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Front solution

© "Stationary solution that links two steady states".

O "In 1D the front solution are heroclinic connection of stationaries states

in the stationary extended system or moving reference frame" (multi-stability).

Two uniform states
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“Front and experiments

O Liquid crystal light valve with optical P, LCLV &Yo
feedback (1-D experiment) :.'I’,':u:l .
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M.G. Clerc et al, Eur. Phys. J. D 28, 435 (2004).





“Pattern and uniform states in fluidized granular system

Experimental setup: container with broze grain

O! 100 microns (grains)

o}

----- 80x80 mm -----

Initial conditions

T A sin(wt)+B sin(2wt)
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Primary vacuum 10”-5 Torr



Front solutions

Patterns

Courtesy of S. Residori, C. Falcon, U. Bortolozzo and M.G. Clerc (INLN)




Properties of front in one extended systems (1D)

© Locking phenomenon and © Normal form
pinning range
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The front 1s stationary in one point,

The front 1s stationary in a width Maxwell point.
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Which are the features of front in 2D? l

© For the sake of simplicity, we consider front connecting a stripe pattern with a uni-
form state. Numerical simulations of the isofropic Swift-Hohenberg equation show
a complex dynamics of front solution.
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Locking phenomena l

© The front speed is characterized by
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Locking phenomena I

© The front speed is characterized by

- ~ (| LN ss——
. 1 ﬂ jﬂ\ﬂ Pa{;ctern length

O~ i ) Interface size
i

— | LT

: o:=MA

—

>
X




© For a finite perturbation, the interface exhibits zigzag dynamics,

which is characterized by coarsening evolution
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Needlework (Bordado, Broderie,..)

© For 0>1, the system exhibits a spatial interface instability
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Needlework (Bordado, Broderie,..) I

© For 0>1, the system exhibits a spatial interface instability
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Lacalized states

o As consequences of locking phenomenon:
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There is a familly of localized states



Needlework (Bordado, Broderie,..) |
.

© Increasing 6 > > 1 (large G), the needlework persists
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Mechanism of zigzag dynamics

© The zigzag dynamics exhibited by model Swift-Hehenberg A Ky
model is triggered by the isotropy features of stripe
orientation, that is, the orientation of the stripe is TN
arbitrary and it is determined by the initial condition, |/ )KX
whose influence is enhanced in the wall.
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Mechanism of zigzag dynamics

© The zigzag dynamics exhibited by model Swift-Hehenberg A Ky

model is triggered by the isotropy features of stripe
orientation, that is, the orientation of the stripe is
arbitrary and it is determined by the initial condition,
whose influence is enhanced in the wall.
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Universal description

o For small € and v, we can introduce the ansatz

2V 14 1 Y 9v? ¢ -
— = A —_ V==L — / iqx
“ = Vi1o© { ( o' W 10 4

+w; (z,y,7T) + c.c},
where the amplitud equation satisfies (Newell-Whitehead-Segel equation)
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Universal description

o For small € and v, we can introduce the ansatz
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Interface equation

o A standard method to figure out the dynamics
exhibited by the system is to derive an equa-
tion for the interface. The propagative zigzag

interface is universally described by convec-
tive Cahn-Hilliard model

[&;P = &Py + PPy, — Pyyyy + P2 + bP; + PPy, +c

M. Clerc et al Eur. Phys. J. E 1, 179 (2000).
~ Spectrum N

o Using this method, we have obtained a
generalized Canh-Hilliard equation, which Y
shows that the flat interface is marginal (li-
nearly) and nonlinear stable. Hence, this
method does not give account of the

20 - 70 60 80 100 %l
depinning effect. \




Interface equation

o A standard method to figure out the dynamics (YRGS TIRI RS RN RV 1)
exhibited by the system is to derive an equa-
tion for the interface. The propagative zigzag

interface is universally described by convec-
tive Cahn-Hilliard model

[&;P = &Py + PPy, — Pyyyy + P2 + bP; + PPy, +c

~ Spectrum N

o Using this method, we have obtained a
generalized Canh-Hilliard equation, which Y
shows that the flat interface is marginal (li-
nearly) and nonlinear stable. Hence, this
method does not give account of the
depinning effect.
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Coarsening

o Numerically, we compute the average length size <L(t)> between two successive
extreme points of the interface of model

t ~ Spectrum <
L1L2L3L4 ’ *<L>

. . 4




o Numerically, we compute the average length size <L(t)> between two successive
extreme points of the interface of model

~ Coarsening N
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Amended amplitud equation

© To explain the appearance of pining range, needlework and complex
dynamics, we consider

[@A = A+ |APA - |A[*A + (8, — —8,,)%A
q

Resonant terms
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Amended amplitud equation

© To explain the appearance of pining range, needlework and complex
dynamics, we consider

hA = eA+|APA~ |A*A + (8, — -0,
q

Non Resonant terms
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Amended amplitud equation

© To explain the appearance of pining range, needlework and complex
dynamics, we consider

DA = €A+ |APA — |AP*A + (8, — ~0y, )2 A [ nA3e?ie
q

Non Resonant terms
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Simple prototype model ]

o P(y,t) stand for the interface bewteen P(y,t)
the stripe pattern and uniform state

................
.............

© Modified Cahn-Hilliard equation -

[&‘%P = elyy + Pny.y — Py + &PE — vsin(kP) ]
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[&P =ePy,, + P;Pyy — Pyyyy + chf, — vsin(kP) ]
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Amended amplitud equation

© The spectrum of the interface
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Hence, the needlework are consequence of the interaction of envelope
variation with the small scale underlying the spatial periodic solution



Pinning effect in anisotropic system

o The origin of the depinning in NewellWhiteheadSegel equation is the anisotro-
pic spatial coupling. We consider the following model

s :
[ Ou = eu + vu° — u° — (5'1::: + qg) u + Doy u, }

~ Dynamical behavior \
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Conclusions

Systems which have coexistence between stable stripe pattern and uniform
states can exhibit interfaces connecting these states.

© The interface dynamics have complex behaviors: flat interface,
periodic solutions, localized state, zigzag dynamics,....
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Outlook

Noise induce front propagation

{ Oru = eu + vu® — u’ (ar:x: +q ) U+ Dayyu:~+NOISEJ






