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Chapter 1

Fronts in nature

In our daily lives, we are accustomed to propagation phenomena; admittedly, the

most common ones that have fascinated us are light, sound, mechanical, and water

waves (cf. Fig. 1.1). For its simplicity, the waves of pools, rivers, lakes, or seas are

those that first take a rational consciousness. For example, when the water is stagnant,

still, or flowing slowly, it seems to us that it does not move. Then, we know that

it is in equilibrium. When one disturbs the surface of the water, propagative rings

emerge (see the top snapshot of the left panel Fig. 1.1). This type of propagative ring

is what we call waves. The waves correspond to the transmission of energy in matter

or space. In the case of water, by disturbing its surface, one concentrates the energy

Figure 1.1: Waves in nature: the left and right panels account for waves in water and light.
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8 CHAPTER 1. FRONTS IN NATURE

of the disturbance in a region, which subsequently propagates on the surface at a well-

defined speed. Waves are oscillations or vibrations of a physical medium or a field

around relatively fixed locations. The waves on the surface of the water generated by

a disturbance are characterized by the fact that when the rings cross, they overlap and

intersect each other. This type of wave is classified as linear waves.

Figure 1.2: Sound waves, schematic representation of sound waves.

The sound waves are a similar phenomenon but much more challenging to conceive.

The sound is the propagation of disturbances in the air; more precisely, it is the local

compression of the air (pressure waves, see Fig. 1.2). Inevitably, the first time one

becomes aware that it is phenomenally propagative is when one hears their echo. An

echo is a reflection of sound that arrives at the listener with a delay after the direct

sound. The right cartoon on Fig. 1.2 schematically illustrates the echo process. Sound

waves are a typified phenomenon of the linear wave type. However, large disturbances

of the air, for example, explosions or very abrupt movements, generate a propagative

phenomenon of a different nature called shock waves. This wave moves faster than

the local speed of sound in a fluid media. Like an ordinary or lineal wave, a shock

wave carries energy and can propagate through a medium; however, it is characterized

by an abrupt, nearly discontinuous change in pressure, temperature, and density of

the medium. Even these waves transmit mass. Figure 1.3 illustrates different shock
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waves. Due to a large amount of energy released, these waves are characterized by

the connection of two thermodynamic states, one of low and high temperature, as

illustrated in the right diagram of Fig. 1.3. This type of phenomenon generated by

large perturbations in wave media creates propagation waves that are called fronts to

distinguish them from linear waves.

Figure 1.3: Shock waves, snapshots of shock waves when an airplane exceeds the speed of sound, the

explosion of an atomic bomb and cannons. This type of wave corresponds to fronts. The right panel

shows two snapshots of a nuclear explosion and a scheme of the pressure in the different regions.

The concept of fronts will be used broadly as waves connecting two states

of equilibrium. The pedestrian use of the concept of the front in our daily life is

associated with weather fronts, which are boundaries separating two masses of air of

different densities and temperatures. Figure 1.4 depicts a weather front.

An interesting front is observed when one takes water supercooled; that is, the water

is below the temperature of solidification. Physically, this corresponds to an unstable

state or meta state of water. When disturbed, the supercooled liquid is propagated to

a state corresponding to frozen water. Hence, the perturbation generates the propa-

gation of a solidification front. Figure 1.5a shows a solidification front in supercooling

water. Note that, on average, the interface between the frozen and liquid state spreads

with a well-defined speed. The possibility of having fronts between different states is

generic, for example, one can observe the burning of a candle, where the states that

are connected correspond to the burned and unburned state or the propagation of a

combustion reaction. Figure 1.5 shows fronts observed in these chemical contexts. Note
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Figure 1.4: Schematic representation of a weather front, which is boundaries separating two masses of

air of different densities and temperatures.

Figure 1.5: Front propagation between different equilibria. The temporal sequence of snapshots of (a)

a bottle with supercooled water disturbed by a hit with the floor, the different states correspond to

liquid-solid water, respectively, (b) a burning of a candle, and (c) a combustion reaction with different

states corresponding to burned and unburned (t1 < t2 < t3 < t4).
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that there is a clear similarity between these physical phenomena. One of the objectives

will be to present a unified description of this robust phenomenon. Hence, fronts are

responsive to how one state invades another.

The systems out of equilibrium can present a great variety of states like homogeneous,

oscillatory, chaotic, patterns, and so forth. The characterization of all possible equilib-

rium states for spatial systems is still an open question of nonlinear science. Patterns

are solutions that are characterized by having specific representative lengths. Figure 1.6

shows ripples that one observes in shallow waters, typically at the edges of the sea or

lakes. Likewise, one observes that in other shallow waters, there are no ripples. Then,

one intuits that as a function of the movement of the fluid, both states are at equi-

librium, and then we can have fronts between these states of equilibrium. Figure 1.6

shows the propagation of ripples in a homogenous state. Therefore, each time one ob-

Figure 1.6: Sand ripples: pattern formation under water due to fluid oscillations. Bottom panels

account for a snapshot of sand ripples propagation into a homogeneous state in a tank fluid experiment

(t1 < t2 < t3).
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serves a given equilibrium by changing the parameters that control the system under

observation, it can be invaded by another equilibrium.

Figure 1.7: Propagation of fronts in coupled systems. Left and right panels illustrate front propagation

in a line of matches and a chain of dominoes, respectively (t1 < t2 < t3).

A natural question that emerges from the previous phenomenon is whether it is due to

the continuous nature in the space of the observed front propagation. The answer is

that in discrete systems, the fronts are observed; for example, if one considers a line of

matches, the propagation of the combustion can be found when one match is ignited.

Figure 1.7 depicts the front propagation in a chain of matches and a line of dominoes.

Clearly, both systems have a well-defined speed of propagation. The propagation of

dominoes or domino effect is one of the first playful experiences of wave propagation.

This phenomenon corresponds to the progressive destabilization of vertical dominoes

due to the fall of neighboring dominos; the propagation of energy characterizes this

constant process at a well-defined speed. The experience with dominoes shows us that

the mass does not spread but that what is propagated is the kinetic energy generated

by the movement of dominoes. Besides, one learns that regardless of how one disturbs
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the domino after a moment, it always propagates in the same way; that is, the shape

and speed with which the domino is spread is an attractor. Unlike linear waves, when

two fronts collide, the propagation is stopped.

This monograph is consecrated to the propagation of the nonlinear waves that connect

two states of equilibrium.
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Chapter 2

Out of equilibrium macroscopic

systems

2.1 Robust phenomena

On the physical scale where humans perform daily life—meters, seconds, and kilograms—

matter is made up of many microscopic constituents (atoms and molecules), typically in

the Angstrom scale domain. Moreover, the matter is in permanent contact with other

macroscopic objects with a constant exchange of energy, momentum, and particles. It

is important to note that this is the natural context in which life develops. Under these

conditions of permanent exchange, the matter is referred to out of equilibrium or Non-

equilibrium thermodynamics [129, 78, 21], the origin of this concept is in contrast to the

macroscopic systems in thermodynamic equilibrium. Which corresponds to a transient

behavior of the universe as a whole. However, our human scale is, in good approxima-

tion, a permanent dynamical behavior. Statistical physics and nonlinear physics are

devoted to studying matter out of equilibrium.

The description of macroscopic matter is usually done using a small number of coarse-

grained or macroscopic variables such as matter density, polarization, elastic tensor,

charge density, magnetization, and so forth. When spatial inhomogeneities are consid-

15



16 CHAPTER 2. OUT OF EQUILIBRIUM MACROSCOPIC SYSTEMS

ered, these variables are spatiotemporal fields whose evolution is determined by deter-

ministic partial differential equations. This reduction is possible due to a separation

of time scales, which allows a description in terms of the slowly varying macroscopic

variables, which are in fact fluctuating variables due to the elimination of a large num-

ber of fast variables whose effect can be modeled including suitable stochastic terms

in the partial differential equations (stochastic differential equations). In the previous

chapter, we noticed that the fronts were observed in diverse contexts, such as clima-

tology, explosions, combustion processes, and crystalline growth; therefore, they are a

generic phenomenon of many physical systems. When a phenomenon is observed in

different contexts, it is called a robust phenomenon. To understand this concept and

the out-of-equilibrium system that follows, we will study a simple system that exhibits
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Figure 2.1: Lorenz pendulum, schematic representation of Lorenz pendulum. The insets account for

the characteristic Lorenz map (top panel) and the phase space trajectory (bottom panel) obtained

from numerical simulation of Eqs. (2.1) [42]. The Lorenz model approximates this physical system for

small displacements.
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robust phenomena.

Let us consider a simple mechanical system out of equilibrium composed by a spherical

pendulum immersed in the air with an engine that applies a torque on the azimuth axis,

the Lorenz pendulum [42]. Figure 2.1 shows a schematic representation of the system

in consideration. This is a rotating spherical pendulum that consists of a horizontal

support (represented by the horizontal cylinder in Fig. 2.1), which can rotate around

a vertical axis with angular velocity ϕ̇ and a pendulum formed by a punctual mass m

at a distance l from the support, which oscillates in a vertical plane fixed with respect

to the support (cf. Fig. 2.1), forming an angle θ(t) with the vertical. The system will

dissipate energy by friction in the contacts and by the motion of the mass m in the

air through Stoke’s law [25]. It is injected energy through a constant torque τ applied

to the horizontal support. In dimensionless variables the equations of this system are

(I = I′

ml2
, where I ′ is the inertial moment of the support)

θ̈ =
sin(2θ)

2
ϕ̇2 − sin(θ)− νθ̇,(

I + sin2(θ)
)
ϕ̈ = −2 sin(θ) cos(θ)ϕ̇θ̇ − µ̃(ϕ̇− Ω)

−νϕ̇ sin2(θ), (2.1)

where µ̃ and ν are the damping coefficients (ν is related to Stoke’s law) and written

the torque τ = µ̃Ω. Indeed, the system is driven to have an azimuthal angular velocity

Ω. The system is described by four variables (θ, θ̇, ϕ̇, ϕ), but ϕ is absent in Eqs. (2.1)

due to the system’s rotation invariance. Indeed, the Lorenz pendulum is then a three-

dimensional dynamical system. The quantity P =
(
I + sin2(θ)

)
ϕ̇ is the total angular

momentum with respect to the vertical axis, which is conserved in the absence of

dissipation and forcing, i.e., if µ̃ = ν = 0 (notice that since τ = µ̃Ω the applied torque

vanishes with the dissipation) in which case the system is reversible with respect to the

time reversal transformation t → −t, θ → θ, θ̇ → −θ̇, ϕ̇ → ϕ̇. It is also an integrable

system, since P is constant and Eqs. (2.1) reduces to (conservative limit)

θ̈ =
sin(2θ)

2
(
I + sin2(θ)

)2P
2 − sin(θ). (2.2)
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a)                                                    b)                                                     c)

θ θθ

θt θt θt

Figure 2.2: Robust phenomena in Lorenz pendulum for different values of the parameters. a) the

origin corresponds to a focus; then the trajectories are attracted to the origin in a spiral manner

Ω < 1. b) limit cycle, Ω > 1, then the trajectories are attracted to this close orbit. c) Strange

attractor corresponding to a chaotic trajectory in the phase space [42].

Then, in this limit, the system corresponds to a particle that slides on a rotating

ring [18]. Namely, the above model describes a flat pendulum under the effect of a

centrifugal force.

This simple macroscopic system, Eqs. (2.1), is subjected to injection of energy by the

torque and dissipation through the opposing force generated by the surrounding air.

We will examine the type of dynamic behaviors displayed by this out-of-equilibrium

system. A natural equilibrium of this system corresponds to a vertical pendulum (θ =

θ̇ = 0, ϕ̇ = Ω) . Note that for Ω < 1, this equilibrium is stable. The trajectories in phase

portrait are characterized by spirally converging to this equilibrium corresponding to a

focus state. Figure 2.2a shows the typical trajectories observed in portrait space.

Increasing the torque magnitude, the vertical position of the pendulum becomes unsta-

ble, and it is marginal for Ω = 1. This instability occurs because the centripetal force

overcomes the gravitational one. To a specific region of parameters, the system exhibits

as a steady state an attractive periodic solution, which corresponds to a limit cycle.

Figure 2.2b shows the typical trajectories observed in portrait space in the region of pa-

rameters where the system exhibits a limit cycle. From a geometric point of view, both

equilibria—the fixed point and the limit cycle—have an integer dimension. Indeed, the
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dimension of a fixed point and a limit cycle correspond to zero and one, respectively.

However, in another region of parameters, the system displays more complex perma-

nent dynamical behaviors, the strange attractor. That is, the system presents chaotic

dynamics. Figure 2.2c shows the observed strange attractor. The exponential sensi-

tivity to the initial conditions characterizes this type of dynamic behavior; that is, a

slight modification of the initial conditions generates large differences in the evolution.

Idea envisaged by the works of H. Poincaré in the understanding of the dynamics of the

celestial bodies [134]. Likewise, James Clerk Maxwell visualized the idea of sensitivity

to initial conditions and non-predictability in the dynamics of collisions of elements in

gases, Perhaps Maxwell was the first to visualize the chaotic behavior of systems with

many elements [90]. Notice that the dimension of the strange attractor in the phase

portrait is fractional [150, 92]. From a geometric point, permanent states exhibited

by the Lorenz pendulum have integer or non-integer dimensions. There is no other

possibility dimension, and therefore, this covers all possible attractors. In general, any

dynamic system of finite variables can only display three permanent dynamical behav-

iors, robust phenomena, equilibria (fixed points), attractive periodic or quasi-periodic

orbit, and chaos.

One can define a robust phenomenon as a dynamic behavior common to different physi-

cal contexts that do not depend on the underlying physics. Hence, the obvious question

that emerges, which are robust permanent equilibrium type phenomena in systems with

infinite variables (fields)? The answer to this question is unknown. Today, it is the

central research theme in the so-called nonlinear science. In this monograph, we will

focus on understanding a robust phenomenon in field theory, the nonlinear waves called

fronts.

2.2 Extended systems

An extended system is a macroscopic system consisting of a simple dynamic system that

is replicated several times and is coupled. Figure 2.3 shows a schematic representation
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Si Si+1Si-1

Figure 2.3: Schematic representation of an extended system. Si is a dynamic system at i-th position.

The arrows account for the coupling between different identical systems.

of an extended system. Si accounts for a simple single dynamic system. An example

of an extended system is a chain pendula, which is constituted by a coupled planar

pendulum (each pendulum corresponds to a microscopic system), described by (the

dissipative Frenkel-Kontorova model [35])

θ̈i = −ω2 sin θi − µθ̇i + κ(θi+1 − 2θi + θi−1), (2.3)

where θi(t) is the angle formed by the pendulum and the vertical axis in the i-position

at time t, i is the index label the i-th pendulum, ω is the pendulum natural frequency,

µ accounts for damping coefficient, and κ stands for the strength of interaction between

near pendulums. Notice that in the previous chain, the pendulums were only coupled

to their first neighbors. Of course, one can consider systems coupled with more distant

neighbors. The distance between consecutive pendulums is dx. When dx → 0 and

κ → ∞, the system becomes in a continuous medium, the dissipative sine-Gordon

equation [60]. Figure 2.4a shows a scheme of the chain of dissipative coupled pendula.

In the conservative or Hamiltonian limit, µ = 0, the above model is well-know as the

Frenkel-Kontorova equation [35], which describes the dynamics of a chain of particles

interacting with the nearest neighbors in the presence of an external periodic potential.

This model is used to describe the dynamics of atoms and atom layers adsorbed on

crystals surfaces, incommensurate phase in dielectric, domain wall in the magnetic

domain, fluxon in Josephson transmission lines, rotational motion of the DNA bases,
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Figure 2.4: Chain of dissipative coupled pendula [10]. a) Schematic presentation of a chain of dissipative

coupled pendula. Temporal evolution of b) front position (x0(t) and c) front speed (ẋ0(t)). Each curve

is the data for the front position or the front speed, with ω = 1.0 and µ = 6. The upper (yellow),

middle (orange), and lower curves (blue) correspond to dx = 10, dx = 7, and dx = 3, respectively.

and plastic deformations in metals (see textbook [35] and references therein). Therefore,

model Eq. (2.3) is a paradigmatic model with application to several physical contexts.

Note that equation (2.3) can rewrite in the following manner

µθ̇i = −δF
δθi

, (2.4)

where the Lyapunov functional F has the form

F ≡
N∑
i=0

[
θ̇2
i

2
− ω2 cos θi + κ(θi+1 − θi+1)2

]
. (2.5)

Hence, the dynamics of Eq. (2.3) is characterized by the minimization of function F

when µ 6= 0. Since using Eq. (2.3), one obtains

dF
dt

=
∑
i

∂F
∂θi

∂θi
∂t

= −
∑
i

(
∂F
∂θi

)2

. (2.6)
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2.2.1 Continuous limit of extended system

Considering that the extended system is composed of tiny constituent systems that

interact with a strong coupling, the variables and their ordinary differential equations

describing the extended system becomes in physical fields, and their models become in

partial differential equations. For example chain of pendulums Eq. (2.3) reads in this

limit as (sine-Gordon equation)

θ̈(x, t) = −ω2 sin θ − µθ̇ + δ∂xxθ, (2.7)

where θ(x, t) is the angle formed by the pendulum and the vertical axis at position x

and time t, and δ ≡ κdx. One advantage of considering this limit is that it allows one

to perform various analytical calculations.

The model equation (2.7) can be applied to another relevant physical system, namely

an extended Josephson [60]. Figure 2.5 displays Josephson junction.

y

x

z

W

h

(a) (b)Superconductor

Superconductor

Isolator

ψ
1

ψ
2

Figure 2.5: Josephson junctions. (a) Schematic representation of the Josephson junctions. ψ1 and ψ2

account for the amplitude probability of the superconductor state of the respective superconductor.

(b) snapshots of the Josephson junction

To model these quantum elements, one can consider a quantum system consisting of

two superconductors described by two wave functions ψ1 and ψ2 which is separated by

an insulating film (see Fig. 2.5). When one applies a voltage difference, classically, one

does not expect to observe electrical conduction, however, quantitatively, one observes
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a current through the device, even without voltage. To describe this phenomenon, one

can consider a two-state quantum system described by

ih̄∂tψ1 = E1ψ1 + kψ2, (2.8)

ih̄∂tψ2 = E2ψ2 + kψ1, (2.9)

where h̄ is the Planck constant, E1 and E2 account for the energy of the superconductor,

E2 − E1 = −qV , where V is the voltage between superconductors and q the electrical

charge, and k accounts for the coupling between superconductors, which is determined

by the properties and geometry of the insulating material. Introducing polar represen-

tation ψl(t) ≡
√
ρl(t)e

iφl(t) (l = {1, 2}), where ρl(t) accounts for the density of cooper

pair, the set of equations read

∂tρ1 =
k
√
ρ2ρ1

h̄
sin(φ2 − φ1), (2.10)

∂tρ2 = −
k
√
ρ2ρ1

h̄
sin(φ2 − φ1), (2.11)

∂tφ1 = −E1

h̄
− k

h̄

√
ρ2

ρ1

cos(φ2 − φ1), (2.12)

∂tφ2 = −E2

h̄
− k

h̄

√
ρ1

ρ2

cos(φ2 − φ1). (2.13)

the current between superconductors is given by

Js ≡ ∂tρ1 = −∂tρ1 =
k
√
ρ2ρ1

h̄
sin(φ2 − φ1). (2.14)

Hence, there is a current if there is a phase difference φ ≡ φ2 − φ1 between the super-

conductors. This phase difference satisfies

∂tφ =
qV

h̄
− k

h̄
cos(φ)

[√
ρ2

ρ1

−
√
ρ1

ρ2

]
. (2.15)

Considering that both states have the same density ρ0 ≡ ρ1 = ρ2, one finds Josephson’s

relationships

Js =
kρ0

h̄
sin(φ), (2.16)

∂tφ =
qV

h̄
. (2.17)
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Note that even without voltage (V = 0), with a phase difference, one can see a quantum

current (Josephson effect). On the other hand, the current and the voltage are connected

using Maxwell equations, particularly by(
∂tt
c2
−∇2

)
~E = µ0∂t ~J, (2.18)

where ~E and ~J are the electric field and current between the superconductor, respec-

tively. If the insulator is a thin film then ~E ≈ −V/d ŷ with d the thickness of the

insulator, and the current is composed of a normal and a superconductor current,
~J = (Js + Jn)ŷ. The normal current satisfies the Ohm law Jn = −V/ηd with η as the

resistivity. Using the Maxwell equation, Josephson relations, the previous approxima-

tion, and assuming that phase difference depends of the transversal coordinate φ(x, t),

one gets

∂ttφ = −c
2kρ0dµ0

h̄2q
sinφ− c2µ0

η
∂tφ+ c2∂xx. (2.19)

Hence, the Josephson junctions are described by the sine-Gordon equation, where the

natural frequency depends on the density of cooper pairs, electric charge, the constant

coupled between the superconductor, and the thickness of the insulator.

2.2.2 Linear stability of uniform state

Notice that the equilibria of the small constituent systems also are solutions of the

extended system. For example, for the chain of coupled pendulums, the upright and

inverted pendulum solutions are also solutions (θ(x, t) = {0, π}). To study the stability

of these equilibria, we can consider the ansatz θ = 0 + u(x, t) with u(x, t) a small

auxiliary field (u � 1). Introducing this ansatz in Eq. (2.7) and linearizing in u, one

obtains

ü(x, t) = −ω2u− µu̇+ δ∂xxu. (2.20)

Using Fourier modal decomposition, u = u0e
λt+ikx where u0 is an arbitrary constant,

one gets the growth rate relation,

λ2 = −ω2 − µλ+−k2. (2.21)
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or

λ(k) =
−µ±

√
µ2 − 4(ω2 + k2)

2
. (2.22)

Figure 2.6 shows the growth rate as a function of wavenumber k. Note that all eigen-

1.0 0.5 0.5 1.0

-0.1

-0.2

-0.3

-0.4

--
kλ

Figure 2.6: Spectrum of the upright state, θ = 0, of the dissipative chain of pendulums, formula (2.21).

values have a negative part; that is, all modes are stable. Hence, the upright state

of the dissipative chain of pendulums is stable. Note that for small and large wave

numbers, respectively, the eigenvalues are purely real or complex numbers with no null

imaginary part. Likewise, one could make a similar study for the state that corresponds

to inverted pendulums θ(x, t) = π. In this case, simply by symmetry, it corresponds to

consider equation (2.21) changing ω by iω, that is, the stability is described by

λ2 = ω2 − µλ+−k2. (2.23)

In this case, the solution is unstable. Notice that the above analysis is a linear stability

study that implies nonlinear stability.

2.2.3 Weak nonlinear analysis

To illustrate this property, one can consider the first non-linear correlations, then the

system is written

u̇(x, t) = W

Ẇ (x, t) = −ω2u+
ω2

6
u3 − µW + δ∂xxu+O(u5). (2.24)
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Introducing the asymptotic change of variable u

W

 = ε

 p

q

+ ε3
∣∣Φ[3]

〉
+ ε5

∣∣Φ[5]
〉

+ · · · (2.25)

where ε is a small arbitrary parameter (ε� 1), {q(x, t), p(x, t)} are the new fields and∣∣Φ[n]
〉
are unknown vector function of {q, p}, we obtain an hierarchy of equations to

different order in ε. In order ε, one gets

q̇(x, t) = p

ṗ(x, t) = −ω2q − µp+ δ∂xxq. (2.26)

at order ε3, Eq. (2.24) reads

p∂q
∣∣Φ[3]

〉
+ ṗ∂p

∣∣Φ[3]
〉

+

 0 1

−µ −ω2 + ∂xx

 ∣∣Φ[3]
〉

+

 0

ω2

6
q3

 = 0, (2.27)

considering a general cubic solution for
∣∣Φ[3]

〉
, replacing the previous expression, ne-

glecting the spatial variation, and after straightforward calculations, we get

∣∣Φ[3]
〉

=

 a1q
3 + a2q

2p+ a3qp
2 + a4p3

b1q
3 + b2q

2p+ b3qp
2 + b4p3

 . (2.28)

where

a1 =
w2(12µ2(1+µ)+w2µ(−37−29µ+8µ2)+w4(2−µ+8µ2))

12(4w6(−1+4µ)+3µ3(−2−µ+3µ2)+w4(9−41µ+7µ2)+w2µ(−9+2µ−18µ2+6µ3))
,

a2 =
w2(w4(1−8µ)−4w2µ(1+2µ)+3µ2(1+3µ))

6(4w6(−1+4µ)+3µ3(−2−µ+3µ2)+w4(9−41µ+7µ2)+w2µ(−9+2µ−18µ2+6µ3))
,

a3 =
w2(2w4+3µ2(5+3µ)−w2µ(40+3µ))

12(4w6(−1+4µ)+3µ3(−2−µ+3µ2)+w4(9−41µ+7µ2)+w2µ(−9+2µ−18µ2+6µ3))
,

a4 =
w2(w2(1−10µ)+µ(−1+2µ+3µ2))

6(4w6(−1+4µ)+3µ3(−2−µ+3µ2)+w4(9−41µ+7µ2)+w2µ(−9+2µ−18µ2+6µ3))
,

b1 =
w4(4w2µ(1+2µ)−3µ2(1+3µ)+w4(−1+8µ))

6(4w6(−1+4µ)+3µ3(−2−µ+3µ2)+w4(9−41µ+7µ2)+w2µ(−9+2µ−18µ2+6µ3))
,

b2 =
w2(6µ2(2+µ−3µ2)+w2µ(−37−21µ+24µ2)+w4(2−3µ+24µ2))

12(4w6(−1+4µ)+3µ3(−2−µ+3µ2)+w4(9−41µ+7µ2)+w2µ(−9+2µ−18µ2+6µ3))
,

b3 =
w2(w4(−1+12µ)+w2µ(−5+18µ−6µ2)+3µ2(2+µ−3µ2))

6(4w6(−1+4µ)+3µ3(−2−µ+3µ2)+w4(9−41µ+7µ2)+w2µ(−9+2µ−18µ2+6µ3))

b4 =
w2(2w4+3µ(2+µ−3µ2)+w2(−6+20µ−3µ2))

12(4w6(−1+4µ)+3µ3(−2−µ+3µ2)+w4(9−41µ+7µ2)+w2µ(−9+2µ−18µ2+6µ3))
.

