Bubbles interaction in the Cahn-Hilliard equation
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Motivation (Zigzag Instability)
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Experimental Set-up

Microscope
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3CCD camera

Liquid Crystal sample : T T T T T T TTTTT

Permanent magnets

Polarized light beam

Inhomogeneous magnetic field




Spatial Instability

Ising Wall — Zigzag Wall

Influence of the elastic anisotropy
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Domains dynamic (Facets dynamic, coarsening)?

Universal behavior
(b)

1) Gas discharge system,
PRL, 78, 3129 (1997).

i) Rifts in spreanding wax layer,
PRL, 76, 3456 (1996).

lil) Zigzag walls in the chevron structure,
Europhys. Lett., 44, 205 (1998).




Interface dynamics

L

€ €
Z,= ——=tanh [ — P is the Isi Il soluti lay-bend
NG an (ﬂ(w )> is the Ising wall solution (splay-bend)

close of Fréedericksz transition.

In order to investigate the interface dynamics, one introduces the
following ansatz :

Z(z,y,t) = *_tanh (i(:p P(y,t))) +n(z P, P)

Va V2

where 77(:(3 P, P) is a perturbation, generically P satisfies the diffusion
equation.

O Experimental check of the
diffusive interface equation.




Symmetry analysis

Translational invariance along the x-axis

rr+t+zg , PP+ P

P( t) Reflection symmetry in the direction tangent
Y to the interface

y< y , P P

Therefore the position of the interface satisfies 0P = f(@gP)

Reflection symmetry in the direction normal to the interface

r< = , P+ P

For small perturbation the order parameter satisfies the diffusion
equation :

When € is small (positive or negative), the order parameter is
described by the asymptotic equation

&P =¢ePy, + P/P,, Py,

With € is the diffusion (antidiffusion), P;Pyy the nonlinear
diffusion and the last term is the hyperdiffusion.

The latter equations are only valid for anisotropic systems.




Observation

dF[P] : _/ 2 3 51, 1,0
o O,P= — with  F[P] [2Py 12Py—|—2P dy

—> relaxational dynamics

o Continuity equation :
8tP:8y(ePy +P§) ng)

for an infinite medium, the system conserves the following global quantity

/P dy

o Introducing the new variable A = Py the equation reads
0F[A]

O = Oyy(eA +A°  Ayy) = Oyy—— SA

€ 3 44, 1,0
FA] = —_AZ 4+ 2 A —AZ| d
where [ ] / [2 + 12 + 92 Yy Yy
o This is the Cahn-Hilliard equation for a one-dimensional system.

o Variational problem under constraint

6F [A] 5G| A]

SA 0

+A

/Ady—

\ with A Lagrangian multiplier




o Stationary solutions P =0= P, + py3 Py, =K

heteroclinic orbit
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the global minimum are : heteroclinic, homoclinic, and
uniform solutions.

Problems?

© Which are the particle like solutions of the Cahn-Hilliard

equations?.

O Which are the in

teraction between the particle like

solution ("ulterior dynamics")?.




Kink solutions This solutions are parametrized by the group of

translation
AN UginX)

ui(z,7;) = \/Etanh (\/g(x — :L‘Z)) [
J*

Interaction?, u(x,t):ul(x,xl(t))-uz(x,xz(t))+w; (w<<1).

AU, 2o (X) As consequence of the area
Kink-Antiink conservation, we have :

dt(xz—xl) =0

Bubble solutions

2 (3u2 + ¢)
—2u, + \/2 (|e| — u2) cosh ( (3u2 + 6)y> 7

Wi Lorct =P )} a <o
Uy = — COS — arctan = . 9
3 3 27\2 !

1 4le|3
Uy = —2 %sin(g (arctan( 2|76/\|2—1 +g>>,)\20,

o C[(I,Z'O,A) ~ |€|

/1] (

Jlel tanh [ 4/ 2

+ /|| tan ( >

—4/|¢| tanh ( g (:L‘—xo

+ O(\/Ee_mA)

Uly=x—1x,) =u,+




Bubbles interaction (L > A>1/\/)

A u(x)
D,,X; D, ,X,

[ [
J )

In order to describe the interaction the parameters (D, x) are promoted to
function. The first momentums of the Cahn-Hilliard are :

b 5F|
dt/a u(x)dr = (‘31,% :

a

b sF|"  oF|
dt/axu(x)dx—a:(?x%a %b

© One bubble with periodic boundary conditions

b
8t/ w(z)de =2\/cd,A =0

b 6F
at/ X U(ﬂf) dx :2\/gdt (.I'OA) :(b— a) awé— =)
a U b

© with the boundary conditions 9,4 = 9,,% =0

2\/5th — uwmx|§7

2\/gdt (IOA) = cu—+ u3 + Tz b

N. Alikakos, P. Bates, G. Fusco (1991).




Gas of diluted bubbles

Using the fact that the intermediated Xip Di-l Xiy Di Kisp |:)i+l
region between the bubbles is well

approximated by straight lines, the ﬂ | ﬂ ; m
equations for the position and width J U U \
read

Livig+ 1ig o

diN; =Lz, Lig, do; =

- E (A _ A,
hore 8|5|s1nh<\/?(Al AH))

Iiy1:= AoA
($i+1—$i— — )

For n-bubbles with periodic boundary conditions we have the condition

Tpt1 = a1+ (b—a) = x,—(b—a)

Interaction of the two bubbles (periodic boundary conditions)

The dynamics will be given by

dt (Al + Az) - O,
di(x1 Ay 4+ 2200) = (b a)ly o,

VAN EEC PR T S
(A1 Ay)

I1>: ‘6‘ 1/2<]271+[172) QAA
12232

A AN
JN ) ~




Approximate solution

When it is considered the dominate terms in the latter equations, one obtain

A 2 T
> + ﬂ arctanh (tanh [% %60] 2l et tO))

A [ 2
5 E |dI(,tdIlh (tanh[ \/ lel s ] V2elei ¢, ))
b a 2R 0y [ 2 . e o
.Z‘I(to) m {7 arctanh (tanh [% %Oo] V2lglC(t t ))}
b 2R 0o [ 2 o —
- L a4 s {7 —d]_(,tdllh (tdnl [% |700:| V2l C (i to))}

‘Quantitative!
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Gas of diluted bubbles

Using the fact that the intermediated Xip Di-l Xis Di Xiap |:)i+1
region between the bubbles is well

approximated by straight lines, the ﬂ | ﬂ ; m
equations for the position and width J U U L
read

Livii+ Lii 1

diN; = Ly, Liio1, dex; =
where 8|6|sinh( Ay A 1))

Ai+A;
($i+1 T = 1)

For n-bubbles with periodic boundary conditions we have the condition

Lii::=

Tpy1 = a1+ (b a)

Summary

We have studied the dynamics of bubbles in the one dimensional Cahn-Hillierd
equation. For a gas of diluted bubbles we have found ordinaly differential equations
describing their interaction which us to describe the ulterior dynamics of the system
in very good agreement with numerical simulations.




