρm [2]

which measure the distance between two maxima or minima
of the plant distribution. The threshold associated with the
modulational instability is solution of the following cubic equa-
tion:

(2Γρm −∆)2 = 4αρ2m(2ρm − k) [3]

There exist more than one threshold associated with the
modulational instability. In the following, we focus on pa-
rameter regime where the uniform plant distribution exhibit
bistability (κ > 0) and a portion of this state becomes unsta-
ble with respect to the Turing bifurcation (ηm < η < ηL) as
shown in Fig. 6. In this parameter range, any small fluctu-
ation around the uniform plant distribution ρs+ will trigger
spontaneously the evolution of the system towards stationary,

4 www.pnas.org — — Footline Author
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Fig. 7. (Color online) Localized patch self-replication of the vegetation model Eq. (1) for η = 0.1, κ = 0.6, ∆ = 0.02 Γ = 0.5, and α = 0.125, integration grid

200×200. Temporal evolution is from left to right panels, and from top to bottom ones, t1 < t2 < t3, · · · . The localized patch suffers a curvature instability subsequently

accompanied by the emergence of two spots. In turn these spots suffer a similar instability thus generating more spots, which begin to invade the system generating the

emergence of a hexagonal pattern with several defects.
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Fig. 8. Numerical simulations of non-variational phytomass model (1) with 155 randomly distributed localized patches as initial conditions, with η = 0.1, κ = 0.6,

∆ = 0.02 Γ = 0.5, and α = 0.125, integration grid of 1000 × 1000. At different evolution times, the Voronoi cell tessellation, histograms for number of vertices in

each cell, tile area, nearest neighbor distance, and structure areas are analyzed.

spatially periodic distributions of the biomass density which
will invade the whole territory. A detailed nonlinear anal-
ysis of two-dimensional periodic vegetation patterns such as
stripes (often called tiger bush), and hexagons consisting of

either sparsely populated or bare areas alternate with dense
vegetations patches have been reported in [4].
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Field observation vs model
When increasing the aridity parameter η, the structures that
appear first are gaps. They consist of spots of spare vegeta-
tion. The region where these localized patches are observed
is depicted in Fig. 6. They are stable until they lose their
stability towards the formation of localized patches. When
decreasing aridity, a single patch exhibits an elliptically de-
formation followed by splitting as shown in Fig. 7. This
self-replicating process continues until the system is entirely
occupied by spots. Only spots which have available space
around them are able to replicate because of this, only spots
located in the edges can replicate. In the real ecosystem avail-
able space can be generated by the death of a plant by natural
or external perturbations (animals, fires) this is the reason we
can observe self-replication throughout all the territory ana-
lyzed previously.

The pattern obtained from the replication of a single spot
is an hexagonal configuration, defects observed are induced
by the boundary conditions, nevertheless, after a sufficiently
long simulation time, the system arrives to a regular hexag-
onal pattern (Fig. 7). This regularity is not observed in the
arrangement of Festuca tussocks observed in Fig. 2 as vegeta-
tion in a real ecosystem is not nucleated by a single spot but
rather developed by the seed spreading by wind and animals
thus generating multiple tussocks in different locations, each
with the possibility of splitting to spread through the terrain.

To numerically test the effect of seed spreading, we have
studied the evolution of the model with the initial condition
of 155 randomly distributed spots (cf. Fig. 8.a), the aridity
level allows each of the spots to self-replicate. With tempo-
ral evolution, communities of spots interact as the replicating
process continues (see Fig. 8.b). By observing the evolution
of these spots we can show that the self-replication process
favors a spatial organization similar to the field observation.
Initially, as seen in Fig. 8, the system has no particular or-
der, histograms do not show any clear trend, however, further

evolving in time, (t=6000) self-replication has generated 1060
spots, for which characteristic values emerge for the areas of
the structures and NND, and the number of vertices histogram
behave as observed for the Festuca tussocks. At time t=12000
the structure count is 3641, their areas and NND show a clear
maximum value indicating an emergent ordering, the process
of self-replication favors a dispersion of the structures and tile
areas from the mean, as the observed in the real ecosystem.
In this line, the process of self-replication allows the system to
spatially organize.

Conclusions
We have studied the self-splitting phenomenon through a veg-
etation point of view. Through observations made by means of
remote sensing analysis of the Andes semi-arid ecosystem we
have localized Festuca tussocks which by a modulational in-
stability deform from heir circular shape to an elliptical shape,
process after which the tussocks split into two new struc-
tures, we have observed this process in a variety of species
and size scales. By statistical analysis we have encounter
characteristic distributions which are signatures of an under-
lying self-organization process. Though a general interaction-
redistribution model we show the existence of self-replication
and the mechanism by which this phenomena leads to an ex-
tended pattern. Comparison between numerical and field ob-
servations indicate intriguing similarities in the distribution
of areas and distance between structures. Self-replication in
vegetation give new lights on the way plants propagate and
populate the semi-arid terrains.
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