Note that one can calculate order by order variable changes since the previous the linear

operator is invertible. Thus, considering the change of variable (2.25) in nonlinear
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equation (2.24) becomes a linear equation (2.26). This allows us to show that the linear

analysis also accounts for the nonlinear stability. In order to illustrate the procedure of

previous analysis, we consider the following scalar equation

∂tu = −εu− u3 + ∂xxu, (2.29)

with ε > 0. The trivial equilibrium of this model is u(x, t) = uc ≡ 0, and the growth

rate relation has the form λ(k) = −ε− k2. It is important to note that all modes have

eigenvalues with negative real parts. Hence, uc is a linearly stable state. To show that

this state is nonlinearly stable, consider the following asymptotic change of variable

u = v + w[3](v) + w[5](v) + · · · , (2.30)

where w[n](v) is a monomial of order n in v. Introducing the above ansatz in Eq. (2.29)

at linear order, we get

∂tv = −εv + ∂xxv, (2.31)

to cubic order and using chain derivative

∂tu
[3] = (−εv + ∂xxv)∂vw

[3] = (−ε+ ∂xx)w
[3] − v3, (2.32)

or equivalently

[(−εv + ∂xxv)∂v + ε− ∂xx]w[3] = −v3. (2.33)

The operator F = [(−εv + ∂xxv)∂v + ε− ∂xx] is called homological operator [91]. As

we have mentioned the linear operator (−ε+ ∂xx) has all eigenvalues with negative real

parts, then it is invertible, thus

w[3] = −
[

1

(−εv + ∂xxv)∂v + ε− ∂xx

]
v3, (2.34)

Assuming v varies slowly in space, one gets

w[3] ≈ −
(

1 +
∂xx
ε

+
∂xxxx
ε2

+ v∂v −
∂xxv

ε
∂v + · · ·

)
v3

ε
. (2.35)

To O(v[5]), one can proceed in the same manner and gets

w[5] =

[
1

(−εv + ∂xxv)∂v + ε− ∂xx

]
2v2

[
1

(−εv + ∂xxv)∂v + ε− ∂xx

]
v3. (2.36)
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Therefore, considering the Eq. (2.29) and using the change of variable

u = v −
[

1

(−εv + ∂xxv)∂v + ε− ∂xx

]
v3 +[

1

(−εv + ∂xxv)∂v + ε− ∂xx

]
2v2

[
1

(−εv + ∂xxv)∂v + ε− ∂xx

]
v3 + · · · ,(2.37)

the variable v satisfied the linear equation (2.31). The analysis presented above allows

us to justify a linear stability analysis involves nonlinear stability. We note that the

above study is valid except dynamic with terms without polynomial series.

2.2.4 Alternative method: based on normal forms theory

To show that the zero solution u = 0 is stable in equation (2.29), we will separate the

field u(x, t) into a polynomial change of variable close to the identity and into a gradient

expansion, that is,

u(x, t) = v(x, t) + U [2](v) + U [3] + · · ·+ U [2,1](v) + U [2,2] + · · · = v +
∑
n,m

U [n,m], (2.38)

where U [n,m] is a monomial of v of order n with a spatial derivative of order m. Namely,

U [n] ≡ U [n,m] is the nonlinear change of variable part. Linear order O[1]: Considering

the previous ansatz (2.38) and the equation for v at linear order

u(x, t) = v(x, t),

∂tv = f [1], (2.39)

where f [1] is a unknown function. Introducing the previous ansatz in Eq. (2.29), one

get f [1] = −εv. At order two O[2], we consider the ansatz

u(x, t) = v(x, t) + a2v
2,

∂tv = −εv + f [2], (2.40)
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where a2 and f [2] are unknown parameter and function, respectively. Introducing the

previous ansatz in Eq. (2.29), one get

(∂tu)[2] = (−εu− u3)[2],

(∂tu)[2] = ∂tv
[2] + 2a2v∂tv

[1] = f [2] − 2a2εv
2,

(−εu− u3)[2] = −εa2v
2. (2.41)

Using the previous expressions

f [2] − 3a2εv
2 = 0. (2.42)

Then, the minimum solution of this system, in the sense of considering the simplest

change of variable and equation for v, is f [2] = 0 and a2 = 0.

At order three O[3], we consider the ansatz

u(x, t) = v(x, t) + a3v
3,

∂tv = −εv + f [3], (2.43)

where a3 and f [3] are unknown parameter and function, respectively. Introducing the

previous ansatz in Eq. (2.29), one get

(∂tu)[3] = (−εu− u3)[3],

(∂tu)[3] = ∂tv
[3] + 3a3v

2∂tv
[1] = f [3] − 3a3εv

3,

(−εu− u3)[3] = −εa3v
2 − v3. (2.44)

Using the previous expressions

f [3] − 4a3εv
3 = −v3. (2.45)

Then, the minimum solution of this system, in the sense of considering the simplest

change of variable and equation for v, is f [3] = 0 and a3 = 1/4ε. Hence, the change of

variable and v equation until this order is

u(x, t) = v(x, t) +
v3

4ε
,

∂tv = −εv. (2.46)
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The previous procedure can continue up to an arbitrary polynomial order. To illustrate

this, consider the following order. At order three O[4], we consider the ansatz

u(x, t) = v(x, t) +
v3

4ε
+ a4v

4,

∂tv = −εv + f [4], (2.47)

where a4 and f [4] are unknown parameter and function, respectively. Introducing the

previous ansatz in Eq. (2.29), one get

(∂tu)[4] = (−εu− u3)[4],

(∂tu)[4] = ∂tv
[4] + 4a4v

3∂tv
[1] = f [4] − 4a4εv

4,

(−εu− u3)[3] = −εa4v
4. (2.48)

Using the previous expressions

f [4] − 5a4εv
4 = 0. (2.49)

Then, the minimum solution of this system, in the sense of considering the simplest

change of variable and equation for v, is f [4] = 0 and a4 = 0. Note that all even-term

coefficients in v are null due to the reflection symmetry of u(x, t) for Eq. (2.29).

At order three O[5], we consider the ansatz

u(x, t) = v(x, t) +
v3

4ε
+ a5v

5,

∂tv = −εv + f [5], (2.50)

where a5 and f [5] are unknown parameter and function, respectively. Introducing the

previous ansatz in Eq. (2.29), one get

(∂tu)[5] = (−εu− u3)[5],

(∂tu)[3] = ∂tv
[5] + 5a5v

4∂tv
[1] = f [5] − 5a5εv

5,

(−εu− u3)[5] = −εa5v
5 − 3

4ε
v5. (2.51)

Using the previous expressions

f [5] − 6a5εv
5 = − 3

4ε
v5. (2.52)
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Then, the minimum solution of this system, in the sense of considering the simplest

change of variable and equation for v, is f [5] = 0 and a5 = 1/8ε2. Hence, the change of

variable and v equation until this order is

u(x, t) = v(x, t) +
v3

4ε
+
v5

8ε2
,

∂tv = −εv. (2.53)

We consider the spatial dependence in the variable change to account for spatial vari-

ations. At order O[1,2], we consider the ansatz

u(x, t) = v(x, t) +
v3

4ε
+
v5

8ε2
+ b2∂xxv,

∂tv = −εv + f [1,2], (2.54)

where b2 and f [1,2] are unknown parameter and function, respectively. Introducing the

previous ansatz in Eq. (2.29), one get

(∂tu)[1,2] = (−εu− u3 + ∂x,xv)[1,2],

(∂tu)[1,2] = ∂tv
[1,2] = f [1,2],

(−εu− u3 + ∂x,xv)[5] = ∂x,xv. (2.55)

Using the previous expressions

f [1,2] = ∂x,xv. (2.56)

Hence, the change of variable and v equation until this order is

u(x, t) = v(x, t) +
v3

4ε
+
v5

8ε2
+O(ε−3),

∂tv = −εv + ∂xxv. (2.57)

Therefore, employing a change of variable close to the identity, we show that the system

can be transformed into a linear problem. Thus, the nonlinear system is stable since

the linear system is stable. Likewise, it is important to note that when ε tends to

zero (marginal case), the previous variable change does not converge, and the problem

cannot be transformed into a linear equation.
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a)                      b)      c)        d)

t1 t2 t3 t4

Figure 2.7: Front propagation into unstable state in the dissipative chain of pendulums. Increasing

time sequence of images from left to right.

2.2.5 Nonlinear wave in a chain of pendula

Because the upright state is stable, pendulum disturbances around this state are char-

acterized by relaxation and propagation toward equilibrium. On the other hand, equi-

librium disturbances corresponding to the upside-down pendulums are characterized by

the emergence of propagative solutions that connect the unstable with stable equilib-

rium. Figures 2.4 and 2.7 illustrate this phenomenon. This propagation corresponds

to a nonlinear wave combining two unstable states, which is usually known in the liter-

ature as a Fisher-Kolmogorov-Petrosky-Piskunov front [159]. Figures 2.4c depicts the

front speed for different coupling parameters.

In one spatial dimension from the point of view of dynamical systems theory, a front is a

nonlinear solution that is identified in the co-moving frame system as a heteroclinic orbit

linking two steady states [160, 55]. The evolution of front solutions can be regarded as

a particle-type one, i.e., they can be characterized by a set of continuous parameters

such as position, core width and so forth.



Chapter 3

Front propagation into unstable state

As we have mentioned in the previous chapter, numerical simulations of a chain of

pendulums show the presence of propagative solutions between the stable and unsta-

ble states. This type of solution has been fundamental for the spread of diseases and

populations and combustion [71, 97, 124, 125]. The first context where these fronts

are observed was waves in the burning of candles [68] and chemical reactions [110].

Particularly in the context of burning candles, Michel Faraday played a relevant role

in understanding the combustion process. The following sentence summarizes the rel-

evance of the phenomenon: There is no better; there is no more open door by which

you can enter into the study of natural philosophy than by considering the physical phe-

nomena of a candle [68]. For simplicity, we consider a simple context, the population

dynamics, where this type of front is investigated.

3.1 Populations dynamics

3.1.1 Logistic Model

Let us consider a single species, where N(t) accounts for the population of the species

at a time t. Then N is a physical quantity that can only be positive. In 1202, Leonardo

of Pisa, known as Fibonacci, developed a model for the reproduction of rabbits, which

33
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Figure 3.1: Leonardo of Pisa and temporal evolution of rabbit population.

exhibit accelerated or explosive dynamical growth (exponential). The simplest model

is based on the rate of variation of population, given by two processes, the rate of birth

and death, that is
dN

dt
= birth− death, (3.1)

Fibonacci assumes that the process of creation and death is proportional to the total

population, then
dN

dt
= αN − βN, (3.2)

where {α, β} are positive constants. Then the population evolves with the law N(t) =

N0e
(α−β)t. Then, depending on which process is more efficient, the population increases

or decreases exponentially.

Verhulst published in 1838 [161], a manuscript where he opposes the indefinite expo-

nential growth of populations, proposing a process of self limitation. Verhulst proposes

the model
dN

dt
= rN

(
1− N

K

)
, (3.3)

where r is the intrinsic growth rate and K is the carrying capacity or the maximum

number of individuals that the environment can support. The above model is well know

as logistic equation or Bernoulli equation. The Verhulst equation was published after
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a)                                                                            b)

c)

Figure 3.2: Temporal evolution of population of flies (a), humans in United States (b), and Earth.

Verhulst had read Thomas Malthus An Essay on the Principle of Population [113]. The

logistic equation can be integrated exactly, and has solution

N =
K

1 + cKe−rt
, (3.4)

where c is an arbitrary parameter that sets the initial conditions. Figure 3.2 shows the

temporal evolution of different species and emphasizes a quite good agreement with the

logistic model and the explicit temporal evolution, formula (3.4). The low population

dynamics is characterized by an exponential growth law described by Leonardo of Pisa.

As the population increases saturates in a population equilibrium N = K (cf. Fig. 3.2).

The logistic model also has a counterpart in the context of chemical reactions. The

following generic chemical reaction was proposed by Schlögl [144]

A + U k1 2U, (3.5)

2U k2 U + A, (3.6)

B + U k3 C, (3.7)

k1, k2, and k3 are the rate constants, which involve the collision cross section of the

required molecules times the probability for the reaction. Indeed, these positive con-

stants depend on temperature. The concentration of products A and B, ρa and ρb, are
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kept constant employing thermostats. Product C is removed instantaneously. The rate

equation for the concentration of the substance U(t), ρ, is given by [158]

dρ

dt
= (k1ρa − k3ρb)ρ− k2ρ

2. (3.8)

Redefining the parameters, one can obtain the logistic model Eq. (3.3). Therefore the

logistic model is a model that is observed in different contexts.

3.1.2 Fisher equation

As a matter of fact, when one looks at the evolution of populations in large areas, these

exhibits large differences between one region and another. Figure 3.3 illustrates the

distribution population of the human of the earth. Which is a natural consequence

of the homogeneous distribution of sources that are necessary for development of the

human species. Hence, one expects an interaction between different regions. In order to

understand the dynamic phenomena that can emerge in these conditions, we consider

a model of the population distributed along a straight line (see Fig. 3.4). This line will

be partitioned in equivalent regions, which are labeled by the parameter i. The i-th

Figure 3.3: Human population distribution density (1994).
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Ni Ni+1Ni-1

Wi-1,i Wi+1,i

Wi,i+1Wi,i-1

Figure 3.4: Schematic representation of a model of population distributed along a straight line. Ni(t)

stands for the population in i-th region. Wj,i accounts for the population flux from j-th to i-th region.

region has a population Ni(t) that is governs by a logistic dynamics. Likewise, the local

population dynamics satisfies an equation that contains the process of birth, death, and

migration, that is,
dNi

dt
= birth− death+migration, (3.9)

For simplicity, we assume that each regions is only coupled to its neighboring regions

(nearest neighbors), then the dynamics of populations reads

∂tNi = rNi

(
1− Ni

k

)
+Wi+1,i +Wi+1,i −Wi,i+1 −Wi,i−1, (3.10)

where Wj,i accounts for the population flux from j-th to i-th region. Assuming that

the population flux is proportional to the population, Wj,i = αNj with α a dimension

constant parameter. The above model takes the form (the discrete Fisher equation

[169])

∂tNi = rNi

(
1− Ni

k

)
+ α(Ni+1 − 2Ni +Ni−1). (3.11)

Considering that regions are small compared to the entire system under study, one can

consider the continuous limit as an appropriate description. Let us introduce dx as the

size of regions. Hence, in the limit dx→ 0, we can promote the population density to a

scalar field, that is, Ni(t)→ N(x, t), which is a scalar that accounts for the population
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at position x in time t. In the continuous limit the population equation reads

∂tN = rN

(
1− N

K

)
+D∂xxN, (3.12)

where the diffusion coefficient D ≡ αdx2. For the sake of simplicity from now on we

can fix D = 1. The above is because one can always set the spatial scale in units that

the diffusion coefficient is 1. This model Eq. (3.12) is known as the Fisher equation

or also known as Kolmogorov-Petrovsky-Piscounov equation, KPP equation or Fisher-

KPP equation or FKPP equation. In 1937, simultaneously Fisher [71] and Kolmogorov,

Petrovsky, and Piscounov [97] propose this model. The statistician and biologist Ronald

Fisher introduces model (3.12) in the context of spread of advantage gene. Kolmogorov

et al. consider model (3.12) in the context of modified nonlinear diffusion equation with

applications to populations dynamics. Figure 3.5 shows Portrait of Fisher, Kolmogorov,

and Petrovsky,

Model (3.12) has two trivial equilibria the populated (N = K) and the unpopulated

(N = 0) state. Performing a linear stability analysis, one infers that unpopulated and

populated are unstable and stable, respectively. Analogous to what one observes in

the chain of coupled pendulums (cf. Fig. 2.7), a disturbance of unpopulated state is

characterized by the emergence of a two counter propagative solutions that connect the

Figure 3.5: Portrait of Fisher (1890 –1962), Kolmogorov (1903–1987), and Petrovsky (1901–1973),

pioneers in the development of the understanding of fronts.
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Figure 3.6: Front propagations into unstable state. Spatiotemporal diagram obtained from numerical

simulation of model (3.12). Inset: population profile at given time.

unstable with stable equilibrium state. Figure 3.6 shows the spatiotemporal evolution

of a localized perturbation from the unpopulated state. Hence, the FKPP model (3.12)

predicts that population state invades the whole space through a nonlinear waves with a

well-define speed and a characteristic profile as shown in Fig. 3.6. Note that independent

on the initial condition, if it is bounded in the space, after a transient the system spreads

with a well-defined speed and profile.

To determine the front speed, we consider wave solution—follow the propagative ansatz

of Kolmogorov et al.—N(x, t) = N(x− vt). Introducing this ansatz in Eq. (3.12), one

obtains a Newtonian type equation

D∂zzN = − dU
dN
− v∂zN = −rN

(
1− N

K

)
− v∂zN, (3.13)

where z ≡ x − vt is a co-mobile coordinate, U ≡ rN2/2 − N3/3K is an effective me-

chanical potential, and the front speed v is a damping coefficient. This potential is

characterized by having two extremes, the populated and the unpopulated state. The

populated and the unpopulated state correspond to a minimum and a maximum of the

potential U , respectively. Figure 3.7 shows the effective potential and the phase portrait

associate to Eq. (3.13). The front solution corresponds to the heteroclinic solution that
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Figure 3.7: Effective mechanical potential and phase portrait of equation (3.13). a) Effective potential

U(N), b) and c) phase portraits of equation (3.13) with small and large damping and representation

of their respective heteroclinic curve solutions.

connects the equilibria [160]. Figure 3.7 depicts this line in blue color. It is important

to note that this dynamic system always has heteroclinic solutions in the presence of

damping, that is, there are always fronts solution with difference speed. The differ-

ent fronts are obtained with different initial conditions. However, for small damping

v (front speed), this trajectory is characterized by to present damped oscillations near

unpopulated state (cf. Fig. 3.7b). Conversely, for large damping, the heteroclinic curve

does not exhibit damped oscillations as it is shown in Fig. 3.7c. From the standpoint

of population dynamics front solutions with oscillations around unpopulated state is

unacceptable and from a mathematical point of view these solutions are unstable sta-

tionary solutions. Note that these solutions from an ecological point of view are also

unacceptable (N > 0). Therefore, only heteroclinic curves without oscillations around

unpopulated state are observable. Then this establishes the existence of a minimum

speed for the fronts, vmin.
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3.1.3 Determination of vmin: linear analysis

As mentioned in previous section, front solutions with monotonous spatially profile

are consequence of the damped to overdamped transition of unpopulated state. This

transition can be characterized by a simple linear analysis around the unpopulated state

[97, 71].

Linear criterium

Let us consider the dynamics around of unpopulated state in co-mobile dynamical

system

∂zzN = −rN − v∂zN. (3.14)

To study the stability of unpopulated state, we consider a solution of the form N(z) =

N0e
λz and introducing this solution in above equation, one obtain the relation λ2N +

r + vλ = 0. The damped to overdamping transition is characterized by the quadratic

equation has a degenerate solution, i.e., discriminate equals to zero, v2−4r = 0. Hence,

the minimum speed is

vmin = 2
√
r. (3.15)

Numerical simulations of the FKPP model (3.12) show that indeed this is the minimum

speed of propagation of fronts. The first context where this minimal speed was predicted

is in the context of chemical reactions waves [110]. However, the original derivation of

this f ormula is not clear. Indeed, it was not obtained employing a linear analysis but

possibly utilizing a simple dimension analysis and parameter adjustment.

Asymptotic criterium

As we have mention for different initial conditions, the front solution will strongly

depend of the asymptotic behavior of N(x, 0) for x → ±∞. Considering an initial

conditions of the form N(x, 0) ∼ N0e
−kx for x → ∞ where {k,N0} are positive con-

stants. The front propagates as a wave of the form N(x, t) = N (k(x− vt)). Linearizing

Eq.(3.12) and considering N(x, t) ∼ N0e
−k(x−vt) for x → ∞ where k accounts for the
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Figure 3.8: Front speed as function of the spatial decay length of the tail of the front, steepness k.

The red dot shows the minimum speed

spatial decay length of the tail of the front (steepness), after straightforward calculations

one can obtain the following relation [122],

v(k) =
r

k
+ k. (3.16)

Figure 3.8 shows the front speed as function of the spatial decay length of the tail of the

front, k. Thus, v as function of k is a convex function. Minimizing the previous curve

with respect to k, we obtain the critical steepness k ≡ kc =
√
r, for which we obtain the

minimal speed v(kc) ≡ vmin = 2
√
r. This method is the asymptotic process [122], since

it only considers the asymptotic behavior of the front. Namely, the nonlinear terms do

not determine the front speed in the model under consideration. For any other value

of the steepness k the front propagates with a speed larger than vmin (v(k) ≤ vmin).

3.1.4 Analytical profile front solution

Despite the simplicity of model Eq. (3.12), the analytical solution of the nonlinear

wave is unknown. To determine the profile of the front solution, we can introduce the

following change of variable z = vζ in Eq. (3.13), which reads

ε∂ζζN = −rN
(

1− N

K

)
− ∂ζN, (3.17)
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where ε ≡ D/v2. Considering ε � 1 due to vmin ≥ 2
√
r. Hence, we can use the

following ansatz for the front solution (regular perturbation expansion)

N(z) = N0(z) + εN1 + ε2N2 + · · · , (3.18)

Introducing this ansatz in Eq. (3.17), one obtains a hierarchy of equations in ε

∂ζN0 = −rN0

(
1− N0

K

)
,

∂ζN1 +N1r

(
1− 2

N0

K

)
= −∂ζζN0,

∂ζN2 +N2r

(
1− 2

N0

K

)
= −∂ζζN1 +

r

K
N2

1 ,

· · · (3.19)

Note that only the first equation of this set of equations is not linear and the others

are linear with the same linear operator. The nonlinear equation for N0 is a logistic

equation with negative linear term (see Eq. 3.3), so the solution is

N0(z) =
K

1 + cKerz/v
. (3.20)

Thus, the profile of N0(z) is similar to those show in Fig. (3.7)c. Notice that domi-

nate solution satisfies the boundary conditions {z → −∞, N0(z) → −K} and {z →

∞, N0(z) → 0}. We can choose c = 1, in order to fix the front position at the origin

of z coordinate. The front position is defined as that position where the front exhibits

greater spatial variation. To solve the equation for N1(z), we use the relation

∂ζζN0 = −r
(

1− 2
N0

K

)
∂ζN0, (3.21)

and replacing this expression in N1 equation, we get

∂ζN1 −N1
∂ζζN0

∂ζN0

= −∂ζζN0, (3.22)

using the integration factor 1/∂ζN0 the above equation takes the form

∂ζ

(
N1

∂ζN0

)
= −∂ζζN0

∂ζN0

= −d ln(∂ζN0)

dζ
. (3.23)
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Finally,

N1 = −∂ζN0 ln(∂ζN0). (3.24)

Using the same procedure, one can calculate the following corrections. Therefore, the

solution has the form [123]

N(z) =
K

1 +Kerz/v
− D

v2

rK2erz/v

(1 +Kerz/v)
2 ln

[
rK2erz/v

(1 +Kerz/v)
2

]
+O

(
D2

v4

)
(3.25)

where v ≥ vmin. Therefore, the above solution is not only valid for the solution that

propagates with the minimum speed but for all the front solutions of the FPKK equa-

tion.

