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Localized and Front solutions in experiments

o Fluidized granular matter
Localized excitations in a

vibrating layer of sand (Oscillons)

P. Umbanhowar, F. Melo and H. Swinney, Nature, 382, 793 (1996)








© liquid crystal light valve with optical feedback
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PRA 52, 791 (95), Phys. Rep. 318 (99)



© Vertically vibrated colloidal

Suspension
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PRL, 83, 3190 (1999).

© Newtonian Fluids (two frequen-

cies)
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Fronts and experiments

© Simulation

Front propagation
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MF Schatz et at, Phys. Rev. Lett. 75, 1938 (1995)




Experimental measurement of front velocity

V
O Liquid crystal light valve with optical R, G D

feedback (1-D experiment) - = front view
of the mask
P .S';i'l mask

{ FKPP fronts

| Normal fronts

27 28 29 30 31 3.2

M.G. Clerc et al, Eur. Phys. J. D 28, 435 (2004).




Main ingredients of localized structures

o Coexistence between
two steady states (two homogenous
state, homogeneous states and spatially
periodical one and so forth)

o Intrinsic length




Patterns in Non-local Fisher model
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M. A. Fuentes, M. N. Kuperman, and V.M. Kenkre, Phys. Rev. Lett. 91, 158104 (2003);
®) There IS one Steady State' C.Lopez, and E. Hernandez-Garcia, Physica D, 199, 223 (2004).




Non-local Nagumo model

o A simple non-local model that exhibit bistability is

L Oyt = Opaut — at + (a + Du? — u./u’?ﬁ,l[;r._ z")dx' }
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where the influence function f.(xz,2") = fo(x —2'), 1s a even function and
1t 1s normalized [f,_-, (z,z")dz’ =1, And 0 <o < 1.
J

o The model 1s variational
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© This model has three steady homegeneous states u=0 (stable), u=a (unstable)

and u=1. —
o For the sake of simplicity we consider =
| |

fo2) = 0(c + 2)8(0 — 2) /20 — =

© For this influence function the system is characterize by two parameter {c,0}

O©The steady state u=1 exhibits an spatial instability

2 Spectrum

u(x,t)




Bifurcation diagram of non-local Nagumo model

oL/

3.5




Remarks of particle-type solutions in non-local Nagumo model.

o The system exhibits three type of front solution

- homogeneous-homogenous states without ‘jL
spatial oscilation

- homogeneous-homogenous states with .
spatial oscilation

.

- homogeneous- spatially periodic state LN




o The system exhibits two type of Localized structure

- Horm solutions: solution bewteen o I

two homogenoeus states, which

exhibits spatial damped oscillation. >

L.t

- These particle-type solutions
are consequence of the kink-antikink

Interaction

_"n.. — v cos{ k/\ F—.f:f& . P. Coullet, C. Elphick and D. Repaux,
[ = ( ) 7 Phys. Rev.Lett. 58, (1987) 431.

where A is the distance between the kink and antikink, {x,f} are the wave-number and
exponent of the decreasing damped spatial oscillations, 1 1s the parameter that measu-
rements the separation of Maxwell point (1 is proportional to a-1/2) and o 1s a parame-

ter of order one.

- Around of the Maxwell point appearance a familly of horm solutions. The length of
these solutions are roughly multiple of 2m/x.



o The system exhibits two type of Localized structure

an homogenoeus and spatially period

- Localized patterns: solution bewteen ETM b)A e M
states. | & *

- These particle-type solutions
are consequence of the kink-antikink

Interaction

M.G. Clerc, and C. Falcon,

[i = —alA e}{p(—ﬁ&) =y CDS(H&) +n ] To appear in Physica A.

- Around of the pinning range there 1s a familly of localized patterns. The length of

these solutions are roughly multiple of 27/x. SR )

Rev. Lett. 84, 3069 (2002). { \ J




o Determination of the point in the parameter space .s|
where the particle-type solution appear, 2
localized structures nascent point (LSNP). 1.5}

O Aditive noise induce front propagation

M.G. Clerc, C. Falcon, and E. Tirapegui,
to appear in Phy. Rev. Lett.



Conlusions

© A variational non-local model, non-local Nagumo equation, exhibits
coexistence between spatially periodic state and homogeneous ones.
Hence, the system has particle-type solution like localized patterns,
horm solutions, and front connection.

© Characterization of phase diagram, and the mechanism of localized
structure appear.

© Determination of critical point of localized structures appear in the

parameter space, localized structure nascent point.