3.1.5 Stability of front solution

Note that numerically the front solutions are observed, then one expects that these

solutions are stable. To study their stability, one can consider a perturbation around

this solution of the form N(x, t) = NFKPP (z = x − vt) + h(z, t), where NFKPP (z) is

the front solution and h(z, t) is a perturbation function. Introducing this ansatz in

Eq. (3.12) and linearizing in h, we get

∂th = rh− 2rNFKPP (z)

K
h+ v∂zh+ ∂zzh, (3.26)

using the transformation h(z, t) = g(z)e−λt, it reads

∂zzg + v∂zg + r

[
1− 2NFKPP (z)

K
− λ
]
g = 0. (3.27)

Which corresponds a Sturm-Liouville equation [168]. This type of linear equations

are characterized by having a spectrum of sorted eigenvalues and eigenfunctions. The

ground state has not zero, the first excited state has one, and so forth. Due to NFKPP

satisfies Eq. (3.13), thus ∂zNFKPP satisfies the above equation with λ = 0. This

solution has the shape of a bell. Indeed, It is the ground state. This zero eigenvalue

is a consequence of the translation invariance of Eq. (3.12). In field theory this type

of eigenfunction is denominated Godlstone mode [133]. The spectrum of the above

equation has the form depicted in Fig. 3.9. Therefore, we conclude that the front

solutions are stable solution of model Eq. (3.12).
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Figure 3.9: Typical spectrum of Strum Liouville with a Goldstone mode.

3.1.6 Transient dynamics towards the stationary front

In the previous section, we have presented a systematic way of obtaining a solution of

the stationary front. In this section, we characterize how the system converges to this

solution. As we have mentioned before, the dynamic of the front is entirely determined

by linear theory. Then, the dynamics of relaxation to the stationary solution can also

be determined by the linear theory [65, 159]. A systematic strategy to study a linear

problem is to use Fourier transforms [32], that it,

N(k, t) =

∫ ∞
−∞

dxe−ikxN(x, t), (3.28)

To study the fronts it is more appropriate to consider a base of propagative modes; then

we introduce the decomposition N(k, t) = Ñ(k)e−iω(k)t. Therefore, the inverse Fourier

transform reads [32]

N(x, t) =
1

2π

∫ ∞
−∞

dkÑ(k)ei(kx−ω(k)t), (3.29)

where the real part [Re(ω)] and the imaginary part [Im(ω)] of the of omega, respectively,

account for the dispersion relation and the growth rate of the modes with wave number

k. To describe this transformation in the co-mobile system (z = x − vt), we consider

the transformation

N(z, t) =
1

2π

∫ ∞
−∞

dkÑ(k)ei[kz−(ω(k)−kv)t]. (3.30)
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Figure 3.10: Linear evolution of the FKPP equation (3.12). a) Sequence of profiles for the FKPP

equation with t1 < t2 < t3 < t4 from a localized perturbation. This evolution is consistent with the

Gaussian type evolution given by the formula (3.34). b) Temporal sequence of the evolution of the

front and comparison with the asymptotic solution, t1 < t2 < t3. The right and left flank of the front

connects the stable and the unstable state, respectively. The dashed curve accounts for the asymptotic

front solution NFKPP (z) = limt→∞N(z, t) with z = x− vt.

For the system reaches the equilibrium it is required that the extreme mode with kc

(∂Im(ω)/∂k|kc = 0) that govern the relaxation dynamics. Note that this critical mode

must be the mode that decays slowest, that is, it must be a minimum of the growth rate

(mim{Im(ω(k))} see Fig. 3.8). The speed associated to this mode satisfies [32, 159]

Im(ω − vk)|kc = 0 or equivalent

v∗ =
Im(ω)

Im(k)
|kc . (3.31)

To understand the dynamics around the critical mode one can consider k ≈ kc + ∆k

and the population for large z is describe by

N(z, t) ≈ |Ñ(kc)|
1

2π

∫ ∞
−∞

d∆ke
i

[
kcz+∆kz−

(
ω(kc)+

ω′′(kc)(∆k)2

2

)
t

]
,

≈ |Ñ(kc)|eikcze−iωr(kc)t

2π

∫ ∞
−∞

d∆kei[∆kz−(
ω′′(kc)(∆k)2

2
)t]. (3.32)

Introducing the notation D = iω′′(kc)/2, then

N(z, t) ≈ |Ñ(kc)|eikcze−iωr(kc)t

2π

∫ ∞
−∞

d∆ke[i∆kz−Dt(∆k)2]

≈ |Ñ(kc)|eikcze−iωr(kc)te−
z2

4Dt

2π

∫ ∞
−∞

d∆ke
−Dt

[
∆k−i z

2
√
Dt

]2
(3.33)
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Integrating the Gaussian, one gets

N(z, t) ≈ |Ñ(kc)|eiκz−iωr(kc)t e
−λze−

z2

4Dt

2π
√
Dt

, (3.34)

with λ ≡ Re(kc) and κ ≡ Im(kc). The above formula accounts for the evolution of

a disturbance given by a linear equation. It is important to note that this solution

plays two crucial roles. One is the description of the initial perturbations, and another

describes the asymptotic evolution of the profile, which determines the dynamic devel-

opment of the front. Figure 3.10a shows a sequence of profiles for the FKPP equation

(3.12) from a localized perturbation. In effect, the solution grows exponentially and

similarly, it expands Gaussianly. Subsequently, the system enters the nonlinear regime

that gives rise to the front solutions. It is this regime; again the previous solution

becomes relevant since it describes the flank of the front around the unstable state.

Indeed, the above solution (3.34) describes the system on the flank of the unstable

side. Hence, as time evolves, the front decays to the asymptotic solution which tends

to exponentially zero. Namely, the differences decay with a Gaussian tendency

∆N ≡ |N(z, t)−NFKPP (z)| ≈ e−ln
√
Dt− z2

4Dt , (3.35)

where NFKPP (z) = limt→∞N(z, t) is the stationary front solution. Figure 3.10b depicts

the evolution ∆N .

In the case of FKPP equation (3.12), the linear relationship is

ω(k) = ir
(
1− k2

)
, (3.36)

Thus Re[ω(k)] = 0, Im[ω(k)] = r(1 − k2), kc = 1, D = 1, and the front around the

flank of the unstable solution

N(z, t) ≈ |Ñ(kc)|
e−z−ln

√
t− z2

4t

2π
. (3.37)

when z is large, the solution tends to

N(z, t→∞) ≈ |Ñ(kc)|e−z−ln
√
t/2π = N

(
(x− vt) + ln

√
t
)
. (3.38)
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Universal asymptotic front speed

To estimate the expression of the front speed, one can take the temporal derivative of

the argument of the solution N
(
(x− vt) + ln

√
t
)

v∗(t) ≈ v − 1

2t
. (3.39)

Therefore as the system evolves, the front speed tends to asymptotic speed decaying

with a power law. This result is consistent with the fact that the front solution has a

Goldstone mode; Accordingly, it can only decay with power laws.

A rigorous calculation and demonstration to determine the front speed considering the

FKPP equation (3.12) was done by M.D. Bramson [33] who obtained

v∗(t) = v − 3

2t
+

3
√
π

2t3/2
+ · · · . (3.40)

This result is based on the linear equation of FKPP Eq. (3.12), then based on a general

linear equation of the form ∂tu = f ′(u)|u=0 + ∂xxu around the equilibrium u = 0, Ebert

and Van Saarloos show [65, 160] that the previous result is universal.

3.1.7 Particle-type behavior and interaction of fronts

Numerically, making a disturbance of unpopulated state one observes the emergences

of two counter propagative waves that after a transient converges to the two fronts

propagating in opposite directions (see Fig. 3.6). Note that the characterization of

N(x,t)

x
Front position

Front core

Figure 3.11: Front solution: the front position accounts for the spatial location that has maximum

spatial variation and its core is given by the spatial size around of front position.
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x

N+ N-

Δ

Figure 3.12: Front interaction. Schematic representation of two counter propagative fronts. {N+, N−}

are front solutions spreads leftward and rightward, respectively. ∆ accounts for the distance between

fronts.

the front solutions—despite being a spatial extended solution—is simply given by two

quantities its position and core. The front position is given by the position of the space

that has maximum spatial variation and its core is given by the spatial size around of

front position. Let P be the front position. The front position can be characterized

mathematically by the expression

P (t) ≡

∫ L/2
−L/2 x∂xN(x, t)dx∫ L/2
−L/2 ∂xN(x, t)dx

. (3.41)

This formula is based on considering that the spatial derivative of the front around the

front position is symmetric. The front core is a characteristic length that accounts for

the region of greater variation of the front. Figure 3.11 illustrates these two quantities

that characterize the front solution. Using the previous formula for the front position

for FKPP fronts, one gets

Ṗ = v, (3.42)

where v is the speed of the front.

Due to the FKPP model (3.12) is a nonlinear equation, the front solution is a solution.

However, the addition of two propagative counter fronts is not a solution. To figure out

the dynamics of large separated two counter propagative fronts, we consider the ansatz

N(x, t) =
N+

(
z+ ≡ x+ vt+ ∆(t)

2

)
N−
(
z− ≡ x− vt− ∆

2

)
K

+ w(x, t, P ), (3.43)

where {N+, N−} are front solutions spreads leftward and rightward, respectively, ∆

accounts for the distance between fronts, and w(x, t, P ) is a small correction function.
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The previous ansatz is schematically represented in Fig. 3.12. As result of the spatial

translation invariance the front position can locate in any position in space. That is,

the front solution is parameterized by a continuous parameter, the front position. The

position of the left (right) front is −∆/2 (∆/2). When the two counter fronts spread

far enough away from each other, the dynamics of the system is given by the Goldstone

mode. This is based on the fact that the slower modes govern, the slower dynamics

of a system, the former is known as the central manifold [81]. Then, we promote

the parameter ∆ a temporal variable to describe this dynamics [∆(t)]. Introducing the

ansatz (3.43) in equation (3.12), and linearizing in w, after straightforward calculations,

one obtains

∂tN =

(
v +

∆̇

2

)
N−∂z+N+ −

(
v +

∆̇

2

)
N+∂z−N−

+Lw + rN−N+(1− N−N+

K
) +N−∂z+z+N+ +N+∂z−z−N−, (3.44)

with the linear operator

L ≡
[
r − 2N−N+

K
− v∂z− + v∂z+ + ∂z+z+ + ∂z−z−

]
, (3.45)

and z± ≡ x±vt±∆/2 are coordinates in the respectively co-mobile system. The above

linear equation can rewrite as

Lw = −

(
v +

∆̇

2

)
N−∂z+N+ +

(
v +

∆̇

2

)
N+∂z−N−

+rN−N+(1− N−N+

K
) + ∂z+z+N+ + ∂z−z−N−. (3.46)

To solve the above linear equation, we introduce the inner product

〈f |g〉 =
1

L

∫ L/2

−L/2
fgdz. (3.47)

Thus the adjoint operator associated to L is

L† ≡
[
r − 2

cN−N+

K
+ v∂z− − v∂z+ + ∂z+z+ + ∂z−z−

]
. (3.48)
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Notice this operator is not self-adjoint. Let Φ an element of kerr(L†), i.e. L†Φ = 0.

Φ is an unknown function, however its asymptotic behavior is known by simple linear

analysis,

Φ =



Φ0e
(v−
√
v2+4r)z− , z− → −∞,

Φ0e
(v+
√
v2−4r)z− , z− →∞,

Φ0e
(−v−

√
v2−4r)z+ , z+ → −∞,

Φ0e
(−v−

√
v2+4r)z+ , z+ →∞.

(3.49)

To solve the linear Eq. (3.50) we impose the solvability conditions (Fredholm alternative

[138]), that is, we impose that right side of the linear equation is orthogonal to the

elements of the kernel of L†. Thus we obtain

0 = 〈Φ| −

(
v +

∆̇

2

)
N−∂z+N+ +

(
v +

∆̇

2

)
N+∂z−N−〉

〈Φ|+ rN−N+(1−N−N+) + ∂z+z+N+ + ∂z−z−N−〉. (3.50)

Because the spatial variations of the front solution are only relevant around front core.

The above integral can only evaluated around of each front position. Using the fact

that each front behaves with respect to other

N+ → K −K2e−(v+
√
v2+4r)(z−∆), z → ∆

2
, (3.51)

N− → K −K2e(v+
√
v2+4r)(z−∆), z → −∆

2
. (3.52)

Using this asymptotic behavior, equations −v∂z−N− = rN−(1 − N−/K) + ∂z−z−N−,

v∂z+N+ = rN+(1 − N+/K) + ∂z+z+N+ and relation 〈φ|∂z+N+〉 = −〈φ|∂z−N−〉, after

straightforward calculations

∆̇ = −ae−(v+
√
v2+4r)∆. (3.53)

with a ≡ 2〈Φ|rK2e(v+
√
v2+4r)zN+(1 − 2N+)〉/〈Φ|∂z+N+〉. Hence, the interaction be-

tween front is attractive and exponentially small with the distance between them. In

brief this force is irrelevant in the front dynamics. Since the main dynamics is given by

the propagation.
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3.1.8 Front propagation into unstable state in a liquid crystal

light valve experiment

In this section, we will analyze a front which can be studied in the laboratory. The sys-

tem is composed by a Liquid crystal light valve (LCLV) with an optical feedback loop

is an optical experiment that exhibits a transition of molecular reorientation of subcrit-

ical type [52]. In other words, when a liquid crystal with a planar anchor is subjected

to a voltage that depends on its own molecular orientation, it presents a reorientation

transition of the first order. The experimental setup is schematically represented in

Fig. 3.13. The LCLV is composed of a thin nematic liquid crystal film between a glass

and a photoconductive plate over which a dielectric mirror is deposed. The liquid crys-

tal film has planar alignment with thickness d = 15 [µm]. The liquid crystal used is a

nematic LC-654 (NIOPIK). It is a mixture of cyano-biphenyls, with a positive dielectric

anisotropy εa = 10.7 and large optical birefringence ∆n = 0.2. The photoconductor

behaves like a variable resistance, which decreases for increasing illumination. Liquid

crystal light valve with optical feedback has been studied extensively in the literature

(see review article [140] and references therein).

Transparent electrodes over the glass plates allow the application of voltage V0 to induce

an electric field. The LCLV is illuminated by a He-Ne laser beam (λ = 632.8 nm) with

intensity Iin = 35 mW. The laser beam passes through a Holoeye LC 2002 Transmis-

sive Spatial Light Modulator (SLM), which allows manipulation of the spatial profile

of the intensity, controlling the front dynamics and imposing a quasi-one-dimensional

configuration. The optical path is schematically represented in Fig. 3.13(a). Over a

critical voltage, i.e. Fréedericksz voltage VFT , the molecules tend to align along the

direction of the applied electric field. The molecular orientation changes locally and

dynamically following the spatial illumination distribution present in the photoconduc-

tor wall of the cell. The light-driven feedback is obtained by sending back onto the

photoconductor, Iw, the light that has passed through the liquid crystal layer and has

been reflected by the dielectric mirror. The light beam experiences a phase shift that
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Figure 3.13: Liquid crystal light valve (LCLV) setup. (a) Schematic representation of the liquid crystal

light valve with optical feedback. Iin input light intensity, Pin is a polarizer, PBS is the polarized

beam splitter, L1, L2, and L3 are lenses, V0 is the external voltage applied, FB is the fiber bundle, and

CCD is the camera that captures the images. (b) Snapshots of the LCLV without optical feedback

with the unforced [7].

depends on the liquid-crystal orientation [see [140] and references therein]. By inserting

a polarized beam splitter, phase shifts are converted into intensity variations, modulat-

ing the illumination onto the photoconductor and, hence, the effective voltage applied

to the liquid crystal layer. Finally, the laser beam is directed to a charge-coupled device

(CCD) camera, where the images of the LCLV are taken.

Using the SLM, one can illuminate a channel in the LCLV of 3.5 mm long and 0.25 mm

wide (see the rectangles of the left panels of Fig. 3.20). Indeed, the nature of the sys-

tem is almost one-dimensional. For low external voltages, no change is observed. The

illuminated area remains dark, which is a manifestation of no molecular reorientation

[see bottom inset in Fig. 3.15]. Above a critical value VFT , the region begins to change

color to gray [see the panels in Figs. 3.13 and 3.15]. The experimental bifurcation di-
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agram of this transition is illustrated in Fig. 3.15(a) [7]. The intensity change of the

illuminated area is abrupt, which is consistent with a subcritical molecular reorientation

transition [43]. Characterization of this instability using the total intensity is consis-

tent with the subcritical Fréedericksz transition [see Fig. 3.15]. Namely, increasing the

voltage (V > VFT ), the gray state changes slightly. Similarly, decreasing the voltage,

the gray state is maintained until a critical value Vb < VFT . Hence, the system exhibits

a hysteresis or bistable region [7]. Note that the Fréedericksz transition from black

to gray region is characterized by the emergence of a gray spot that begins invading

the system. Indeed, this phenomenon corresponds to a FKPP front propagation be-

tween the unstable (black region) to the stable state (gray region). Figure 3.20 shows

this phenomenon observed at V0 = 3.69 [Vrms]. Note that as a consequence of the

inevitable imperfections of the experiment, as the front propagates, the speed slightly
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(b) Spatiotemporal evolution

Figure 3.14: Experimental front propagation of liquid crystal light valve with optical feedback, snap-

shots (a) and respective spatiotemporal diagrams (b) at V0 = 3.69 [Vrms]. The left panels account

for a temporal sequence of snapshots. The rectangle accounts for the illuminated area with optical

feedback, and the dashed curve is the extracted region to obtain the spatiotemporal diagrams. The

right panel stands for the spatiotemporal evolution of the fronts. The horizontal dashed lines account

for the moments where the top snapshots are extracted [7].
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Figure 3.15: Experimental bifurcation diagram performed in a liquid crystal light valve with optical

feedback, intensity Iw as a function of the applied voltage V0. The points correspond to values of total

light intensity Iw at the LCLV. The dashed line is a schematic representation of the aligned molecular

state induced by the anchoring of the walls. The painted area accounts for the region of coexistence

between stable and unstable states, where FKPP fronts are observed. The insets are the snapshot of

the typically observed states. Bifurcation diagram retrieved from [7].

changes. The average speed of propagation is 3.3 mm/s. In most of the observed cases,

the fronts are triggered from the edges of the illuminated region (see left panels of

Fig. 3.20). Therefore this experimental system exhibits fronts into an unstable state

that give an account when a molecular configuration becomes unstable compared with

a new one that invades the system. Note that the spatiotemporal diagram in Fig.3.15

shows that the front speed as it propagates accelerates. This behavior is due to the

inherent inhomogeneity of the physical system.

3.1.9 Front propagation in inhomogeneous media

It is a fact that many populations develop in certain privileged physical places due to

the facilitation of sources that allow their development. Later when population spreads

these conditions change and make their propagation affected by the spatial change of

the parameters. To illustrate this behavior, Figure 3.16 shows the spread of dengue
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patients in Cambodia during 2002 and 2004. Clearly the patient population is spread

by certain privileged areas which are mainly connected by urban roads (see green lines).

To figure out how fronts spread in an inhomogeneous medium, let us consider the

following inhomogeneous FKPP-equation.

∂tN = rN (1−N) +D∂xxN + ερ(x)∂xxN, (3.54)

where ε is a small parameter (ε� 1) and ρ(x) an arbitrary function. Then this model

describes the evolution of a population with an inhomogeneous transport coefficients.

Notice that this model does not modified the unpopulated stated (N(x, t) = 1). Using

the following ansatz

N(x, t) = NFKPP (z = x− vt− P (t)) + εW (z, P (t)), (3.55)

in Eq. (3.66) and linearizing in W , one obtains

LW = Ṗ ∂zNFKPP (z) + ερ(x)∂xxNFKPP , (3.56)

where the linear operator is defined L ≡ (r−2NFKPP +∂zz +v∂z). Using inner product

(3.47), one can introduce the self-adjoint operator L† ≡ (r − 2NFKPP (z) + ∂zz − v∂z).

Let Φ(z) is an element of the kernel of L†, i.e. L†Φ(z) = 0. Figure 3.19b depicts the

numerical kernel function Φ(z). To solve the above equation, one must impose the right

side of the above equation is orthogonal to the kernel elements L† (solvability condition

or Fredholm alternative [138]).

0 = Ṗ 〈Φ(z)|∂zNFKPP 〉+ ε〈Φ(z)|ρ(x = z + vt+ P )∂zzNFKPP 〉. (3.57)

Figure 3.16: Spread of dengue patients in Cambodia during 2002 and 2004.
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For simplicity we consider a periodic force ρ(x) = µ cos(ωx), thus the above equation

reads

Ṗ = εµ
〈Φ(z)|cos(ω(z + vt+ P ))∂zzNFKPP 〉

〈Φ(z)|∂zNFKPP 〉
. (3.58)

Using trigonometric relation cos(ω(z+vt+P )) = cos(ωz) cos(ω(vt+P ))−sin(ωz) sin(ω(vt+

P )), one get

Ṗ = εµ [K1 cos(ω(vt+ P )) +K2 sin(ω(vt+ P ))] . (3.59)

where,

K1 =
〈Φ(z)| cos(ωz)∂zzNFKPP 〉
〈Φ(z)|∂zNFKPP 〉

, K2 = −〈Φ(z)| sin(ωz)∂zzNFKPP 〉
〈Φ(z)|∂zNFKPP 〉

. (3.60)

It is important to note that all these integrals are well-defined. Hence, the front position

satisfied an equation

Ṗ = Γ cos(ω(vt+ P ) + ϕ), (3.61)

with tan(ϕ) ≡ K2/K1 and Γ ≡ εµ
√
K2

1 +K2
2 . To integrate above equation, we intro-

duce the change of variable u = vt+ P + ϕ and integrating

∫
du

v + Γ cos(ωu)
= (t− t0). (3.62)

The solution of this integral is

(t− t0) = − 2√
−v2 + Γ2ω

arctanh

[
(v − Γ) tan

[
uω
2

]
√
−v2 + Γ2

]
. (3.63)

rewriting the above expression

P (t) = −vt+ ϕ− 2

ω
arctan

(√
−v2 + Γ2

v − Γ
tanh

[
(t− t0)

√
−v2 + Γ2ω

2

])
. (3.64)

Thus, the front propagates with a periodical motion as consequences of the periodical

inhomogeneity. Comparison of the above formula and direct numerical simulations of
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Figure 3.17: Comparison of the front speed from formula (3.64) and direct numerical simulations of

Eq. (3.66) with a periodic inhomogeneity (ρ(x) = µ cos(ωx)).

Eq. (3.66) with a periodic inhomogeneity (ρ(x) = µ cos(ωx)) show quite good agreement

(see Fig. 3.17).

Let us introduce the front position x0 ≡ vt+ P (t), using Eq. (3.61) one gets

Ẋ0 = v + Γ cos(ωX0 + ϕ) = − ∂U
∂x0

. (3.65)

This equation is known as Adler’s equation and was proposed for the synchronization of

x0

g
U(    )x0

Figure 3.18: A mechanical interpretation of equation (3.65). Punctual particle in washboard potential.
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electrical oscillators [2]. Note that this equation can be interpreted as an overdamped

particle in a washboard potential U(x0), which is quite inclined (v � Γ). Figure 3.18

shows a schematic representation of punctual particles in washboard potential. Hence,

when the particle propagates, it exhibits oscillatory behavior.

Liquid crystal light valve experiment

As we have mentioned before (section 3.1.8), the propagation of fronts in an optical

valve with optical feedback exhibits a front speed that as it advances accelerates (cf.

Fig. 3.20). The above phenomenon can be model close to the reorientation instability

by

∂tθ(x, t) = εθ − θ3 +D∂xxθ + ρ(x)θ = −∂U(θ)

∂θ
+D∂xxθ + ρ(x)θ, (3.66)

where θ(x, t) accounts for the average angle of molecular orientation of the liquid crys-

tal, ε is the bifurcation parameter which is proportional to the voltage minus the critical

one and the geometry of the cell (see for more details Sec. 4.4), D accounts for the

elastic coupling, ρ(x) describes the inhomogeneities in the cell, and U(θ) is the potential

(cf. Fig. 3.19). This model when ε is negative has a single stable equilibrium that corre-

sponds to the molecules aligned with the walls (θ = 0). Conversely, when ε is positive,

the system exhibits two stable symmetric (θ = ±
√
ε) and one unstable equilibrium cor-

z
50 100 150

Φ(z)

0

0.1

0.2

0

-

U(θ)

θ

ε

a)                                                   b)

Figure 3.19: Liquid crystal model. (a) Effective potential close to reorientation instability. (b) Nu-

merical kernel element of L† ≡ ε− 2θ2F + ∂zz + v∂z, i.e. L†Φ(z) = 0.



60 CHAPTER 3. FRONT PROPAGATION INTO UNSTABLE STATE

responding to the reorientation and non-oriented of molecules, respectively. Figure 3.19

depicts the potential for positive ε. Likewise, for positive ε and ρ(x) = 0, the system

presents fronts into an unstable state, between the oriented and non-oriented state,

θF (x− vt). These fronts are characterized by being a family of solutions parameterized

by the front speed v ≥ vmin ≡ 2
√
ε.

To understand the effect of the inhomogeneous term, one considers that this is of

perturbative nature. Using the same methodology presented in the previous section

one finds after straightforward calculations

Ṗ = v +
〈Φ(z)|ρ(z + p)θF (z)〉
〈Φ(z)|∂zθF 〉

, (3.67)

where Φ(z) is an element of the kernel of L† ≡ ε − 2θ2
F + ∂zz + v∂z, i.e. L†Φ(z) = 0.

Note that this eigenfunction diverges and converges, respectively, on the flank of the

unstable and stable state (see Fig. 3.20b). In the case that ρ(z) is a linear function, i.e.

ρ(z) = βz + γ (β ∼ γ � 1), one gets

Ṗ = v + γ′ + β′P, (3.68)

where β′ ≡ β〈Φ(z)|zθF (z)〉/〈Φ(z)|∂zθF 〉 and γ′ ≡ γ〈Φ(z)|θF (z)〉/〈Φ(z)|∂zθF 〉. The pre-

vious integrals are well defined since when Φ(z) diverges the front solution θF converges

to zero with the same exponential rate. Furthermore, when Φ(z) solution tends to zero,

the front solution θF is constant. Hence, these integrals depend on the size of the sys-

tem. However, since the dynamics of the front position relies on the quotient of these

integrals, one concludes that the result is independent of the size of the system. From

this expression, one concludes that γ′ renormalizes the front speed and that as the front

moves the speed increases linearly with distance. The acceleration of the front speed is

β′v. Indeed, experimentally the speed increases as the front propagate (cf. Fig. 3.20).

Thanks to the use of a spatial light modulator (SLM, see Fig. 3.13), one can control

the type of perturbations in the liquid crystal light valve with optical feedback. In the

case of considering a periodical modulated one-dimensional mask, the dynamic of the

front is characterized by a periodic movement, such as that of an overdamped particle
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Figure 3.20: Experimental front propagation of liquid crystal light valve with optical feedback and

periodic spatial forcing induced by spatial light modulator. Snapshots (a) and respective spatiotem-

poral diagrams (b) at V0 = 3.69 [Vrms]. The left panels account for a temporal sequence of snapshots.

The rectangle accounts for the illuminated area with optical feedback, and the dashed curve is the

extracted region to obtain the spatiotemporal diagrams. The right panel stands for the spatiotemporal

evolution of the fronts. The horizontal dashed lines account for the moments where the top snapshots

are extracted [7].

in a washboard potential (cf. equation 3.65). Due to the presence of oscillatory force,

the front propagates slower than in the unforced case.

3.1.10 Stochastic Populations dynamics

As mentioned macroscopic systems must be described by stochastic differential equa-

tions. This is usually accomplished by incorporating stochastic terms in the dynamics

equation of the system understand, which are usually referred to as Lagevine equation

[103, 75, 158, 89]. An additive stochastic term in the dynamical equation, it is usually

called additive or internal noise and if the dependent on variables of the system under

study is called multiplicative or external noise. Let us consider a population dynamics
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with a logistic growth and an additive noise

∂tN = rN (1−N) +D∂xxN +
√
ηζ(x, t), (3.69)

where ζ(x, t) is a Gaussian white noise defined at each point x, with zero mean value

〈ζ(x, t)〉 = 0 and correlation 〈ζ(x, t)ζ(x′, t′)〉 = δ(x − x′)δ(t − t′), and η accounts for

the level of intensity of noise [74]. This noise is called white because it is completely

flat on its Fourier power transform. Figure 3.22 illustrates the mean features of Gaus-

sian white noise. Likewise, one concludes that the stochastic term exhibits a complex

spatiotemporal behavior. Numerical simulations of above population equations show

this equation is unacceptable because it generates negative local population densities.

Hence, additive white noise is unacceptable description for population dynamics.

Let us consider a population dynamics with logistic growth and simple linear multi-
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Figure 3.21: Gaussian white Noise. a) spatiotemporal evolution of the white noise ζ(x, t) with zero

mean value 〈ζ(x, t)〉 = 0 and correlation 〈ζ(x, t)ζ(x′, t′)〉 = δ(x − x′)δ(t − t′). b) Probability density

distribution (PDF) of ζ(x, t) at given time t. This PDF correspond to a Gaussian distribution. c)

temporal signal of ζ(x, t) at given position. d) Schematic Fourier transform (FT) of the temporal

signal.
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plicative noise

∂tN = rN (1−N) +D∂xxN +N(x, t)
√
ηζ(x, t), (3.70)

then unpopulated state, N = 0, can not display fluctuations. It is important to note

that if the initial population is positive this remains positive. This is simple to under-

stand using the argument that if one linearized Eq. (3.78) around unpopulated state

and neglected the inhomogeneties, the dynamics becomes linear

∂tN = [r +
√
ηζ(t)]N. (3.71)

Integrating this equation, one gets

N(t) = N0e
rt+

∫ t
0 ζ(t)dt (3.72)

Hence, independent, if the pre-factor is positive or negative initial condition increases

or decreases exponentially, thus maintaining the property of being semi definite positive

(N0 ≥ 0). To understand the front dynamics let us consider small intensity of noise

(η � 1) and the ansatz

N(x, t) = NFKPP (x− vt− P (t)) + w(x− vt, P ), (3.73)

in the stochastic FKPP equation (3.78) and performing a similar process of the previous

section, after straightforward calculations, one obtains the solvability condition

Ṗ =
√
η
〈Φ(z)|ζ(z, t)NFKKP 〉
〈Φ(z)|∂zNFKKP 〉

. (3.74)
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Figure 3.22: Stochastic FKPP front propagation using model (3.78). Inset accounts for the front profile

in a given fixed time.
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Using the central limit theorem, one can introduce an effective noise,

ξ(t) =
〈Φ(z)|ζ(z, t)NFKKP 〉
〈Φ(z)|∂zNFKKP 〉

, (3.75)

then the front position satisfies a Brownian dynamics, described by

Ṗ =
√
ηξ(t). (3.76)

where ξ(t) is a white noise with zero mean value and correlation

〈ξ(t)ξ(t′)〉 =

∣∣∣∣∣∣∣∣ 〈Φ(z)|NFKKP 〉
〈Φ(z)|∂zNFKKP 〉

∣∣∣∣∣∣∣∣2 δ(t− t′). (3.77)

From the extended discrete system, model (3.10), using transition probability between

the various constituents, one can obtain a suitable master equation for probability.

From this master equation one can obtain the respective Lagevine equation [118]

∂tN = rN (1−N) +D∂xxN +N(x, t)
√
rζ(x, t), (3.78)

Notice this model satisfies fluctuations dissipation theorem [158]. Hence, the above

model is rigorous and consistence with the microscopic description.

3.2 Front solution in reactions dynamical systems

FKPP-fronts have been observed in pioneering work in auto-catalytic chemical reac-

tion [110], Taylor-Couette instability [5], Rayleigh-Benard experiments [70], pearling

and pinching on the propagating Rayleigh instability [136], spinodal decomposition in

polymer mixtures [102], liquid crystal light valves with optical feedback [51, 7] and

population dynamics [124, 125]. All these reports emphasize that this is a universal

phenomenon that the only ingredients that need to be observed is the coexistence of a

stable state, and one unstable [159].

3.2.1 Pushed and pulled fronts

A natural question that arises is, why the speed of the fronts is determined by a linear

analysis if fronts are intrinsically nonlinear phenomena? To answer this question, we
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consider FKPP Eq. (3.12) with an initially localized disturbance during an initial time

and then impose the coefficient D = 0, that is; initially, populations are coupled and

are subsequently isolated. Figure 3.23 clearly shows that the front continued spreading

at an increasingly slower speed. This we can understand as follows: the Laplacian is

responsible for an initial condition that penetrates all space by a Gaussian and then

spreads from stable to unstable state. The above behavior leads us to conclude that the

diffusive dynamic controls front propagation. The fronts whose minimum propagation

speed is determined by this criterion are called pulled fronts. On the contrary, if the

nonlinearity is large (strong nonlinearity), one expects that the minimum speed is no

longer determined by the linear approach. The fronts whose minimum propagation

speed is not determined by the linear or marginal criterion are called pushed fronts

[159]. Figure 3.24 shows a schematic representation of a pulled and pushed front.

Let us consider the reaction-diffusion model

∂tu = f(u) + ∂xxu, (3.79)

where u(x, t) is a scalar field and f(u) is a smooth function. We assume that the

system without loss of generality has two equilibria, one stable and another unstable

in u = 1, and u = 0, respectively. Consequently, f(0) = f(1) = 0 and f ′(0) > 0 and

f ′(1) < 0. Considering that the system is weakly nonlinear, that is, the most important

Ti
m

e

Space

D=0

D>0

Figure 3.23: Front propagations of FKPP Eq. (3.12) with an initial localized disturbance during an

initial time and then impose the coefficient D = 0. Dashed straight line accounts for the moment when

there is interrupted coupling.
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growth rate is given by the linearization around the unstable state, then f ′(0)u ≥ f(u).

Figure 3.25 shows a typical weakly nonlinear reaction term. Therefore, to use the linear

criterion for the front speed, we need to impose the condition f ′(0)u ≥ f(u), which had

beed stablished by Kolmogorov and co-workers [97]. By simple dimension analysis the

minimum front speed, vmin, satisfies [27]

2
√
f ′(0) ≤ vmin ≤ 2

√
f(u)

u
. (3.80)

Hence, for dynamical system with weak nonlinearity one has 2
√
f ′(0) ≥ 2

√
f(u)/u

and minimum front speed is vmin = 2
√
f ′(0). A natural example of weak nonlinearity

is the coupled chain of pendulums, Eq. (2.7), where the fronts connecting the upright

and upside-down position of pendulums are FKPP fronts with marginal criterion (cf.

Fig. 2.7).

To figure out the transition from pulled to pushed front, let us consider the following

nonlinear reaction-diffusion equation with cubic nonlinearity (bistable model) [82]

∂tN = N(1−N)(1 + aN) + ∂xxN. (3.81)

x

x

Linear dynamics

Nonlinear 
Dynamics

Pulled Front

Pushed Front

a)

b)

Figure 3.24: Schematic representation of a pulled and pushed front. The minimum speed of pulled

(pushed) fronts is (not) determined by the linear marginal criterium.
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Figure 3.25: Different reaction terms. a) weak nonlinearity, b) and c) strong nonlinearity.

Note that for a < 0, the above model accounts for the Nagumo model [124], which

describes several biological systems. The uniform solutions of this model are N =

{0, 1,−1/a}. The two first solutions correspond to populated and unpopulated states.

N = −1/a makes no sense from the viewpoint of density populations. The population

and unpopulated state are stable and unstable, respectively. For a ≤ a≡1, the dynamical

behavior of this model is characterized by being ruled by weak dynamics. That is, the

minimal front speed between unpopulated and populated states is regulated by linear

marginal criteria. The front speed has the form

v =

 2, −1 ≤ a ≤ 2,

a+2√
2a
, a > 2.

(3.82)

This result was obtained by explicitly find the front solution [82]. In order to derive

this speed and the front profile, we consider the solution in the mobile system N(x, t) =

N(z ≡ x− vt), thus, the above equation (3.81) reads

− v∂zN = N(1−N)(1 + aN) + ∂zzN, (3.83)

where z = x−t is the co-moving coordinate. The front solution satisfies N(z → −∞) =

1 and N(z →∞) = 0, introducing the auxiliary function G[N(z)] = ∂zN , the equation

takes the form

G
∂G

∂N
+ vG+N(1−N)(1 + aN) = 0. (3.84)

This auxiliary function fulfills G[0] = G[1] = 0. In addition, if one considers that

the solutions decay exponentially N(z) ∼ e−βz (G ∼ e−βz). Hence, introducing the
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Figure 3.26: Pulled-pushed front transition of model Eq. (3.81). The horizontal blue curves account for

the speed using the linear criterion (vmin), The continuous curve accounts for the front with minimum

speed. The dashed curve accounts for a front that is spread with a speed greater than the minimum

speed. v′(a) = ∂av accounts for the variation of front speed as a function of parameter a.

algebraic ansatz G = βN(N − 1) in Eq. (3.84), one obtain for the different power of N

2β2 − a = 0,

−3β2 + vβ + (a− 1) = 0,

β2 − vβ + 1 = 0.

From the first relation one obtains β =
√
a/2 and for the other relations v = vNl ≡

(a + 2)/
√

2a. Likewise, the front profile satisfies (the Riccati equation [142] or logistic

equation [161])
∂N

∂z
= βN(N − 1), (3.85)

which has a solution of the form

N(x, t) =
1

1 + eβz
=

1

1 + eβ(x−vNLt)
. (3.86)

Figure 3.26 shows the front speed as a function of the parameter a. Note that for

parameter a lower (greater) than 2, the system exhibits pulled (pushed) fronts. Indeed,

the system exhibits a pulled-pushed front transition for a = aT = 2. To characterize

the nature of this transition, one can consider the front speed as an order parameter.
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We note that when the fronts are pulled (pushed), this order parameter is null (varies).

From the previous graphs, one infers that the transition is supercritical (continuous).

In addition, this transition corresponds to a collision between stable and unstable front

solutions that exchange stability. This type of bifurcations are denominated in the

theory of transitions as transcritical bifurcations [150]. In the next section, we shall

study a physical example that has pulled and pushed fronts.

3.2.2 Nematic-isotropic transition: pushed front

The nematic-isotropic transition is a classic problem of the theory of liquid crystals,

in which the nematic phase is characterized by the rod like molecules are oriented lo-

cally in one direction, unlike the isotropic liquid phase which is characterized by the

molecules are locally disordered [163, 41, 62]. Figure 3.27 shows a typical structure

of liquid crystal molecules containing several coupled cycles benzenes. The interaction

between molecules (electric and magnetic) and temperature allow the formation of dif-

ferent phases, such as: crystalline solid, liquid crystal and isotropic liquid. Figure 3.27b

schematically illustrates these phases. Therefore, as a function of temperature T one

a)          b)                                                        c)

Figure 3.27: Liquid Crystals state of matter. a) Typical molecule of liquid crystal with rod-like

structures. b) Schematic representation of different phases of rod-like molecules as a function of

temperature. c) Bifurcation diagram of a liquid crystal [?].
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expects to observe this transition, that is, there is a critical temperature Tc at which

one observes the emergence of a phase on the other. Tc typically ranges from a few

to hundreds celsius. Due to the molecules have a preferred direction but not a sense,

this transition is characterized by a second rank tensor [163, 41, 62]. This tensor is a

symmetric matrix with zero trace, characterized by a single scalar parameter

S(~r, t) =
3

2
〈cos2(θ)〉 − 1

2
, (3.87)

which is an order parameter1 that accounts for the alignment of the molecules and θ

is an angle with respect to a direction must be oriented the molecules (cf. Fig. 3.27).

Then, when S is small (order one) accounts for the isotropic liquid (nematic) phase.

The dynamic of the order parameter is characterized by the free energy (Landau-de

Gennes theory) [163, 41, 62]

F [S,∇S] =
A

2
S2 − B

2
S3 +

1

2
S4 +

(∇S)2

2
, (3.88)

where {A,B} are phenomenological positive parameters. It is worthy to note that due

to S accounts for an orientation, the free energy F does not depend linearly in S [62].

Usually A parameter is proportional to difference of the temperature with the critical

one (A ∝ T − Tc) [163, 41, 62], this is the bifurcation parameter.

The temporal evolution of S is characterized by the minimization of the free energy,

that is
∂S

∂t
= −δF

δS
= −AS +BS2 − S3 +∇2S. (3.89)

From the standpoint of dynamic system, this model describes an extended transcritical

bifurcation [59]. This model has the steady states S = SI = 0 and S ≡ SM =

(B ±
√
B2 − 4A)/2 that accounts, respectively, for the isotropic liquid and nematic

phase. For large values of the bifurcation parameter (A � 1), the only supported

state is the isotropic liquid phase, SI . When the bifurcation parameter is diminished

to zero (A = 0), the isotropic state becomes unstable by a discontinuous bifurcation

(first order transition or subcritical bifurcation [150]), that is, this bifurcation generates
1An order parameter is the simplest variable characterizing the dynamics of a bifurcation[100].
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Figure 3.28: Bifurcation diagram of nematic isotropic transition described by model (3.89). The A

parameter accounts for temperature. Tc is the critical temperature from which the system exhibits

coexistence between the nematic (Sm and Sm1) and isotropic liquid phase (SI).

an abrupt change of equilibria. This bifurcation generates the emergence of nematic

phase, SM . This phase has a region of hysteresis (coexistence) with isotropic state

between A = 0 to A = B2/4. For negative A the stable state are nematic phases (Sm

and Sm1). Moreover, for A < 0 the isotropic liquid phase is unstable. Figure 3.28

shows a bifurcation diagram of isotropic nematic transition described by model (3.89).

Hence, in this region of parameter one can observe FKPP front between the nematic

and isotropic liquid phase. Figure 3.29 displays the typical front propagation for A < 0

and experimental observation of nematic isotropic transition induced by light [130].

Front propagation in nematic isotropic transition

For the sake of simplicity, we consider a one-dimensional liquid crystal medium de-

scribed by (Landau-De Gennes Model )

∂S(x, t)

∂t
= −AS +BS2 − S3 + ∂xxS. (3.90)

Let us consider a nonlinear traveling wave solution for the other parameter S(x, t) =

S(z = x− vt), which satisfies

− v∂zS = −AS +BS2 − S3 + ∂xxS. (3.91)
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Figure 3.29: Isotropic nematic front propagation. a) Schematic sketch of the experimental setup. L1

and L2 are plano-convex lenses; DDLC corresponds to a dye-doped liquid crystal cell; P is a polarizer

along x-axis; L3 is an imaging lens; TC accounts for an infrared thermal camera; CCD is a charge-

coupled device camera. (b)-(e) Experimental smoothed snapshots for P0 350 mW and w 3.4 mm (I0

1.93W/cm2) at 55, 65, 125, and 500 s, respectively. (f) Sample transmissivity T as a function of the

input power. Panels retrieved from Ref. [130]. g) Spatiotemporal diagram of numerical simulation of

nematic isotropic model (3.89) for two differ values of A=-0.2,-0,6 and B = 1.0.

Introducing the ansatz

S =
α

2
[1 + tanh(βz)] , (3.92)

in the above equation one gets

0 = −1

8
α (1 + tanh[zβ])

{
4A− 2Bα + α2 − 4vβ+

2
(
−Bα + α2 + 2β(v + 2β)

)
tanh[zβ] +

(
α2 − 8β2

)
tanh[zβ]2

}
(3.93)

or equivalently

0 = 4A−2Bα+α2−4vβ+2
(
−Bα + α2 + 2β(v + 2β)

)
tanh[zβ]+

(
α2 − 8β2

)
tanh[zβ]2

(3.94)

from the term proportional to tanh2(βz), one obtains β = α/2
√

2. Using this property

in term proportional to tanh(βz), one gets

−2βv = −Bα + α2 + 4β2 (3.95)

0 = 4A− 2Bα + α2 − 4vβ (3.96)
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Figure 3.30: Front propagation of model (3.90). For negative A, the model has three equilibria: two

stable (Sm and Sm1) and one unstable (SI). The top left panel shows a pushed front between Sm and

SI , when B parameter is modified. The bottom left panel shows a pulled front between Sm1 and SI ,

when B parameter is modified. The right panel characterizes the dynamics of the model (3.90).

Using Eq. 3.95 in 3.96, one gets A − Bα + α2 = 0 and then α = (B +
√
B2 − 4A)/2

and the front speed

v =
A− 4β

2β
(3.97)

with β = B +
√
B2 − 4A/4

√
2.

We must use the criterion to characterize whether fronts between nematic to isotropic

liquid transition are pulled or pushed (3.80). Thus, we have to compare the functions

f(S) = −AS + BS2 − S3 with f ′(0)S = AS in the interval [0, (B +
√
B2 − 4A)/2].

Imposing these two functions are equal, one finds the point of interception S∗ = B,

which is inside the interval of interest. Hence, fronts exhibited by the nematic isotropic

transition between phase SI and Sm are of a pushed nature. Likewise, the above analysis

is valid for the nematic state Sm1 and isotropic liquid SI , then, applying the Kolmogorov

criterion, one finds that these fronts are marginal type.

Note that the speed (3.97) is a function of the parameters A and B. By setting B, one



74 CHAPTER 3. FRONT PROPAGATION INTO UNSTABLE STATE

Figure 3.31: Front speed v, formula (3.97), as a function of the bifurcation parameter A (green curve).

can plot the speed v(A,B) as a function of the bifurcation parameter and can compare

it with the bifurcation diagram. Figure 3.31 shows the speed as a function of the

bifurcation parameter. For A < 0, the front accounts for a nonlinear wave that connects

a stable and unstable state, continuously connecting with the region of bistable fronts.

The previous behavior manifests that pushed-type fronts can continuously connect with

bistable fronts.

3.3 Variational characterization of front speed

As we have already noted, dynamical systems with strong nonlinearities exhibit fronts

between stable and unstable states, for which the determination of front speed is a

complex task. One method that has been proposed to determine the speed is based on

the principle of variations [27]. To understand how one gets this method, let us consider
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Eq. (3.6) for front speed

− v∂zu = f(u) + ∂zzu, (3.98)

where f(0) = f(1) = 0 and f ′(0) > 0 and f ′(1) < 0. Introducing the variable P (u) =

−∂zu that corresponds to a momentum type variable. Thus, the above equation reads

0 = f(u)− vP + P
∂P

∂u
. (3.99)

Considering a positive define function g(u) > 0 and −g′(u) > 0 in interval [0, 1],

multiplying by g/P and integrating between the equilibria, one obtains

v =

∫ 1

0
f(u)g(u)

P
− g′(u)Pdz∫ 1

0
g(u)dz

. (3.100)

One considers positive definite functions so that the divisor is well-defined. Further-

more, using
f(u)g(u)

P
− g′(u)P ≤ 2

√
−fgg′, (3.101)

one obtains the front speed [27]

v = 2Sup

(∫ 1

0

√
−fgg′dz∫ 1

0
g(u)dz

)
. (3.102)

Hence, using a function test g(u), one can obtain adequate speed [27].

3.4 Experimental observation of pulled pushed front

transitions

The analysis and study presented in this section are based on article [15].

As we have mentioned, the FKPP front solutions are peculiar to connecting a stable

state with an unstable one. The propagation speed of these fronts depends on the initial

conditions. When the disturbance of the unstable state is bounded, the fronts always

propagate with a minimal speed [159]. In liquid crystals, these fronts have been the
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Figure 3.32: Experimental characterization of the bifurcation diagram and the front propagation tran-

sition. (a) Temporal snapshot sequence of the front propagation showed in the LCLV. Dark and light

areas account for different molecular orientations, respectively. The dashed rectangles mark the illumi-

nated region. (b) A bifurcation diagram was observed in the LCLV with optical feedback. The points

account for the intensity of the reflected light by the LCLV as a function of the applied voltage V0. The

system exhibits three regions, two monostable and one bistable between the planar and reorienting

state. VFT accounts for the critical value of the reorientation instability, the Fréedericksz transition.

The insets stand for respective snapshots obtained in the indicated voltages. (c) Front speed as a

function of diffraction length L at V0 = 2.62Vrms. The points account for the front speed measured

in pixels per second. The dashed line is the union between consecutive experimental points. The

continuous curve stands for the trend line of the experimental points.

subject of intense research [13, 52, 51, 87, 88, 141, 140], since they play a fundamental

role in understanding and applying molecular reorientations through light.

Theoretically, the interface dynamical behaviors are well understood by variational

systems. In contrast, nonvariational systems do not pursue a minimization of free

energy. Indeed, front propagation into an unstable state does not follow a minimization

principle, and its dynamics are less explored. However, front propagation between two

stable states in nonvariational systems has been analyzed in [13] (see Section 4.7). The
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non-variationality is a generic characteristic of nonequilibrium systems [129, 84].

To understand the effect of non-variational terms, we consider the effect of diffraction in

the front propagation between two domains of molecular orientations in a liquid crystal

light valve with optical feedback (see Section 3.1.8). The diffraction produced by the

free propagation length L governs the nonvariational effects. Depending on diffraction,

front speed exhibits a supercritical transition between pulled and pushed fronts.

Experimental characterization of front propagation into an unstable state

Thanks to the use of the spatial light modulator, a bi-dimensional channel is illumi-

nated on the liquid crystal light valve of dimensions 6 mm long by 0.9 mm wide (cf.

Fig. 3.32(a)). By changing the voltage V0 applied to the liquid crystal film and mon-

itoring the evolution of light intensity that goes through the LCLV employing a CCD

camera (the camera measures the Iw intensity), one can characterize the bifurcation

diagram of the molecular reorientation transition. Figure 3.32(a) shows the bifurcation

diagram obtained. For small voltage V0 < VFT , when the molecules are not reoriented,

a little light is transmitted in the optical feedback, which corresponds to the channel

being dark [see inset in Fig. 3.32(a))]. The critical voltage from which the molecules

begin to reorient is designated by VFT . On the contrary, when the molecules are re-

oriented, the transmitted light increases, and then the channel turns light gray. Note

that the transition of molecular reorientation of the LCLV with optical feedback is of

the first order type [52, 51]. Indeed, the transition exhibits an abrupt color change.

Besides, a hysteresis loop is observed between the molecular configurations when the

voltage varies. The hysteresis region is between the two monostable regions.

We follow the strategy to study the front propagation into an unstable state: initially

applied voltage is small (V0 � VFT ). Hence, the initial configuration is planar, and it is

stable. Subsequently, the applied voltage is increased above a critical value of reorienta-

tion bifurcation (V0 = 2.62Vrms > VFT and V0 ≈ VFT ). Then, the planar state becomes

unstable (dark state), and the reoriented alignment becomes stable (gray state). The

reoriented state starts to invade the planar alignment from the edges or imperfections
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of the channel. Figure 3.32(a) shows a sequence of snapshots of the observed front

propagation. From the recording of the front propagation, its speed is determined.

Subsequently, by changing the position of the optical fibers bundle, we can change the

value of the free propagation length L, which is the distance where light diffraction

occurs in the experimental setup. Figure 3.32(c) shows the front speed as a function of

the free propagation length L at fixed applied voltage V0. Unexpectedly, it is observed

that the front speed is modified slightly for small and negative L (pulled fronts), but for

L positive, this speed increases and is significantly modified (pushed fronts). Therefore,

experimentally, it is observed that the front speed transitions between a plateau and

a growing regime correspond to a pushed-pulled transition. It is worth noting that L

does not change the relative stability between the molecular configurations but instead

changes the coupling between the molecular average arrangements. The origin of the

front propagation transition will be elucidated in the next section.

3.4.1 Theoretical model of pulled-pushed fronts in the LCLV

with optical feedback

Based on the elastic theory, dielectric effects, and optical feedback, close to the Fréed-

ericksz transition VFT , the molecular reorientation is given by the dimensionless model

[52, 51, 13]

∂tu = µu+ βu2 + u3 − u5 + ∂xxu+ bu∂xxu+ c(∂xu)2, (3.103)

where x and t account for the spatial transverse coordinate and time. The order pa-

rameter u(x, t) is the amplitude of the critical mode of the molecular reorientation. µ

is the bifurcation parameter that accounts for the competition between the electric and

elastic force, which is proportional to (V0−VFT )/VFT . β is a phenomenological param-

eter that accounts for the pretilt induced by the anchoring in the walls of the liquid

crystal layer. The cubic and quintic terms represent the competition between elastic

and electrical forces induced by optical feedback [51]. The diffusion term ∂xxu describes

the transverse elastic coupling. The coefficients b and c account for the nonlinear dif-
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Figure 3.33: (After [15]) Characterization of bifurcation diagram and front speed of model Eq. (3.103).

(a) Bifurcation diagram of Eq. (3.103). Equilibrium amplitude uo as a function of the parameter µ for

fixed β. The continuous and dashed curves account for stable and unstable equilibrium, respectively.

These curves were obtained by solving the algebraic equation 0 = µu0 +βu20 +u30−u50; up, u−, and up
account for the upper, middle, and lower equilibrium branches, respectively. The system exhibits three

regions, two monostable and one bistable. (b) Front speed as a function of free propagation length L.

The continuous curve shows the front speed of model Eq. (3.103) obtained numerically with µ = 1.0,

β = 0.1, and b = c = L. The dashed horizontal curve accounts for the minimal front speed using the

marginal criterion vmin = 2
√
µ.

fusion and advection. These two terms are proportional to the free propagation length

L and have the same sign. Indeed, when L = 0, b = c = 0, the previous model (3.103)

satisfies an equation that is governed by the minimization of free energy F [u, ∂xu], that

is,

∂tu = −∂F
∂u

, (3.104)

where F =
∫
dx[−µu2/2 − βu3/3 − u4/4 + u6/6 + (∂xu)2/2]. The diffraction effect

generates that diffusion and the nonlinear advection allow the emergence of permanent

dynamics, such as spatiotemporal chaos [46] or oscillatory behaviors [47]. This type of

behavior is incompatible with a dynamic governed by a minimization principle. The

methodology of how to derive the parameters {µ, β, b, c} and the relation with the

physical parameters are given in Refs. [51, 13].

The term proportional to β breaks the reflection symmetry of the amplitude u. This
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Figure 3.34: (After [15]) Front propagation into an unstable state of model Eq. (3.103). (a) Spatiotem-

poral evolution of amplitude of critical model u(x, t) of model Eq. (3.103) by µ = 1.0, β = 0.1, and

b = 0. Temporal evolution of the front propagation after (c = 0, t < 20) and before (c = −30, t > 20)

consider the nonvariational advection term. The arrows show the direction of front propagation in the

respective periods.

effect always renders the reorientation transition into a discontinuous instability with

a small hysteresis. Note that positive and negative equilibria exist for β, µ > 0. Be-

sides, the negative values of the amplitude u(x, t) have no physical sense because it

is not detectable experimentally. Figure 3.33 shows the bifurcation diagram of model

Eq. (3.103). This model is characterized by exhibiting a first-order bifurcation when

µ = 0. Then, the system presents a hysteresis region between two monostable regions.

Note that this bifurcation diagram is qualitatively similar to that observed experimen-

tally (cf. Fig. 3.32(a)).

An ideal region to study fronts into an unstable state is µ > 0. The model equation

presents the FKPP front between u ≡ up = 0 and u+, Namely, in this region of

parameter space, there are fronts between the planar unstable up and stable reoriented

state u+. Figure 3.34 shows the front propagation for µ > 0. To study the effects of

nonvariational terms, we consider a front solution initially with b = c = 0, and at a
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given time (t = 20), we activate the nonvariational effects (b = 0 and c = −30). In

the variational regime, the minimal front speed vmin is determined by the linear terms,

marginal criterion [159], which has the explicit expression vmin = 2
√
µ. Indeed, if the

values of the nonlinear parameters are changed, the front speed does not change. From

Fig. 3.34, one can infer that the front profile is modified when the nonvariational terms

are included. The front solution exhibited a readjusting of the spatial profile where the

front suffered a backpropagation. After this readjust, the front solution acquires a form

with which it spreads with the marginal speed. Figure 3.34 depicts the front profiles

without and with the influence of non-variational terms. Unexpectedly, although the

front profile is markedly modified, the front speed remains constant.

To analyze how the front speed is modified as a function of the non-variational terms,

we have numerically measured the front speed as a function of b = c = L. This is

consistent with the functional dependence of the parameters as a function of the free

propagation length L. Figure 3.33(b) summarizes the front speed as a function of the

free propagation length L. We observe that the front speed is constant for free negative

propagation lengths. As it increases the numerical precision, it tends to the front speed

predicted by the marginal criterion (see Fig. 3.33(b)). It is well-known that numerical

discretization effects modify this speed [10]. For free positive propagation lengths, we

observed that the speed of the front grows linearly with L. Hence, we observe that

the front speed presents a transition between a plateau and a growing regime, which

is consistent with experimental observations (cf. Figs. 3.32(b) and 3.33(b)). Indeed,

the system exhibits a transition between fronts where its speed is determined by the

marginal criterion (pulled front [159]) to fronts where the nonlinear terms determine

the speed, nonlinear criterion (pushed front [159]). A pulled-pushed transition of fronts,

with a speed transition diagram similar to that shown in Fig. 3.33(b), is well-known in

a cubic reaction-diffusion model when the nonlinear terms are modified [82]. A pertur-

bative analysis can be performed to determine how the presence of the nonvariational

terms modifies the front speed.
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3.4.2 Analytical and Numerical analysis of the front speed

Due to the transition between pulled-pushed fronts occurring at free propagation length

L = 0, we can consider the nonlinear diffusion and advection terms as perturbative ones

(b, c� 1). Let us consider uf (x−v0t) as the front solution for the unperturbed problem

of Eq. (3.103) with b = c = 0, where v0 = 2
√
µ is the front speed. To calculate the

front speed for the perturbed problem, we consider the following ansatz,

u(x, t) = uf

(
z ≡ x− v0t− Ṗ (t)

)
+ w(x− v0t− p(t)), (3.105)

where z is the coordinate in the co-moving system, Ṗ and w account for the correction

of the front speed and the profile function, respectively. Moreover, Ṗ and w are of

order of b ∼ c ∼ ε, where ε � 1 is a small control parameter. Introducing the ansatz

(3.105) in Eq. (3.103) and leaving only the terms up to ε order, after straightforward

calculations, we get the linear equation

Lw = −ṗ(t)∂zuf − buf∂zzuf − c(∂zuf )2, (3.106)

where the linear operator has the form L ≡ [µ + 2βuf + 3u2
f − 5u4

f + v∂z + ∂zz]. To

solve this linear equation, we use the Fredholm alternative or solvability condition [73]

and obtain

ṗ(t) = vnv ≡ −b
〈φ|uf∂zzuf〉
〈φ|∂zuf〉

− c〈φ|(∂zuf )
2〉

〈φ|∂zuf〉
, (3.107)

where the symbol 〈f |g〉 ≡
∫∞
−∞ f(z)g(z)dz and the function φ(z) belong to the kernel

of the adjoint operator of L, which is independent of diffraction effect. The φ function

is only accessible numerically. As a matter of fact, the correction of the front speed

of nonvariational origin is proportional to the free propagation length L. When L > 0

(L<0), the previous integrals are negative (positive), and then vnv is positive (negative).

Hence, the front speed has two contributions, one of variational origin given by the linear

criterion and another nonlinear one given by the nonvariational effects , i.e.,

v = v0 + vnv. (3.108)
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Figure 3.35: (After [15]) Spatiotemporal propagation of front solution into an unstable state for differ-

ent diffraction lengths. Top panels account for front propagation in the experiment by L = −0.4 cm

(a), L = 0.0 cm (b), and L = 0.4 cm (c), respectively. Bottom panels stand for the front propagation

of model Eq. (3.103) by µ = 1.0, β = 0.1, and free propagation length L = −1.0 (d), L = 0 (e), and

L = 4.0 (f). The insets account for the front profile experimentally and numerically at a given instant.

Therefore, from this perturbative analysis, it is expected that the front speed increases

or decreases with the free propagation length L. However, numerically, only for posi-

tive diffraction, the front speed increases linearly with the free propagation length (cf.

Fig. 3.33(b)). Figure 3.35 shows how the front speed and profile are modified when the

free propagation length L is changed. Despite the above calculation, for L < 0, the

speed of the front remains at the minimum speed in contradiction with Eq. (3.108).

This behavior can be understood in the following way: the front modifies its asymp-

totic profile (cf. Figs. 3.34 and 3.35), which increases its propagation speed given by

the linear criterion [122, 159], so that it cancels the decrease in the speed induced by
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the nonvariational effects. Then, the previous perturbative analysis cannot be valid

because the base solution is modified and it is not a minor correction. This mechanism

explains the origin of the pull-pushed transition of fronts when the disturbance tries

to decrease the front speed, it adapts its shape to maintain the minimum speed. Also,

when the disturbance increases the propagation speed, the system responds by increas-

ing the speed. Therefore, the system exhibits a pull-pushed transition of fronts when

the disturbance begins to increase the minimum speed.

3.5 Extended stable equilibrium invaded by an unsta-

ble state

3.5.1 One-dimensional front propagation from unstable state

Let us consider an one-dimensional scalar field u(x, t), which satisfies a dimensionless

reaction-diffusion equation

∂tu = −∂V
∂u

+ ∂xxu, (3.109)

where V (u) is a potential that characterizes the dynamical evolution of u. Consider-

ing the potential for coexistence between a stable and an unstable state, Figure 3.36a

illustrates the typical potential. The unstable and stable equilibriums are represented

by symbols A and B, respectively. Stable and unstable equilibria are characterized

by being a local minimum and maximum/saddle of the potential. Hence, the stable

state always has less energy than the unstable equilibrium. The model, Eq. (4.6), has a

front solution that connects the equilibrium states that propagates at a constant speed

in order to minimize the energy (cf. Fig. 3.36a) [159, 125]. Let us consider a multi-

stable system, which has two stable states, an unstable and a half-stable equilibrium.

A half-stable equilibrium is a state in which one side is attractive while the other side is

repulsive [150]. Namely, the half-stable equilibrium corresponds to a nonlinear unsta-

ble saddle point. Note that this equilibrium is non-generic because requires imposing

a saddle fixed point. Figure 3.36b depicts an associated potential. Stable equilibria
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are represented by the symbols C and B, and the unstable and half-stable states by

the symbols D and A, respectively. Depending on the initial condition, this system

can present different nonlinear waves between equilibrium states. In this scenario, an

intriguing and unexpected front connects the stable state B and the saddle equilib-

rium A. Counterintuitively, the unstable stable state A invades the stable equilibrium

B. Figure 3.36b illustrates this front propagation. The unstable state A invades the

stable state B because it is more favorable energetically. Considering additive noise,

we observe that the front between the A and B states propagates; however, at a later

time, an extra front appears between the stable state C and saddle state A. Finally,

the state C invades state A and then state B. Indeed, the propagation of a front from

an unstable to a stable state is a transient phenomenon because the physical system

must tend to its global equilibrium.

Let us consider an one-dimensional scalar field u(x, t), which satisfies a dimensionless

reaction-diffusion equation

∂tu = −∂V
∂u

+ ∂xxu, (3.110)

where V (u) is a potential that characterizes the dynamical evolution of u. Considering

a potential that has coexistence between a stable and an unstable state. Figure 3.36a

illustrates the typical potential.

The unstable and stable equilibriums are represented by symbols A and B, respec-

tively. Stable and unstable equilibria are characterized by being a local minimum and

maximum/saddle of the potential. Hence, the stable state always has less energy than

the unstable equilibrium. The model, Eq. (4.6), has a front solution that connects the

equilibrium states that propagates at a constant speed in order to minimize the en-

ergy (cf. Fig. 3.36a) [159, 125]. Let us consider a multi-stable system, which has two

stable states, an unstable and a half-stable equilibrium. A half-stable equilibrium is a

state in which one side is attractive while the other side is repulsive [150]. Namely, the

half-stable equilibrium corresponds to a nonlinear unstable saddle point. Note that this

equilibrium is non-generic because requires imposing a saddle fixed point. Figure 3.36b
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Figure 3.36: Front propagation between a stable and an unstable state. (a) Front propagation into

unstable state, V (u) = −u2/2 + u3/3, A = 0 and B = 1 are unstable and stable states, respectively.

The speed of propagation v = 2. (b) Front propagation from unstable state, V (u) = u6/6− 0.7u5/5−

u4/4+0.7u3/3, A = 0, B = 1, C = −1, and D = 0.7, where B and C are stable state, D is an unstable

state and A is a half stable equilibrium [150]. The left panels account for the respective potential. The

right panels stand for the spatiotemporal evolution and profile of the fronts. Figure retrieved from

Ref. [40].

depicts an associated potential. Stable equilibria are represented by the symbols C

and B, and the unstable and half-stable states by the symbols D and A, respectively.

Depending on the initial condition, this system can present different nonlinear waves

between equilibrium states. In this scenario, an intriguing and unexpected front con-

nects the stable state B and the saddle equilibrium A. Counterintuitively, the unstable

stable state A invades the stable equilibrium B. Figure 3.36b illustrates this front prop-
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agation. The unstable state A invades the stable state B because it is more favorable

energetically. Considering additive noise, we observe that the front between the A and

B states propagates; however, later, an extra front appears between the stable state C

and saddle state A. Finally, the state C invades state A and then state B. Indeed, the

propagation of a front from an unstable to a stable state is a transient phenomenon

because the physical system must tend to its global equilibrium.

Including inherent fluctuations (noise) in differential equations offers a more realistic

description of macroscopic systems. The fluctuations are responsible for causing the

blow-up of unstable equilibria, giving rise to front propagation. Indeed, the fluctuations

generate the emergence of fronts in different spatial places [10]. The typical time of the

emergence of fronts is proportional to the logarithmic of the noise level [10]. Hence, the

front will be observed without interference from the fluctuations while the observation

time is lower than this characteristic time. Figure 3.37 shows the front propagation

into an unstable state obtained from the numerical simulation of model Eq. (4.6) with

V (u) = u6/6 − 0.7u5/5 − u4/4 + 0.7u3/3 and additive Gaussian white noise. Initially,

the system is prepared in the stable state u = 1; then, a perturbation is introduced at

one end of the spatial domain that induces a front between the unstable (A) and the

stable (B) state. Subsequently, after the characteristic time of the fluctuations in state

A, the fluctuations induce a front between the states A and C, which coexists with the

front between the stable and unstable state. Later, a front between the states B and C

is generated (cf. Fig. 3.37). Multistable systems are characterized by a rich variety of

fronts and dynamics, among them [26, 135, 155].

To observe these intriguing fronts, the system under study needs a half-stable equi-

librium. Hence, the system requires that at least one parameter must be set to the

given value. Namely, this makes observing these fronts between homogeneous states

less generic. As we shall show in the case of pattern formation, these fronts are generic.
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Figure 3.37: Front propagation of model Eq. (4.6), V (u) = u6/6 − 0.7u5/5 − u4/4 + 0.7u3/3, with

additive Gaussian white noise and noise level intensity 0.1 and D = 0.85. B = 1, C = −1, and A = 0

are the stable and saddle equilibrium. The upper panel shows the spatiotemporal diagram from the

initial condition homogeneous solution u = 1. The lower panels account for the profile of the field

u(x, t) at the instant represented by the (i), (ii), (iii), and (iv). Figure retrieved from Ref. [40]

3.5.2 Two-dimensional front propagation from unstable state

Non-equilibrium processes often lead in nature to the formation of spatial structures

developed from a homogeneous state through a spontaneous breaking of symmetries

present in the system [129, 133, 58]. The observed patterns correspond to spatial

modes that become linearly unstable, which are stabilized by the nonlinear effects.

The observed wavelength can be determined by the system’s physical dimensions or

geometrical constraints [58]. However, this wavelength can be also intrinsic, which is

determined by the competition of different dynamic transport mechanisms. The origin

of these patterns is often called Turing instability [156]. Several physical systems that
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Figure 3.38: Schematic representation of the bifurcation diagram of the generalized Swift-Hohenberg

model, Eq. (3.111) as function of η parameter for ν < 0 and µ < 0. The vertical axis accounts for

the amplitude ||A0|| of the spatial oscillation of the pattern. ηT , ηB , and ηM account for the critical

value or the transition, the nascent of bistability, and the Maxwell point, respectively. The shaded

area accounts for the pinning region. Insets stand for the different equilibria, where B, A, C, and D

account for the uniform stable, saddle type, hexagonal pattern, and unstable state. Figure retrieved

from Ref. [40].

undergo a symmetry-breaking instability close to a second-order critical point can be

described by real-order parameter equations in the form of Swift-Hohenberg type of

models. These models have been derived in various fields of nonlinear science, such as

hydrodynamics [151], chemistry [119], plant ecology [104], nonlinear optics [153, 47], and

elastic materials [149]. Hence, this model is the paradigmatic equation that describes

the pattern formation. Let us consider a generalized Swift-Hohenberg model for the

real scalar field u = u(x, y, t), which reads [153]

∂tu = η + µu− u3 + ν∇2u−∇4u. (3.111)
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Depending on the context in which this equation has been derived, the physical meaning

of the field variable could be the electric field, deviation of molecular orientations, phy-

tomass density, or chemical concentration. The control parameter µ measures the input

field amplitude, the aridity parameter, or the chemical concentration. The parameter η

accounts for the asymmetry between the homogeneous states. The parameter ν stands

for the diffusion coefficient; when this parameter is negative, it induces an anti-diffusion

process. This process is responsible for the emergence of patterns.

For ν < 0 and µ < 0, the system only exhibits a single homogenous state. When |η| is

large, the system is monostable. By decreasing η < ηT , the system exhibits a first-order

spatial instability, giving rise to the appearance of hexagonal patterns. Hence, there

is a coexistence region between the pattern and homogeneous states (ηT < η < ηB).

Figure 3.38 depicts the bifurcation diagram of Eq. (3.111) as function of the parameter

η (for details of the bifurcation diagram see Refs. [119, 153, 31]). The vertical axis

accounts for the amplitude ||A|| of the pattern. When the hexagons appear, they can

be oriented in different directions due to the isotropy of the system (cf. Fig. 3.38).

Another obvious spatial solution of the system corresponds to the superposition of

concentric rings (see Fig. 3.38). However, this solution is unstable and is a saddle-

type solution, because the interaction of spatial modes gives rise to the hexagonal

patterns [58]. Likewise, numerically, it has been demonstrated that the concentric

ring pattern is unstable [108]. Note that localized concentric ring solutions with a

small number of rings have been studied in Refs. [109, 117]. A saddle equilibrium

is characterized by being linearly marginal, nonlinear unstable, and having at least an

unstable direction. Based on the mode dynamics, the states formed by many equivalent

modes, which is the case of concentric rings, are generally saddle-type [58].

In the coexistence region, one envisages to observe fronts between the states. Depend-

ing on the value of η, one state is more favorable than the other one. Both states are

energetically equivalent at Maxwell point (ηM). However, the system has a region of

the parameter space where the front between these states is motionless, the pinning

range [135], although one state is more stable than the other one. The shaded region in
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Figure 3.39: Unstable concentric ring pattern invades stable homogeneous state. Temporal sequence

of numerical simulation of model Eq. (3.111) with η = −0.216, µ = 0.025, ν = −2.0, periodic (a)

and Neumann boundary conditions (b) and (c) [t1 < t2 < t3 < t4 < t5 < t6]. Figure retrieved from

Ref. [40].

Figure 2 illustrates the pinning region. Outside this region, the most favorable equilib-

rium spreads on the other one. When η approaches ηT (η > ηT ), the homogeneous state

is stable but close to becoming unstable. Then, in this region of the parameter space,

the unstable concentric ring pattern fulfills all the conditions required to invade the

stable homogeneous state. Namely, the concentric ring patterns and the homogeneous

state schematically correspond, respectively, to the equilibria A and B of the potential
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Figure 3.40: Concentric ring pattern propagation in photo-isomerization process in a dye-doped ne-

matic liquid crystal layer illuminated by a laser beam with a Gaussian profile. (a) Schematic representa-

tion of experimental setup, DDLC: dye-doped nematic liquid crystal cell, PBS: polariser beam-splitter,

and CCD: charge-coupled camera device. (b) Temporal sequence of concentric ring pattern propaga-

tion. Figure retrieved from Ref. [40].

of Fig. 3.36b. Figure 3.39 illustrates the spread of the unstable concentric ring pattern

over the stable homogeneous state. Figure 3.39a shows this propagation considering pe-

riodic boundary conditions and, as an initial condition, a spot disturbance with small

stochastic perturbations. Note that the spot disturbance must exceed a critical size

because if it is too small, the system relaxes the uniform state. Due to the initial per-

turbations and the boundary conditions, the front is destabilized from a given temporal
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moment (t4 < t < t5). Generating the emergence of hexagonal patterns that propagate

over the unstable state. Finally, the hexagonal pattern invades the homogeneous state

[86], however, the concentric ring pattern is pinned by the defects that are induced

between both patterns (see the textbook [133] and reference therein). Note that pin-

ning defects generate the richness of textures observed in spatial patterns. A similar

phenomenon is observed when one considers a circular domain disturbed at the center

with the Neumann boundary condition (cf. Fig. 3.39b). Likewise, we have considered a

ring-shaped disturbance at the edge of the domain to analyze how the front penetrates

into the inside of the domain (see Fig. 3.39c). Therefore, an unstable pattern invades a

stable extended state. Note that the difference between the dynamics observed in one

and two spatial dimensions is that the secondary front that connects the two stable

states invades the entire system (one dimension) and partially (two dimensions) due to

the existence of defects.

3.5.3 Experimental front propagation from unstable state in

photo-isomerization process in a dye-doped nematic liq-

uid crystal layer

To experimentally observe front propagation from an unstable state, we consider the

photo-isomerization process in a dye-doped nematic liquid crystal layer illuminated by

a laser beam with a Gaussian profile. For high enough input power, a phase transition

from the nematic to the isotropic state takes place in the illuminated area, and then

the two phases are spatially connected via a front propagating outward from the center

of the beam [130]. For lower input power, photo-isomerization can induce patterns

that correspond to the spatial modulation of the molecular order. Figure 3.40 depicts

the experimental setup under study. Theoretically was demonstrated recently that an

equivalent model to Eq. (3.111) describes the photo-isomerization process in a dye-

doped nematic liquid crystal layer, where u stands for the Landau-DeGennes molecular

scalar order parameter (see the details in [17] and the equivalence of the models in



94 CHAPTER 3. FRONT PROPAGATION INTO UNSTABLE STATE

supplementary material).

The cell consists of two glass plates coated with Poly-Vinyl-Alcohol and rubbed to favor

the planar alignment of the liquid crystal molecules, with a separation of 25µm. The

gap is filled with an E7 nematic liquid crystal doped with the azo-dye Methyl-Red at

a concentration of 0.75% by weight. To induce the fronts, the cell is irradiated with a

frequency-doubled Nd+3:YVO4 laser, polarized in the vertical direction with wavelength

λ0 = 532nm in the absorption band of the dopants. A polarizer beam-splitter is placed

in between the liquid crystal sample and the CCD camera to distinguish the molecular

orientation in the sample. Two planoconvex lenses increase the laser beam diameter to

2cm. The cell was subjected to input powers between P = 300 and P = 700 mW.

Applying a light beam on the sample creates the gradual emergence of concentric rings

that propagate from the center of the beam to the outside. Figure 3.40b displays a

temporal sequence of the unstable concentric ring propagation. Near the boundary of

the illuminated region, the rings begin to deform with a similar morphology that was

observed in the numerical simulations. However, hexagonal patterns are not observed

since the phase that finally invades the system is the isotropic liquid state that corre-

sponds to the black zone within the illuminated domain. This region is black since light

can not cross an isotropic medium between crossed polarizers. Since this stable state

is homogeneous, no trace of the concentric rings remains. In the event that the final

state is a pattern, there will always be a trace of the front between the stable and the

unstable state (cf. Fig. 3.39). Some rings are observed in experimental [22] or in nature

[98], which is the footprint that there was an unstable state that invaded a stable one.

3.6 Front propagation in discrete media

Let us consider a simple discrete version of the Fisher-Kolmogorov-Petrosvky-Piskunov

model, Eq. (3.11) [169]

u̇i = ui(1− ui) +
ui+1 − 2ui + ui−1

dx2
, (3.112)



3.6. FRONT PROPAGATION IN DISCRETE MEDIA 95

where ui(t) stands for the population in i-th position. Note that the dynamics of the

discrete FKPP model can be rewritten in the following form

∂tui = −∂F(ui)

∂ui
(3.113)

where the Lyapunov function is defined as

F =
∑
i

(
−u

2
i

2
+
u3
i

3
+

(ui+1 − ui)2

2 dx2

)
=
∑
i

Vi +
(ui+1 − ui)2

2 dx2
, (3.114)

where Vi is the potential. Hence, the dynamics of Eq. (3.112) is characterized by the

minimization of functional F . Indeed, using Eq. (3.112), one obtains

dF
dt

=
∑
i

∂F
∂ui

∂ui
∂t

= −
∑
i

(
∂F
∂ui

)2

. (3.115)

The discrete Fisher-Kolmogorov-Petrosvky-Piskunov Eq. (3.112) exhibits front propa-

gation into an unstable state. In Ref.[169], it has been established the existence of these

solutions. However, numerical simulation of this model show oscillatory propagation

[9]. Figure 3.41 shows a schematic representation of potential Vi, the front solution,

the front position and minimum speed for different values of discreteness obtained from

numerical simulations of model Eq. (3.112). From this figure, one trivially deduces the

energy source of the front propagation.

Defining the front position as the spatial position that interpolate the maximum spatial

gradient, u(x0) = 1/2 (cf. Fig. 3.41b), one can study the front propagation. Indeed,

front propagates with an oscillatory speed with a given mean speed [9]. When cou-

pling parameter dx increases, the mean speed, amplitude and frequency of oscillations

increases. Moreover, the oscillations exhibited by the speed are non-harmonic type.

Figure 3.42a shows the mean speed as a function of the coupling parameter. For large

dx the speed increases linearly.

From a numerical solution of FKPP model Eq. (3.112), we have computed the Lyapunov

functional (3.114). Figure 3.42b shows evolution of Lyapunov functional as a function

of the front position. Inset of figure 3.42b shows the Lyapunov functional in the co-

mobile system. As we can see, Lyapunov functional decreases with time in a oscillatory

manner.



96 CHAPTER 3. FRONT PROPAGATION INTO UNSTABLE STATE

a)                                                   b)

ui
i

Vi

i

ui

x0

1.0

0.8

0.4

0.2

0.0
210 230 250 270

time
300 600 900

2

2.6

3.2

3.8 Speed

v

d)

00

5

10

15

20

25 Front Position

x0

c) dx=5
dx=2
dx=0.1

time
6004002000

dx=9.5
dx=5
dx=2

Figure 3.41: Front solution of discrete FKKP model Eq. (3.112). a) Schematic representation of

potential Vi. b) Front solution obtained numerically from Eq. (3.112) (blue dots) and the asymptotic

solution Eq.(3.25) (solid line); x0 accounts for the front position. c) Temporal evolution of front

position x0(t). The upper (yellow), middle (orange) and lower (blue) lines correspond to dx = 9.5,

dx = 5, and dx = 2, respectively. d) Temporal evolution of front speed ẋ0(t). The upper (yellow),

middle (orange) and lower (blue) lines correspond to dx = 5, dx = 2, and dx = 0.1, respectively [9].

Usually, the study of the front dynamics is reduced to the front position, i.e., the

dynamical tracking of point x0, where u(x0) = 1/2 is the maximum of the spatial

gradient. This is based on the assumption that the front behaves as a point-like particle.

Thus, point x0 will gives us enough information about the whole structure dynamics.

Surprisingly, the FKPP front exhibits an extended object behavior: each point of the

front shows an oscillation dynamics with the same frequency but different amplitude.

Figure 3.43a shows the spatiotemporal diagram of the front. From this figure, is easy

to infer that the front propagates as an extended object. Moreover, the oscillation with

respect to front position x0 are in anti-phase (see Fig. 3.43b). That is, the maximum
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Figure 3.42: (color online) Front propagation into an unstable state in FKPP model, equation (3.112).

a) Minimum mean speed as a function of the discreteness dx. Dots (blue) correspond to numerical

simulations of model (3.112). The solid (red) and dashed (yellow) lines are the exact and approximative

curve obtained form expressions (3.123) and (3.126), respectively. b) Lyapunov functional as a function

of front position obtained from numerical simulations of Eq. (3.112) with dx = 10. Inset: Lyapunov

functional computed in the co-mobile system.
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Figure 3.43: Front propagation into an unstable state in discrete FKPP model (3.112). a) Spatiotem-

poral evolution of the front propagation into an unstable state in discrete FKPP model (3.112) with

dx = 7.5. b) Trajectory of three different points or cuts: Above (upper yellow line), in (middle red

line), and below (lower blue line) the front position. Inset illustrates different cuts under consideration.

c) Oscillation amplitude of the front speed in different points.

oscillation of a point to the left of the front position coincides with the minimum

oscillation of a point to the right. To explore the structure of the potential over which
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the front propagates, we have followed different points or "cuts" along the front profile,

studying each one separately. Figure 3.43c displays the amplitude of oscillation of the

front speed for different cuts. From this figure, we conclude that this amplitude is

minimal at the front position, increases as one moves away from the front position and

decays to zero abruptly in the front tails.

3.6.1 Theoretical description of the mean speed for the discrete

FKPP model

For discrete media, the FKPP procedure2 is unsuitable to determine the minimum speed.

Due to there is not a continuos dynamical system associated to the co-mobile system

inferred for traveling wave solutions. To compute the minimal front speed, we generalize

the asymptotic procedure ansatz for the front tail [122],

ui(t) = e(αt−2iβ)
[
1 + fωdx;i(t)

]
, i� 1, (3.116)

with α ≡ k〈v〉 and β ≡ k dx/2 are parameters. The index i ≥ 0 is a positive and large

integer number, dx is the discretization parameter, 〈v〉 is the mean speed of the front,

and fωdx,i(t) is a time periodic function with period T ≡ 2π/ω, i.e., fωdx;i(t) = fωdx;i(t+T ),

which accounts for the oscillation of the front speed at the i-th position (cf. Fig. 3.43).

In addition, fωdx;i(t) → 0 when i → ∞. Hence, function fωdx,i(t) takes into account the

periodicity introduced by the discreteness. Linearizing discrete FKKP model (3.112)

and replacing ansatz (3.116), we get

u̇i = ḟωdx;i + α
[
1 + fωdx;i

]
=
[
1 + fωdx;i

]
+
k2

β2

[(
sinh2 (β)

)
+
(
sinh2 (β)

)
fωdx;i

]
. (3.117)

Integrating this expression in a normalized period T

〈ḟωdx;i + α
[
1 + fωdx;i

]
〉 = 〈

[
1 + fωdx;i

]
+
k2

β2

[(
sinh2 β

)
+
(
sinh2 β

)
fωdx;i

]
〉, (3.118)

2Based in study the stationary dynamical system and determine the critical front speed for which

there is a transition of damped and overdamped of unpopulated state
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Figure 3.44: Mean speed 〈v〉 as a function of the steepness parameter k for different values of the

discretization parameter dx, formula (3.120). From the lower to upper curve we consider dx = 0, 2, 5

and 9, respectively.

where

〈g(t)〉 ≡ 1

T

∫ T

0

g(t)dt, (3.119)

we obtain an expression for the mean speed 〈v〉

〈v〉 =
1

k
+ k

(
sinh β

β

)2

. (3.120)

with 〈fωdx;i〉 = 〈ḟωdx;i〉 = 0, due to fωdx;i(t) periodicity. This expression accounts for the

mean speed as a function of steepness and discreteness parameters. Note that 〈v〉 tends

to expression (3.16) when dx→ 0 (β → 0), which corresponds to the continuous limit.

Figure 3.44 shows the mean speed as a function of the parameter k for different values

of the discretization parameter dx. For different values of discretization parameter dx,

〈v〉 is a concave function. We can observe, that the minimum speed 〈v〉min increases as

the discretization parameter dx grows. Meanwhile, the critical steepness kc decreases.

By differentiating the mean speed relation (3.120) and equating to zero, we obtain an

expression for the discretization parameter,

dx2 = 4 sinh βc(2βc cosh β − sinh βc), (3.121)
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where βc = kcdx/2 and kc is the critical steepness to obtain the minimum speed.

Replacing the definition of βc in above expression, we get

dx2 = 4 sinh

(
kcdx

2

)[
kcdx cosh

(
kcdx

2

)
− sinh

(
kcdx

2

)]
. (3.122)

One can not explicitly determine the critical steepness as fa unction of discretization

parameter dx, kc(dx). Hence, minimum speed as a function of dx is a implicit formula

〈v〉mim =
1

kc(dx)
+ kc(dx)

(
sinh β(dx)

β(dx)

)2

. (3.123)

The continuos curve in Fig. 3.42a is the minimal mean speed as a function of the

discretization, expression (3.123). Numerical simulations show quite good agreement

with this expression (cf. Fig. 3.42a).
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Figure 3.45: (color online) Parameter as function of discretization. a) Discretization as a function of

β parameter. Solid (blue) and dashed (yellow) lines are the exact and approximative analytic curves

(3.122) and (3.124), respectively. b) Steepness k as a function of the discretization parameter, dx. Solid

and dashed lines are the exact and approximative analytic curves (3.122) and (3.125), respectively.

Dots (blue) are obtained by numerical simulations.

To have an explicit analytical expression we consider the limit β → 0, thus expression

(3.124) can be simplified to

dx ≈ 2βc
√

1 + β2
c . (3.124)

From here, we can write the parameter βc

βc ≈
dx√

2
(
1 +
√

1 + dx2
)
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and the critical steepness

kc ≈

√
2

1 +
√

1 + dx2
(3.125)

as a function of the discretization parameter dx. Figure 3.45 shows the discretization

parameter dx as a function of β (Eq. (3.124)). The shadow area illustrates the limit

where the approximation β → 0 is valid. Likewise, figure (3.45) shows the steepness k

as a function of the parameter dx. From both, we can infer that expressions (3.124)

and (3.125) are valid in a wide range of the parameter dx. Therefore, in a good ap-

proximation the mean speed 〈v〉 can take the form,

v ≈

√
1 +
√

1 + dx2

2

1 +
4

dx2
sinh2

 dx√
2
(
1 +
√

1 + dx2
)
 . (3.126)

Figure 3.42 shows the mean speed as a function of the discretization parameter dx. Up

to a value of dx = 6.0, expression (3.126) is an adequate approximation. We observe

a good accordance between the analytic expression and the mean speed obtained by

numerical simulations.

In brief, the asymptotic procedure allows an adequate characterization of the average

features of front propagation into unstable states in discrete media. In the next section,

we shall apply this procedure to characterize the mean properties of front propagation

into unstable state in a chain of dissipative coupled pendula.

3.6.2 Theoretical description of the mean speed for the Chain

of dissipative coupled pendula

For the chain of dissipative coupled pendula, Eq. (2.3), the unstable state correspond

to θi = π/2. Considering the asymptotic ansatz for the front tail around this state, we

get,

θi(t) =
π

2
+ A0e

(αt−2iβ)
[
1 + fωdx;i(t)

]
, (3.127)

where A0 is a constant that characterizes the shape of the front tail, α ≡ k〈v〉 and

β ≡ k dx/2 are parameters. fωdx;i(t) is a periodic function of frequency ω in i-th position
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of the chain that describes the oscillatory behavior of the speed. Introducing the above

ansatz in Eq. (2.3) and taking into account only the linear leading terms, we obtain,

θ̈i = α2
[
1 + fωdx;i(t)

]
+ 2αḟωdx;i(t) + f̈ωdx;i(t), (3.128)

= ω2
[
1 + fωdx;i(t)

]
− µ

[
α
[
1 + fωdx;i(t)

]
+ ḟωdx;i(t)

]
+

4

dx2
sinh2(β)

[
1 + fωdx;i(t)

]
.

Integrating this expression in a normalized period T = 2π/ω, and considering 〈fωdx;i(t)〉 =

〈ḟωdx;i(t)〉 = 〈f̈ωdx;i(t)〉 = 0, after straightforward calculations, we obtain

α2 = ω2 − µα +
4

dx2
sinh2(β). (3.129)

Substituting the definition of α, the mean speed reads

〈v〉 = −µ
k

+
1

k

√
µ2 + ω2 +

k2

β2
sinh2(β), (3.130)

and replacing k = 2β/dx,

〈v〉 = − µ

2β
dx+

1

2β

√
dx2 (µ2 + ω2) + 4 sinh2(β) (3.131)

The above expression accounts for front speed as a function of the steepness. In order

to deduce the minimal front speed, we differentiate the above speed with respect to β

ω2
(
µ2 + ω2

)
dx4 + 4

[(
µ2 + 2ω2

)
sinh2(β)− 2

(
µ2 + ω2

)
β sinh(β) cosh(β)

]
dx2

+ 16 sinh2(β) [sinh(β)− β cosh(β)]2 = 0. (3.132)

This expression gives us a relation between the critical steepness kc and the coupling

parameter dx. An explicit expression kc(dx) cannot be derived. Using expression

(3.132) in formula (3.131), we obtain the minimal front speed for the chain of dissipative

coupled pendula, Eq (2.3). Note that this analytical results has quite fair agreement

with the numerical simulations as it is shown in Fig. 3.46a. Therefore, the asymptotic

procedure is a suitable method to characterize the mean properties of front propagation.



3.7. EFFECTIVE CONTINUOUS MODEL: OSCILLATORY PROPERTIES OF FRONT PROPAGATION103

× 1042.651 2.6518 2.6526
-1

0

1

X0

x0

F

dx

<v>
a) b)

-8.115

-8.125

2.659 2.661

×104

×1040 2 4 6 8 10
0.6

1.0

1.4

Figure 3.46: Front propagation into an unstable state in discrete chain of dissipative coupled pendula.

a) Mean front speed as a function of the coupling parameter. Dots (red) are obtained by means of

numerical simulations of Eq. (2.3) with ω = 1.0, dx = 5.0 and µ = 2.0. The solid line is obtained by

using the formulas (3.131) and (3.132). b) Lyapunov functional as function of front position obtained

by numerical simulations of Eq. (2.3) for the same parameters. Inset: Lyapunov functional computed

in the co-mobile system.

3.7 Effective continuous model: oscillatory properties

of front propagation

Due to the complexity of discrete dissipative systems, to obtain analytical results is

a daunting task. In order to figure out the oscillatory behavior of the front, we shall

consider a similar strategy to that used in Ref. [45], which is based on considering an

effective continuous equation that accounts for the dynamics of the discrete system.

The benefit of this approach is that analytical calculations are accessible.

3.7.1 Generalized Peierls-Nabarro potential

Let us consider the continuos order parameter u(x, t), which satisfies

∂tu = −δF
δu
, (3.133)

where the Lyapunov functional has the form

F =

∫ (
−u

2

2
+
u3

3
+

(∂xu)2

2
+

(∂xu)2Γdx(x)

2

)
dx, (3.134)
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Figure 3.47: (color online) Front propagation into an unstable state in FKPP Eq. (3.135) with a

harmonic generalized Peierls-Nabarro potential, Γdx(x) = A cos(2πx/dx) with A = 0.06, and dx = 5.0.

The numerical discretization parameter of the finite differences method is 0.1. a) Spatiotemporal

evolution of the front propagation into unstable state. b) Temporal evolution of the front position and

c) minimum speed.

Γdx(x) is a spatial periodic function with dx period, Γdx(x + dx) = Γdx(x). This

function accounts for the discreteness of the system. The last term of the free energy is

a generalization of the Peierls-Nabarro potential. An effective potential has been used

to explain the dynamics of defects position such as dislocations in condensed matter

physics or dynamics of the position of kink or fronts (see [36, 35] and reference therein).

Here, we consider an effective equation for the entire field u(x, t), which reads

∂tu = u(1− u) +D∂xxu+ Γdx(x)∂xxu+ Γ′dx(x)∂xu. (3.135)

This equation is a populations dynamical model with linear growth, nonlinear satura-

tion, inhomogeneous diffusion and drift force. Numerical simulations with a harmonic

potential Γdx(x) exhibit front solutions. It is important to note that for these numerical

simulations, we have discretized the Laplacian and gradient of u to first neighbors con-

sidering a small dx. For which the discreteness effects are negligible. Figura 3.47 shows
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the spatiotemporal diagram of the front into an unstable state of the effective FKPP,

Eq. (3.135), with a harmonic generalized Peierls-Nabarro potential. Its trajectory and

speed are also illustrated. We can observe that the numerical simulations of the effective

FKPP, Eq. (3.135), and discrete FKPP, Eq. (3.112), have similar qualitative dynamical

behaviors.

To understand better the generalized Peierls-Nabarro potential, Figure 3.48a shows the

effective force for the harmonic case and the amplitude speed for the effective FKPP

Eq. (3.135). From this figure, we infer that the effective force, f ≡ Γdx(x)∂xxu +

Γ′dx(x)∂xu, has an oscillatory structure concentrated in the region where the front dis-

plays larger spatial variations. Moreover, we observe that the structure of the amplitude

of the speed is similar to that observed in the discrete case (cf. Figs. 3.48b and 3.43c).
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Figure 3.48: The generalized Peierls-Nabarro force for a harmonic case, Γdx(x) = A cos(2πx/dx). a)

Front solution and effective force f ≡ 2Γdx(x)∂xxu + 2Γ′dx(x)∂xu. b) Amplitude of the speed for the

effective FKPP Eq. (3.135) with D = 1.97, A = 0.03, and dx = 5.0. The numerical discretization

parameter of the finite differences method is 0.1.

Dynamics of front position

The equilibria are not affected by the presence of the periodical extra terms, effective

force. In the continuous limit, dx → 0 and Γdx(x) → 0 one recovers the Fisher-

Kolmogorov-Petrosvky-Piskunov model Eq. (3.12). Then for dx� 1, the last two terms

of Eq. (3.135) are of perturbative nature. We shall analyze this region of parameters,
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where we can obtain analytical results.

The Fisher-Kolmogorov-Petrosvky-Piskunov model Eq. (3.12) has front solutions of the

form uFKPP (x−vt−p), where p is a constant that accounts for the front position and v

the front speed. Analytical expressions of this solution are unknown, however solutions

in the form of perturbative series are available [123]. Considering the following ansatz

for small discreteness (dx� 1)

u(x, t) = uFKPP (x− vt− p(t)) + w(x− vt− p(t), p(t)), (3.136)

where front position is promoted to a temporal function, p(t) and w is a corrective func-

tion on the order of the perturbative force. Introducing the above ansatz in Eq. (3.135)

and linearizing in w, after straightforward calculations, we obtain

Lw = −ṗ(t)∂ξuFKPP − 2Γdx(x)∂ξξuFKPP − 2Γ′dx(x)∂ξuFKPP , (3.137)

where L ≡ ∂ξξ + v∂ξ + 1 − 2uFKPP (ξ) is a linear operator and ξ = x − vt − p is the

coordinate in the co-mobile system. Considering the inner product

〈f |g〉 =

∫ L

−L
f(ξ)g(ξ)dξ, (3.138)

where 2L is the system size. In order to solve the linear Eq. (3.137), we apply the

Fredholm alternative or solvability condition, and obtain

ṗ(t) = −2
〈Γdx(ξ + vt+ p)∂ξξuFKPP |ψ〉

〈∂ξuFKPP |ψ〉
− 2
〈Γ′dx(ξ + vt+ p)∂ξuFKPP |ψ〉

〈∂ξuFKPP |ψ〉
, (3.139)

where ψ(ξ) is an element of kernel of adjoint of L, L† ≡ ∂ξξ − v∂ξ + 1 − 2uFKPP (ξ),

that is L†ψ = 0. The ψ function is unknown analytically, however the asymptotic

behavior of this function are characterized to diverges exponentially with the the same

exponent that uFKPP converges to their equilibria. Therefore the above integrals diverge

proportional to L, however the ratio is well-defined.

To understand the dynamics described by the above equation for simplicity we shall

consider the generalized Peierls-Nabarro potential for a harmonic case, that is,

Γdx(x) = γ(x) ≡ A cos

(
2πx

dx

)
, (3.140)
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Figure 3.49: Fitting curve for ṗ given by the expression ṗ = a sec2(bx+c)

1+(d tan(bx+c)−e)2 + f with a = 0.57,

b = 0.0682, c = 0.6157, d = 1, e = 0.8, and f = 0.5

Replacing this expression in Eq. (3.139), after straightforward calculations, we obtain

ṗ(t) =
√
K2

1 +K2
2 cos

(
2π

dx
(p− vt) + φ0

)
, (3.141)

with

K1 = A

〈
cos
(

2πξ
dx

)
∂ξξuFKPP (ξ)− 2πξ

dx
sin
(

2πξ
dx

)
∂ξuFKPP |ψ(ξ)

〉
〈∂ξuFKPP |ψ(ξ)〉

,

K2 = −A
〈
sin
(

2πξ
dx

)
∂ξξuFKPP (ξ) + 2πξ

dx
cos
(

2πξ
dx

)
∂ξuFKPP |ψ(ξ)

〉
〈∂ξuFKPP |ψ(ξ)〉

,

tan(φ0) =
K1

K2

. (3.142)

Therefore, the front position propagates in a oscillatory manner. Notice that the Peierls-

Nabarro potential propagates together with the front. Figure 3.48 shows fitting curve

for ṗ using solution of (3.141) if Γdx(x) is given by (3.140). We can see that the analytical

result is in good agreement with the observed dynamics.

In this section, we have studied the effect of discretization on systems that have pulled

fronts. In the case of considering pushed fronts, one expects to get the same results

presented in this section. In short, the effect of discretization is to generate a periodic

potential in the effective continuous description.
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t1 t2 t3

R0

Figure 3.50: Temporal sequence of umerical simulation of extended logistic model in two dimensions,

Eq. 3.143 (t1 < t2 < t3).

3.8 Front propagation in two dimensions

In our daily life many populations spread in two dimensions, not one. In this section

we will consider the propagation of fronts in two spatial dimensions. Let us consider a

extended logistic model in two dimensions (two-dimensional FKPP equation)

∂tN(~r, t) = rN (1−N) +∇2N, (3.143)

where N(~r, t) is the density of population at given position ~r and time t. Figure 3.50

shows a sequence of numerical simulations of temporal images of above model from a

localized perturbation at time t1. As the system evolves, we can see that the front or

Space

Ti
m

e

A

t2

t2

vi

vf

Figure 3.51: Spatiotemporal evolution of a point in te interface. This point is illustartes by A in the

left panel. {vi, vf} account for initial and asymptotic speed.
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interface tends to exhibit a circular front that propagates asymptotically at constant

speed front (cf. Fig. 3.50). Hence, the propagation speed is affected by the curvature

of the interface. Figure 3.51 depicts the spatiotemporal evolution of a point in the

interface. From the images of Figs. 3.50 and 3.51, ones concludes that the front speed

v indecreases with curvature (see Fig. 3.51), that is, v = v∞ + ακ with v∞ asymptotic

front speed of a flat interface, κ curvature and α appropriate dimensionless constant. It

follows from these images that the interface tends to become smooth. The above result

is known as velocity-curvature or Gibbs-Thomson effect [133, 83].

3.8.1 Gibbs-Thomson effect

This effect corresponds to variation in pressure or chemical potential across a curved

surface between two coexistence substances or states. To figure out this effect, let us

imagine a flat interface between to states A and B as is illustrated in Fig. 3.52b. The

physical quantity that accounts for these interface in thermodynamic equilibrium is the

Gibbs free energy G(T, P,N) where {T, P,N} account for temperature, pressure and

number of particles, respectively. The variation of this quantity satisfies

∆G = −S∆T + V∆p+ µ∆N. (3.144)

Considering both states have same temperature and there is not interchange of particle.

The pressure difference between both states is ∆p = ∆G/V . Introducing the density of

free energy ∆ε ≡ ∆G/V and assuming the system is viscous, then the interface speed

v is proportional to the pressure difference and reads

v = −∆ε

M
, (3.145)

where M is the mobility. Therefore the interface propagates from more stable state to

lower one. Indeed, a motionless interface is only admissible if both state have the same

pressure (P1 = P2), that is when a mechanical equilibrium is established. However the

above scenario changes completely when one considers a circular interface (cf. Fig. 3.52).
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One must consider an extra term in the free energy associated with surface energy

(Laplace law [25]), that is,

∆G = −S∆T + V∆p+ µ∆N − γA. (3.146)

where γ is the surface tension. Analogously to the above considerations, one gets

∆p = ∆ε+ γ
A

V
. (3.147)

Consider a circular drop of radius R, we have A = 2πR and V = πR2, then

∆p = ∆ε+ 2γκ, (3.148)

with κ ≡ 1/R is the curvature of the drop. Hence, the drop speed is (the Gibbs-

Thomson effect)

v =
∆ε

M
+ Γκ, (3.149)

with Γ ≡ 2γ/M . Therefore, the drops can have a difference of pressure as result of

curvature (see Fig. 3.52) and the interface can propagate by to mechanism: i) difference

of energy of the states and ii) curvature of the interface. We note that in the population

dynamics simulations in two spatial dimensions we observe the same phenomenon.

P1P1

P1

P2
P2

P2

a) b) c)

A
B

A B

P(y,t)

x
y

Figure 3.52: Coexistence drop of water and water vapor. a) Snapshot of water drop. Schematic

representation of a flat (b) and circular interface between two states (c), represented by A and B. P1

and P2 are the respectively pressures. P (y, t) parametrizes the interface.
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Another physical context where it is known that the speed depends on the curvature is

in crystal growth [37].

3.8.2 Analytical explanation of velocity-curvature effect

Let us consider a circular front N(r − vt) of model (3.143), where {r, θ} are the radial

and angular coordinate, that satisfies

− v∂rN(r, t) = rN (1−N) + ∂rrN +
1

r
∂rN. (3.150)

Introducing local coordinate r = R0 + x and y = R0θ with R0 the radius of the front

position in the above equation, one gets

− v∂xN(x, t) = rN (1−N) + ∂xxN +
1

R0 + x
∂xN. (3.151)

Assuming the a large circular front in compare with the front width, 1/(R0 +x) ≈ 1/R0.

Thus the front equation satisfies

rN (1−N) + ∂xxN +

(
v +

1

R0

)
∂xN = 0, (3.152)

which corresponds to a one-dimensional FKPP equation with a equivalent speed v′ =

v + 1/R0. Hence, the front profile for large radius is given by formula (3.25).

3.8.3 Dynamics around a flat interface

To model the transverse dynamics of a propagative front of population in a two-

dimensional system, we consider a flat or slightly disturbing interface, as illustrated

in Fig. 3.52b. Note that FKPP equation (3.143) has a flat front solution that corre-

sponds to the one dimension FKPP solution (3.25) extended in the transversal, that

is

N(x, y, t) = NFKPP (x− vt− P ), (3.153)

where NFKPP (x − vt) is a solution of Eq. (3.12) and P stands for the front position

or interface. To account the slightly perturbation of the flat interface, we consider the



112 CHAPTER 3. FRONT PROPAGATION INTO UNSTABLE STATE

t1 t2 t3

A A A

B B B(a)                                         (b)                                        (c)

Figure 3.53: Sequence of temporal evolution of a perturbative flat interface between two state {A,B}

(t1 < t2 < t3).

ansatz

N(x, y, t) = NFKPP [x− vt− P (y, t)] + w(z ≡ x− vt− P, P ), (3.154)

where the front interface P (y, t) as promoted to a scalar temporal field, that is, P (y, t)

parametrizes the interface (cf. Fig. 3.52b); w accounts for the profile settings when the

interface is deformed. Introducing the former ansatz in Eq. (3.143) and linearized in w,

one gets at dominant order

∂tN = −(v + ∂tP )∂zNFKPP − v∂zw = rNFKPP (1−NFKPP ) + ∂zzNFKPP

+ (r − 2NFKPP + ∂zz)w + ∂zzNFKPP (∂yP )2 − ∂zNFKPP∂yyP. (3.155)

Rewriting the above expression and using that NFKPP is solution of Eq. (3.12), one

gets

− (r − 2NFKPP + v∂z + ∂zz)w = ∂tP∂zNFKPP + ∂zzNFKPP (∂yP )2 − ∂zNFKPP∂yyP.

(3.156)

To solve the above equation, we impose the Fredholm alternative or solvability condi-

tion3 and it reads

∂tP =
〈Φ(z)|∂zNFKPP 〉
〈Φ(z)|∂zNFKPP 〉

∂yyP +
〈Φ(z)|∂zzNFKPP 〉
〈Φ(z)|∂zNFKPP 〉

(∂yP )2. (3.157)

3Similar method was used in Section 3.1.9.
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This equation with additive noise corresponds to a nonlinear diffusion equation known

as the Kardar-Parisi-Zhang (KPZ) equation [94]. The dynamics of the previous equation

are characterized by diffusive dynamics plus a nonlinear advection term that tends to

cancel out the local protuberances.

Then, the interface in the co-mobile system satisfies a diffusion equation, that is, the

perturbation of the flat interface diffuses and disappears. Therefore, the propagative

flat interface is stable. Figure 3.53 shows the temporal evolution of a perturbative flat

interface, which is consistent with a diffusive equation.

Given a curve P (y, t) parametrized in the space by y, assuming that this curve is not

multi evaluated, the curvature is defined by

κ =

√√√√( ∂yyP√
1 + (∂yP )2

− (∂yP )2∂yyP

[1 + (∂yP )2]3/2

)2

+

(
(∂yP )2∂yyP

[1 + (∂yP )2]3/2

)2

, (3.158)

Considering the flat interface is smooth enough (∂yP � ∂yyP � 1) at dominate order,

we obtain that κ ≈ ∂yyP . Thus, Eq. (3.157) can write as ∂tP = ακ(P ). Hence, in

general we expect that the interface satisfies an equation of the form

∂tP = α∂yyP + β(∂yP )2∂yyP, (3.159)

which correspond to a nonlinear diffusion equation. Figure 3.54 illustrates a numerical

simulation of the above model. One clearly notes that the interface tends to soften and

subsequent dynamic is controlled by the linear diffusion equation. Hence, the interface

propagates and ends in a stable flat interface. The above equation can rewrite as

∂tP = ∂yJ ≡ ∂y

(
α∂yP + β

(∂yP )3

3

)
, (3.160)

where J is a flux of the interface P . Indeed, the interface satisfies a continuity equation,

that is, in the co-mobile reference system the area of the interface,
∫
P (y, t)dy, is

conserve. Furthermore, equation (3.159) is a variational model becuse

∂tP = −δF
δP

, (3.161)
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with

F [Py] =

∫ (
α
P 2
y

2
+ β

P 4
y

12

)
dy. (3.162)

Therefore, the dynamical evolution of model (3.159) is characterized to minimize the

functional F . Taking the spatial derivative and introducing the variable Λ = ∂yP , the

above equation reads

∂tΛ = ∂yy
δF
∂Λ

= ∂yy

(
αΛ + β

Λ3

3

)
, (3.163)

where

F [Λ] =

∫ (
α

Λ2

2
+ β

Λ4

12

)
dy. (3.164)

This model it is know as the Cahn-Hilliard equation [38, 39, 19]. Let us consider

dF
dt

=

∫
dy
δF
∂Λ

∂tΛ =

∫
dy
δF
∂Λ

∂yy
δF
∂Λ

= −
∫
dy

(
∂y
δF
∂Λ

)2

≤ 0. (3.165)

Hence, the dynamics of this model (3.163) is characterized by the minimization of F ,

that is, this equation is relaxation type.

The Cahn-Hilliard equation has been derived to describe the phase separation dynamics

in a conservative system, such as binary alloys [66], binary liquids [145], glasses [80],

Time

Sp
ac
e

t1

t1

P(y,t)

t2

t2 t3

t3

Figure 3.54: Spatiotemporal evolution of the nonlinear diffusion equation (3.159). The right panels

correspond to the profile of the interface given three times {t1, t2, t3}, respectively.
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and polymer solutions [147] to mention a few.

3.9 Front propagation in Nonreciprocal Coupling

The analysis and study presented in this section are based on article [132].

The dynamics of coupled oscillators have attracted the attention of physics since its

dawn. Phenomena like synchronization [131], energy transfers from one oscillator to

another [63], or wave propagation [69] are paradigmatic dynamical behaviors of coupled

oscillators. In all the above examples, the oscillators are usually coupled with reciprocal

elastic media. Namely, the elastic media are characterized by applying a force of equal

magnitude and opposite direction to each coupled oscillator; such dynamical behavior

is known as Maxwell-Betti reciprocity [116, 29]. Namely, if the oscillators are swapped,

the force or propagation of the energy is indistinguishable. Non-reciprocal behavior has

been studied in diverse physical fields due to asymmetrical, nonlinear, and/or time non-

reversal features. In optics, non-reciprocal responses have been observed in birefringent

prisms [6], optomechanical resonators [121], and asymmetric cavities [167]. In acoustics,

an emitter and a receiver can exhibit non-reciprocal behaviors in a resonant ring cavity

biased by a circulating fluid [72]. A similar phenomenon is achieved for electrically

driven non-reciprocity on a silicon chip [107]. Non-reciprocal behaviors for the prop-

agation of electromagnetic waves have been accomplished through the application of

magnetic fields [166, 85], angular momentum [148], nonlinear coupling [105], and mov-

ing photonic crystal [165]. In active matter, non-reciprocal couplings are a rule rather

than an exception [128, 77]. Recently, through the use of mechanical metamaterials

[54, 93], non-reciprocal coupling elements have been built up.

To study the non-reciprocal coupling effect on nonlinear waves, based on a prototype

model of a nonlinear chain, the dissipative Frenkel-Kontorova model [35] with non-

reciprocal coupling to nearest neighbors, a convective instability between unstable and

stable equilibrium is observed. Let us consider a dimensionless chain of N + 1 dissipa-

tive coupled pendulums (the dissipative Frenkel-Kontorova model with non-reciprocal
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Figure 3.55: Non-reciprocal coupled pendula chain and front propagation. (a) Schematic representation

of a chain of pendulums coupled with a non-reciprocal material. θi(t) is the angle formed by the

pendulum and the vertical axis in the i-position at time t. Yellow cylinder accounts for a non-reciprocal

metamaterial. Instantaneous profile and spatiotemporal evolution of π-kink obtained for Eq. (3.170)

with ω = 1, D = 4, α = 1 (b), and α = 2.5 (c). This figure is a modification of a figure of article [132].

coupling [132])

θ̈i = ω2 sin θi − µθ̇i + (D − α) (θi+1 − θi)− (D + α)(θi − θi−1), (3.166)

where θi(t) is the angle formed by the pendulum and the vertical axis in the i-position

at time t (cf. Fig. 3.55a). ω and µ are the natural frequency and the damping coefficient

of pendulums. D and α account for coupling elements that have different left-to-right

and right-to-left linear responses. α accounts for the non-reciprocal coupling; when

α = 0, the chain has a reciprocal coupling. D stands for the linear deformation of an

elastic material. α could account for the linear deformations of a rubber non-reciprocal

torsion metamaterial [54] or a non-reciprocal robotic coupling [34]. Figure 3.55 shows

a schematic representation of a chain of dissipative coupled pendulums. Note that

θi = 0 and θi = π describe the upside-down and upright pendulum, respectively. Equa-

tion (3.166) is of Lagrangian nature, which has the form [132]

L =
∑
i

[
θ̇2
i

2
− ω2 cos θi −

D − α
2

(θi+1 − θi)2

]
eµtΛi,
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where Λ ≡ (D − α)/(D + α) is an auxiliary parameter. Using the principle of least

action, the Euler-Lagrange equation reads

d

dt

(
∂L

∂θ̇k

)
− ∂L

∂θk
= 0. (3.167)

To obtain this equation, one must determine

∂L

∂θk
=

(
ω2 sin θk + (D − α)(θk+1 − θk)

(
D − α
D + α

)k
− (D − α)(θk − θk−1)

(
D − α
D + α

)k−1
)
eµt,

(3.168)

and
d

dt

(
∂L

∂θ̇k

)
=
(
θ̈k + µθ̇k

)(D − α
D + α

)k
eµt. (3.169)

Equating both terms, factoring eµt and
(
D−α
D+α

)k, one obtains Eq. (3.170). Thereby, the

dynamics of Eq. (3.166) is steered by a principle of least Action. To figure out that the

non-reciprocal chain dynamics have more straightforward calculations and analytical

expressions, we consider the overdamped limit of the dissipative Frenkel-Kontorova

model (µ→∞). Then equation (3.166) can be approximated by

θ̇i = ω2 sin θi + (D − α)(θi+1 − θi)− (D + α)(θi − θi−1). (3.170)

A similar model was proposed to study coupled Josephson junctions [154]. Two evident

extended steady states correspond to the uniform upside-down and upright pendulums.

To study the dynamics of nonlinear waves between these two states, we consider the

boundary conditions being Dirichlet (θ0(t) = 0) and Neumann (θN(t) = θN−1(t)) on

the left and right flank of the chain, respectively.

In the reciprocal limit, α = 0, considering all upside-down pendulums as an initial

condition, disturbing a pendulum is observed in the emergence of a nonlinear wave

that propagates from the upright to the upside-down pendulums with a well-defined

speed. This nonlinear wave is known as π-kink [10]. The front speed is characterized

by exhibiting a weakly oscillatory behavior [10]. π-kinks are persistent in the presence

of non-reciprocal coupling. Figure 3.55 shows the profile of a π-kink wave and its
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Figure 3.56: Phase diagram of the overdamped Frenkel-Kontorova equation (3.170) with ω = 1. In

zone I, the upright pendulums invade the upside-down ones. This process is reversed in zone II. The

blue curve, formula (3.174), is the analytical absolute convective instability between the upright and

upside-down pendula. The purple (D = α) and orange curves account for the monotonous to non-

monotonous front transition, using the formula (3.172). The star symbol (?) accounts for the critical

point (α = 1/2, D = 1/2) where the critical curves converge. Red and green curves separate the

localized structures’ self-assembly region. The red curve was obtained using the formula D = 1/2.

The green curve is achieved through the divergence of the self-assembly wavelength. All circles are

obtained employing numerical simulations. This bifurcation diagram is reported in Ref. [132].

respective spatiotemporal diagram. These diagrams were obtained employing numerical

simulations.

As a result of non-reciprocal coupling, the speed of the π-kink decreases when α is

increased. π-kinks that invade the upside-down pendulums are observed in zone I of

Fig. 3.56. The previous dynamical behaviors change when considering large enough

α, through an absolute convective instability [106], the upside-down pendulums invade

upright ones, see Fig. 3.55c. These fronts are observed in zone II on the bifurcation

diagram in Fig 3.56.

To characterize the absolute convective instability, we use the same strategy presented
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in Ref. [11]. Let us introduce the ansatz θi(t) = Aek(i+〈v〉t) for the tail of the front, to

determine the average front speed 〈v〉, where k accounts for the front steepness. Most

precisely, let us consider the following ansatz for the asymptotic left tail of the front

θ(i, t) ∼ ek(i+vt)(1 + fTk,i),

where fTk,i(t) is a small oscillatory function, fTk,i(t) � 1, with period T and zero mean

value. Inserting this ansatz in Eq. (3.170), we get

kv(1 + fTk,i) + ˙fTk,i = (ω2 − 2D + 2D cosh k − 2α sinh k)(1 + fTk,i)

+D(fTk,i+1 − 2fTk,i + fTk,i−1)− α(fTk,i+1 − fTk,i−1). (3.171)

Averaging over the period T , 〈v〉 ≡
∫ t+T
t

v(t′)dt′/T , we get the average front speed 〈v〉

satisfies

〈v(k)〉 =
ω2 − 2D

k
+ 2

(
D cosh(k)− α sinh(k)

k

)
. (3.172)

Note that this is equivalent to proposing the following ansatz for the asymptotic left

tail of the front θ(i, t) ∼ ek(i+〈v〉t). Therefore, the system exhibits a continuous family of

nonlinear waves, fronts, parameterized by their respective steepness k and front speed

〈v(k)〉. Bounded disturbances induce front propagation into the unstable state with

the minimum front speed vmin as a function of the steepness, i.e., vmin = 〈v(k = kc)〉,

where the critical kc satisfies ∂k〈v(k = kc)〉 = 0 and ∂kk〈v(k = kc)〉 > 0 [159].

3.9.1 Absolute convective instability of the FKPP front

The absolute convective instability corresponds when the minimum speed is zero 〈v(k =

kc)〉 = 0 [106]. Then, around this region of parameters, the propagation of the front

may change the direction of propagation. In Figure 3.56, the curve that separates zone

I from II corresponds to absolute convective instability. Hence, one can impose that

〈v(k = kc)〉 = 0 at this bifurcation. Using the relation

∂k(kv) = v + k∂kv = 2∂kg(k),
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where g(k) ≡ D cosh k − α sinh k and imposing the conditions ∂kv = v = 0, we get

∂kg(k)|kc = 0.

From this expression, it is obtained kc = arctanh(α/D). Replacing kc in formula (3.172),

we obtain

0 = ω2 − 2D + 2g
(
arctanh

α

D

)
.

Using cosh(arctanhx) = 1/
√

1− x2 and sinh(arctanhx) = x/
√

1− x2, the following

expression describes the absolute-convective instability in the (D,α) plane

0 = ω2 − 2D +
2D√

1−
(
α
D

)2
− 2α2/D√

1−
(
α
D

)2
= ω2 − 2D +

2D√
1−

(
α
D

)2

(
1−

( α
D

)2
)
.

(3.173)

Simplifying this expression

ω2(ω2 − 4D) = −4α2,

and finally solving for D, it reduces to

D =
α2

ω2
+
ω2

4
. (3.174)

Figure 3.56 shows the bifurcation diagram of the overdamped Frenkel-Kontorova model,

Eq. (3.170). The dashed blue curve accounts for the previous expression (absolute

convective instability). Notice that for large D coupling, the system is adequately

described by the continuous limit, the dissipative sine-Gordon equation with advection,

where the dynamic behaviors described above are expected.

3.9.2 Phase diagram of the overdamped Frenkel-Kontorova equa-

tion

Surprisingly, as α increases further, the fronts exhibit a transition from monotonous to

non-monotonous fronts. Figure 3.57 shows the typical non-monotonous front observed

and its propagation. These fronts are observed in zones III and IV of the phase diagram

shown in Fig. 3.56. In zone III (IV), the upside-down (upright) state propagates into
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Figure 3.57: Non-monotonous fronts of the overdamped Frenkel-Kontorova equation (3.170) with ω =

1. Profile (a) and spatiotemporal evolution (b) of a non-monotonous front propagates from upside-

down pendulums into upright ones for D = 1 and α = 1.25. v and v′ account for speeds of different

fronts. Profile (c) and spatiotemporal evolution (d) of a non-monotonous front propagates from upright

pendulums into upside-down for D = 0.25, and α = 0.325. This figure is reported in Ref. [132].

the upright (upside-down) one. The transition from monotonous to non-monotonous

front is characterized by the fact that the speed curve 〈v(k)〉, formula (3.172), ceases to

have a minimum, which becomes an inflection point. Indeed, the minimum is now in

the complex plane of k, where the imaginary part corresponds to the spatial oscillations

observed in the front profile (cf. Fig. 3.57). By imposing that 〈v(k = kc)〉 stops having

a minimum, we obtain

2D − ω2

arctanh
(
D
α

) = 2α

√
1−

(
D

α

)2

. (3.175)

For D < ω2/2, an explicit solution of the above transcendent equation is D = α.

Notice that this relationship corresponds to the fact that each oscillator is only coupled

towards the left flank. Furthermore, when D < α, springs towards the right side

are not of restoring behavior; that is, their elastic constant is negative. The above is
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Figure 3.58: Self-assembly of localized structures and the wavelength surface map for the overdamped

Frenkel-Kontorova Eq. (3.170) with D = 0.4, α = 0.5, and ω = 1. (a) Spatiotemporal evolution and

respective profiles in two instants of time, t1 = 120 and t2 = 395. v accounts for the traveling wave

velocity. (b) Wavelength surface map for the D and α parameter space.

unacceptable for mechanical springs. However, this type of coupling can be achieved

using non-reciprocal robotic metamaterials [34]. For D > ω2/2, an explicit analytic

expression is not accessible. Note that the curve obtained parametrically, formula

(3.175), is slightly below the straight line D = α. Figure 3.56 illustrates these curves

through the purple and orange dashed line, respectively. D = α = ω2/2 is a critical

point where the different transition curves converge, which is represented by a star in

the phase diagram of Fig. 3.58. From non-monotonous fronts where the upside-down

pendulum state invades upright ones, unexpectedly, as D decreases, the emergence of

a traveling wave is observed; see Fig. 3.58. Note that these patterns are characterized

by connecting the vertical pendulum to itself. These propagative waves are observed in

zone V on the phase diagram of Fig. 3.58.

3.10 Convective instabilities and front propagation

In population dynamics, one can imagine non-reciprocal coupling, for example, as a

consequence of fluid movement. This is the case, for example, with fish populations,

where one imagines that the population dynamics can be described by the model

∂tN = µN(1−N) + ∂xxN − v∂xN, (3.176)

where N accounts for the fish populations, µ growth rate of populations with a logistic

saturation, diffusive transport, and v account for the nonreciprocal coupling as conse-

quence of drag force of the fluid. Figure 3.59a illustrates weighing in a turbulent fluid.

Considering that there is no non-reciprocal effect v = 0, a local perturbation of the

non-populated state induces two fronts that enter the system as shown in Fig. 3.59b.
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a) b) 

Absolute state

c) d) 

Convective state

Absolute state

Absolute-convective
Instability

Figure 3.59: Systems with advection. a) Snapshot of fish in an environment of large force of drag by

means of a fluid. Spatiotemporal diagram and profile of the population at a given instant: b) Absolute

regime of the logistic model with advection, v < vcia. A small disturbance invades the system. c)

convective regime, where a small perturbation is completely advected into the system (v > vcia), i.e.

the perturbation is pulled out of the system so that the system returns to its population state. d)

Convective-absolute instability, in which the disturbances cannot enter the system v = vcai, but neither

can they be advected out of the system.

If we consider a reciprocal coupling effect that is large enough v 6= 0, we observe that

when a similar perturbation is performed, the perturbations are advected as shown

in Fig.vmin + v . Namely, the disturbance generates two fronts that connect the non-

population state with the population state. In this case, both fronts propagate in the

same direction determined by the non-reciprocal term. Notice that the front on the

right propagates faster than the front on the left (see Fig. 3.59c). A simple way to

understand the previous phenomenon is to change the co-mobile reference system. Let
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us introduce the coordinates y = x− vt and t = τ ; then, Eq. (3.178) takes the form

∂τN = µN(1−N) + ∂yyN, (3.177)

which corresponds to the FKPP model used for the propagation of fronts into a stable

state, see for more details on the Chapter 3. For local perturbation, the previous

equation has front solutions NFKPP (y − vminτ) that connect the population (N = 1)

and non-population (N = 0) state that propagate with a minimum speed vmin =
√
u.

Hence, the system exhibits two from NFKPP (x − (vmin ± v)t). When v > vmin, the

system has two fronts that spread towards the right flank with different speeds, the

forward one vmin + v and the rear one vmin + v, see Fig. 3.59c). Therefore, in this

parameter regime, advective regime, the state of the population is stabilized because

any disturbance is advective outside the system. On the other hand, when v < vmin

and v > 0, the population state invades the system with a velocity towards the right

flack with vmin + v and to the left flack with vmin − v . This regime corresponds to the

absolute regime, the population state invading the system.

From the previous analysis, one can see that there is a critical value of velocity vcai,

where the system presents a transition between the absolute advective regime. This

transition is achieved when the drag speed is equal to the speed of the front v = vcai =

vmin = 2
√
µ. Figure 3.59d illustrates the point of absolute and convective instability. In

this transition, the right front advances to the left flank, but the left front is motionless.

3.10.1 Linear analysis of absolute convective instability

Let us consider the linearized model (3.178)

∂tn = µn+ ∂xxn− v∂xn, (3.178)

where N ≈ 0 + n(x, t) and n is a small scalar field (n� 1). Let us consider a leftward

propagative perturbation in Fourier space which takes the form n = n0e
κ(x+v0t)ei(kx+ωt),

where κ is the steepness of the front, v0 speed of the front, k and ω the wavenumber
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κ

v(κ)

v=vcai

Figure 3.60: Front speed v0(κ) as a function of the steepness κ given a speed of the non-reciprocal

term v. The curves with different colors correspond to front speed curves for different intensities of

non-reciprocal coupling. The red, green and orange curves correspond to v = {0, 1.5√µ, vcai = 2
√
µ}.

and frequency of the mode. Introducing this ansatz in the previous equation, one gets

vo(κ, k) =
µ

κ
+ κ− k2 − v,

ω(κ, k) = 2kκ− kv, (3.179)

Figure 3.60 shows the typical form of the front speed v0(κ) as a function of the steepness

κ given a speed of the non-reciprocal term v. Notice that the speed of the front has a

minimum. To compute this minimum, we compute the derivate of V0 as function of κ

and k

∂v0

∂k
= 0 = −2k,

∂v0

∂κ
= 0 = − µ

κ2
+ 1,

Thus the critical value k∗ = 0 and κ∗ =
√
µ, the speed takes the form

v0(κ∗, k∗, {µ, v}) = 2
√
µ− v, (3.180)

ω(κ∗, k∗) = 0, (3.181)
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Then, the speed of the front v0(κ) is cero for a critical velocity of the drag v ≡ vcia =

2
√
µ. Hence, for this drag speed vcia, the left front of the propagation is motionless as

illustrated in Fig. 3.60d). For speeds lower than this critical, v < vcia, the population

state invades the system, absolute regime.

3.10.2 Noise sustain structures



Chapter 4

Front propagation between stable

state: bistable fronts

4.1 Motivation

Let us consider the model of nematic-isotropic transition, Eq. (3.90), with noise

∂S(x, t)

∂t
= −AS +BS2 − S3 + ∂xxS +

√
ηζ(x, t), (4.1)
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T
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Figure 4.1: Spatiotemporal evolution of the order parameter S(x, t) from the unstable state using

model Eq. (4.1) with A = 0.05, B = 1, and η = 10−5. The right panels illustrate the profile of S in

two given consecutive instants.
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where ζ(x, t) is a gaussian noise with zero mean value and correlation 〈ζ(x, t)ζ(x′, t′)〉 =

δ(x−x′)δ(t−t′). For negative A, this model has two stable {Sm, Sm1} and unstable state

(SI) as illustrated in the bifurcation diagram (cf. Fig. 3.28). Numerical simulations of

this model from the unstable state as initial condition is characterized by the emergence

of FKPP fronts between the different nematic states. Subsequently, these fronts collide,

generating nonlinear wave between these two stable equilibria. Figure 4.1 depicts this

front dynamics process. From this figure, one can see that the waves between the stable

state propagating with a well defined speed. Throughout this chapter will be devoted

to the understanding of these nonlinear waves, which we call normal fronts [141].

4.2 Simple model of Ferromagnetic transition

Ferromagnetic materials are characterized by exhibiting a permanent magnetic (mag-

nets). Typical materials that exhibit this property are cobalt, iron and nickel. However,

when one increases the temperature these materials lose this magnetic property. When

one decreases the temperature becomes another magnetic exactly at the same critical

temperature, which is referred to as the Curie temperature, TC [96]. From a microscopic

T

Tc

M

Figure 4.2: Schematic representation of ferromagnetic transition. T andM account for the temperature

and magnetization, respectively.
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point of view to sufficiently high temperatures the magnetic spins of the material are

disordered. Figure 4.2 illustrates the ferromagnetic materials as function of temper-

ature. For temperatures lower than the Curie temperature, the magnetic spins are

arranged in one or another direction.

Following the spirit of Landau to describe this transition [152, 101], let us consider

as an order parameter the magnetization M(~r, t), which accounts for the density of

magnetic spins or moments. When the magnetization is zero the system does not exhibit

magnetism. Assuming the ferromagnetic transition is smooth and there is magnetic

exchange with the first neighbors. The free energy that characterize the ferromagnetic

transition is

F =

∫ (
ε
M2

2
+
M4

4
+ · · ·+ [∂xM ]2

2

)
dx, (4.2)

where ε is the bifurcation parameter that is proportional to T − Tc. The dynamics of

magnetization is given by (dissipative φ4-model )

∂tM = − δF
δM

= εM −M3 + ∂xxM. (4.3)

For positive ε there is only one states (M = 0) and for ε negative, the system has three

equilibria one unstable and two stables. Figure 4.2 shows the bifurcation diagram of

T

Tc

M H

Figure 4.3: Schematic representation of ferromagnetic transition under the influence of an external

magnetic field H.
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(a) (b) (c)

Figure 4.4: Temporal sequence of snapshot of a magnetic material under the influence of an external

magnetic field.

this model, where the equilibria are M = {0,±
√
ε}. In presence of external magnetic

field the above scenario changes, the ferromagnetic transition becomes an imperfect

transition as it is illustrated in Fig. 4.3. Indeed, the forced magnetic material is a

magnet even over the curie temperature (cf. Fig. 4.3). The external magnetic field

favors a magnetization on the other. Hence, the external magnetic field broke the

symmetry between both magnetic equilibria. A simple term that broke this symmetry

in the free energy is

F =

∫ (
HM + ε

M2

2
+
M4

4
+ · · ·+ [∂xM ]2

2

)
dx, (4.4)

likewise the dynamics of the magnetization reads

∂tM = H − εM −M3 + ∂xxM. (4.5)

The bifurcation diagram of this model is depicted in Fig. 4.3. Due to this transition has

coexistence between two stable domain, one expect to observe front propagation be-

tween this two asymmetric states. Figure 4.4 shows a temporal evolution of a magnetic

material under the influence of an external magnetic field.

4.3 Analytical characterization of front speed
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Figure 4.5: Front propagation in bistable variational model Eq. (4.9) with positive ε. The upper

panels represent the potential, V (u), for different values of η. The middle and lower panels illustrate

the front profile and their respective spatiotemporal evolution [14].

4.3.1 Variational systems

Let us consider a simple one dimensional reaction diffusion model of the form

∂tu = −∂V
∂u

+ ∂xxu = −δF
δu
, (4.6)

with a bistable potential and

F =

∫ (
V (u) +

[∂xu]2

2

)
dx. (4.7)

To fix ideas we can consider a potential

V (u) = −ηu− εu2/2 + u4/4. (4.8)



132CHAPTER 4. FRONT PROPAGATION BETWEEN STABLE STATE: BISTABLE FRONTS

In the upper panels of Fig. 4.5 is represented the potential for different value of η and

positive ε. This system have two trivial equilibria represented by {A,B}, that is, in

this region of parameters the system exhibits bistability. For small η, the equilibria has

the form A =
√
ε+O(η) and B = −

√
ε+O(η) .

Thus, the reaction diffusion equation reads

∂tu = η + εu− u3 + ∂xxu. (4.9)

This model correspond to a simplified model of ferromagnetic transition. From the

dynamical point of view this model correspond to an extended pitchfork bifurcation

[59], where ε and η are the bifurcation parameter and parameter that controls the

relative stability between equilibria. This bifurcation accounts for the nascent of bista-

bility [153]. In the context of catastrophe theory the previous model corresponds to an

extended cusp catastrophe [20, 76].

Numerical simulations of the above model by small η and positive ε show front propaga-

tion between the equilibria. Figure 4.5 shows the profile and spatiotemporal evolution

of front solutions of simple bistable model (4.9). Considering a propagative solution

u(x− vt), we have the following Newton type equation

− v∂zu = −∂V
∂u

+ ∂zzu, (4.10)

where z = x− vt is the co-mobile coordinate. Thus the above equation can rewrite as

∂zzu =
∂V

∂u
− v∂zu = −∂W

∂u
− v∂zu, (4.11)

This equation correspond to a Newton type equation with a potential W (u) = −V (u),

that is, the potential is inverted. Figura 4.6 depicts the respective potentials V and W .

Hence for this Newton type equation, the front solution corresponds to a heteroclinic

curve between the equilibria. Then, starting from B state, there is an only one damping

coefficient vc, for which the system presented an heteroclinic. For larger speeds (v > vc)

the trajectory from B ends at the unstable equilibrium, which corresponds to a local

minimum of effective potentialW . Figure 4.6 shows this equilibrium that is represented
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by C. Contrary to lower speeds (v < vc), the trajectory diverges to infinity. Therefore,

normal fronts only have a single speed of propagation (v = vc). Which it is a completely

different features in compare to FKPP fronts.

In the case of considering a front connecting A with B, it is important to note that

the state A corresponds to a local minimum, then the speed is negative to generate

this trajectory, i.e., this term is now an injection energy (v < 0). From Newton type

equation, one can infer that when two states have the same energy, the front solution is

motionless. The possibility of parameter space having a motionless front is known in the

literature as Maxwell point [79]. Thus the mechanism of propagation of fronts between

stable states for variational systems is the energy difference between these states. That

is, when the front spreads the free energy F decreases.

To determine analytically the front speed, one can multiply Eq. (4.10) by ∂zu and

integrated in the entire domain, one gets

−v
∫
dz(∂zu)2 = −

∫
dz
∂V

∂u
∂zu+

∫
dz∂zzu∂zu,

= −
∫
dz
∂V

∂z
+

∫
dz∂z

(
[∂zu]2

2

)
,

= −∆V +
[∂zu]2

2
|∞−∞, (4.12)

where ∆V = V (z = −∞)− V (z = ∞) = V (A)− V (B). Using the fact that the front

in infinity converges to the steady state, thus ∂zu|±∞ = 0. Finally, one obtains the

V(u)

u
B

A

W(u)

u

B
A C

u

x
Front position

Front core

A

B

u

xA
B

Figure 4.6: Bistable potential. Left and central panel correspond to original and effective potential in

the Newton type equation. Right panels account for the normal front solutions.
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following expression for the front speed [135]

v =
∆V∫
dz(∂zu)2

. (4.13)

From the above formula, one can conclude that the front speed is proportional to the

energy difference. However, the above expression is not an explicit formula for the front

speed since the u(z) profile depends on v. Note that the above result is valid for any

variational system of the form (4.6).

Front propagation close to Maxwell’s point

Let us consider η = 0, Maxwell’s point, the bistable model (4.9) has a motionless front

solution of the form

u(x, t) =
√
ε tanh

(√
ε(x− x0)

2

)
, (4.14)

where x0 stands for the front position. Considered the term proportional to η as a

perturbative one, we can consider the following ansatz

u(x, t) =
√
ε tanh

(√
ε(x− x0(t))

2

)
+ w(x, x0), (4.15)

where the front position is promoted to a temporal function and w is a small correction

function. We assume that the temporal variation of front position and w are the orden

of perturbation (ẋ0 ∼ w ∼ η). Introducing the above ansatz in Eq. (4.9), linearizing in

w, and after straightforward calculations we obtain the following solvability condition

ẋ0 =
η
∫
dz∂zu∫

dz(∂zu)2
=

3
√

2

2ε
η. (4.16)

Then the front speed is proportional to η.

4.4 Front propagation at the Freedericksz transition

As we have already mentioned in Chapter 3.2.2, the liquid crystals are characterized by

having a locally orientational order. This soft material must be sustained in a container.

The container walls interact with the liquid crystal molecules in the walls inducing
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Figure 4.7: Schematic representation of the Freedericksz transition for a nematic liquid crystal with

planar anchoring.

certain orientations. If molecules are oriented parallel or orthogonal to the walls is

referred to as planar or homeotropic anchoring [41, 62]. Figure 4.7 shows a nematic

liquid crystal sample with planar anchoring. As a result of anchoring all molecules

are oriented in the same direction, because anchoring molecules apply a torque over

the other molecules. Through the application of an external field one can induce an

extra torque [41, 62]. In particular, if the molecules have positive dielectric constant,

the application of a voltage orthogonal to the walls can induce a torque such that

molecules like to be parallel to electric field. Competition between the torque induced

by the anchored molecules (elasticity) and the torque induced by the external field can

induce an instability for the molecular orientational order. This instability is well-know

as the Freedericksz transition [41, 62]. Indeed, there is a critical value of the intensity

of the electric field, | ~Ec|, for which the molecules stars to rotate. Figure 4.7 depicts the

the Freedericksz transition.

Experimental observations of Freedericksz transition to nematic liquid crystal samples

show that this instability is supercritical [62]. To describe the dynamics of a nematic

liquid crystal thin film must be introduced as order parameter average angle molecules



136CHAPTER 4. FRONT PROPAGATION BETWEEN STABLE STATE: BISTABLE FRONTS

t1 t2

Figure 4.8: Domain walls above the Freedericksz transition for successive instant (t1 > t2), courtesy

LAFER.

θ(r⊥, t) in the thickness direction. In the inset of Fig. 4.7 this angle is illustrated. Based

on the theory of bifurcations close to the Freedericksz transition, we can introduce the

following model describing this transition

θ̇ = α(| ~E|2 −K3)θ − βθ3 + κ∇2
⊥θ, (4.17)

where {α, β} are adequate dimensional parameters, κ accounts for diffusion length,

and ∇2
⊥ accounts for the Laplacian in transversal coordinates. Below the transition

point (| ~E|2 < K3)), the only stable equilibrium corresponds to the molecules parallel

to the walls, θ = 0. Above the transition point (| ~E|2 ≥ K3), the system exhibits two

homogeneous configurations as equilibrium, θ = ±
√
| ~E|2 −K3 . Energetically these

two configurations are equivalent. That is, this transition corresponds to a spontaneous

breaking of the reflection symmetry. For an arbitrary initial condition this system

exhibits different domains separated by defects. This front solution are denominated

Ising wall because connect symmetric states. Moreover, this solution due to connect

energetically equivalent states are denominated kink solutions [115, 157]. Figure 4.8

shows the interface dynamics close to Freedericksz transition. To understand the rich

dynamics of Ising walls, in the next section we will study the interaction of walls.
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4.5 Kink interaction

To figure out the rich dynamics of interface between Ising nematic wall. Let us consider

the kink dynamics in one-dimension described by

∂tu = εu− u3 + ∂xxu, (4.18)

where u(x, t) ≡
√
βθ(x, t) and x = r⊥/

√
κ are the normalized order parameter and

spatial coordinate. ε ≡ α(| ~E|2−K3) is the bifurcation parameter. As we have mention

this model has kink and anti-kink solutions (cf. formula 4.14). In the next session,

based on the pioneering work of Kawasaki and Ohta [95], we will characterize the kinks

interaction.

4.5.1 Kinematic law of a pair kinks

Let {u−, u+} kink and anti-kink solutions of model Eq. (4.18), respectively. The kink

solutions are characterized by a continuos parameter the kink position1 and fixed pa-

rameter the front width. Note that the translation invariance generates a Lie group

with respect to the translation parameter [143]. Figure 4.9a displays the front position

and width. Consider a pair of kinks sufficiently separated as shown in Figure 4.9b. To

describe this solution we consider the ansatz

u(x, t) = uk[x− x−(t)] + uAk[x− x+(t)]−
√
ε+ w(x, x−, x+), (4.19)

where {x−, x+} are the kink positions that are promoted temporal function and w is a

small correction function. The third term of the above expression is necessary for that

the kink-antikink solution in infinite tends to −
√
ε. Introducing the above ansatz in

Eq. (4.18), and linearized in w after straightforward calculations we obtain

1This position corresponds to the spatial location of the front that presents maximum spatial

variation. In the particular case of kink solutions of Eq. (4.18), this position corresponds to the root

of the kink.
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a)            b)

Figure 4.9: Schematic representation of kink solutions. a) Kink solution obtained from numerical

solutions of Eq. (4.18). x− and l stand for the kink position and width. b) kink and anti-kink

solution, {x−, x+} are the kink positions and ∆ is the distance between kinks.

∂tu = −ẋ−∂zuk(z ≡ x− x−)− ẋ+∂zuAk(z ≡ x− x+)

=
(
ε− (uk + uAk −

√
ε)2 + ∂xx

)
w + ε(uk + uAk −

√
ε)

− (uk + uAk −
√
ε)3 + ∂xxuk + ∂xxuAk, (4.20)

rewriting the above expression using the fact that εuk − u3
k + ∂xxuk = 0 and εuAk −

u3
Ak + ∂xxuAk = 0, one obtains

Lw ≡ −
(
ε− 3(uk + uAk −

√
ε)2 + ∂xx

)
w = ẋ−∂zuk + ẋ+∂zuAk

− 3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε). (4.21)

To solve the above linear equation, we must to introduce the inner product

〈f |g〉 =

∫ ∞
−∞

f(x)g(x)dx, (4.22)

then L is a self adjoint operator, L† = − (ε− 3(uk + uAk −
√
ε)2 + ∂xx). Notice that

this operator is Hamiltonian type, i.e., L† = −∂xx + V (x), where the associated poten-

tial is defined by V (x) ≡ −ε + 3 [uk(x) + uAk(x)−
√
ε]

2, which corresponds a bistable

potential. Figure 4.10 shows the bistable potential of the kink interaction. This poten-

tial has a fundamental mode related to translations of the kinks. In the case that the

distance between the kinks is large enough (∆�
√
ε), the fundamental mode as results

of translation invariance can be approach by

|χT 〉 = ∂xuk + ∂xuAk +O(e−
√

2ε∆), (4.23)
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Figure 4.10: Effective bistable potential of kink interaction. ∆ accounts for the distance between the

minima. Insets account for the fundamental and first excited states.

This mode is an element of kernel of L†, i.e. L†|χT 〉 = 0. Moreover, L† [∂xuk + ∂xuAk] =

O(e−
√

2ε∆). Another important mode is the first excited state |χI〉, which is this related

to the mode of interaction of kinks. This mode can be write

|χI〉 = ∂xuk − ∂xuAk +O(e−
√

2ε∆), (4.24)

Note that

L†|χI〉 = O(e−
√

2ε∆). (4.25)

Therefore, for long separated kinks, ∆�
√
ε, the functions {∂xuk+∂xuAk, ∂xuk−∂xuAk}

are pseudo eigenfunctions of L†, that is, these eigenfunctions have eigenvalues with

exponential small values. In a similar manner of two-body problem, we introduce a

change of variables to the central position δ(t)2 and the distance between kinks ∆(t).

Introducing the change of variable

δ(t) ≡ x−(t) + x+(t)

2
,

∆(t) ≡ x−(t)− x+(t). (4.26)

Analogously one obtains

x−(t) = δ − ∆

2
,

x+(t) = δ +
∆

2
. (4.27)

2Which corresponds to the equivalent mass center.
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Introducing this change of variable in Eq. (4.21), this reads

Lw = δ̇ (∂zuk + ∂zuAk)− ∆̇ (∂zuk − ∂zuAk)

− 3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε). (4.28)

To solve the above linear equation we must to impose the solvability condition, that

is, the right hand side of above equation is orthogonal to the pseudo eigenfunctions

{|χT 〉, |χI〉}. Imposing the solvability conditions with respect to translation mode, we

obtain

δ̇〈χT | (∂zuk + ∂zuAk)〉 = 〈χT |3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉.

(4.29)

The above equations can rewrite

δ̇||χT ||2 = 〈∂zuk|3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉

+ 〈∂zuAk|3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉. (4.30)

By symmetry arguments

3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε) =

3u2
Ak(uk −

√
ε)− 3uAk(uk −

√
ε)2 + 3uk

√
ε(uk −

√
ε). (4.31)

Hence, the dynamic of central position is

δ̇||χT ||2 = 〈∂zuk|3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉

+ 〈∂zuAk|3u2
Ak(uk −

√
ε)− 3uAk(uk −

√
ε)2 + 3uk

√
ε(uk −

√
ε)〉. (4.32)

The spatial variation of the kink solution uk is characterized by being centered in the

kink position, i.e. it is exponentially small almost everywhere except in the region close

to the kink core. Figura 4.11 shows the function ∂xuk. Then the first term on the right

side is an integral to be evaluated around x−. The anti-kink solution around x− minus
√
ε when both kinks are enough separated has the form(

uAk(x→ −∞)−
√
ε
)
−→ −2

√
εe−2
√
ε/2(x−δ−∆/2). (4.33)
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a)                                        b)

Figure 4.11: Kink solution. a) Spatial variation of the kink solution, ∂xuk. b) Asymptotic behavior of

uAk −
√
ε around kink position.

This function around the kink position decays exponentially and uAk ≈
√
ε−2e−2

√
ε/2(x−δ−∆/2).

Thus, the first term on the right side can be approximate by

〈∂zuk|u2
k(uAk −

√
ε)− uk(uAk −

√
ε)2 + uAk

√
ε(uAk −

√
ε)〉 ≈ 〈∂zuk|uAk

√
ε(uAk −

√
ε)〉.

(4.34)

This last integral can be approximate

〈∂zuk|uAk
√
ε(uAk−

√
ε)〉 ≈ −2ε

∫ ∞
−∞

dx∂zuk

(
x− δ +

∆

2

)
e−2
√
ε/2(x−δ−∆/2)H

(
−x+ δ +

∆

2

)
,

(4.35)

where H(x) is the Heaviside step function [28]. The introduction of the H function is

to describe adequately the behavior of the function uAk(x)−
√
ε in infinite. Changing

the variable of integration z = x− δ + ∆/2, this integral reads

〈∂zuk|uAk
√
ε(uAk −

√
ε)〉 ≈ −a

2
e−2
√
ε/2∆, (4.36)

where a ≡ 4ε
∫
∂zuk(z)e−

√
εzH(−z + ∆). Hence, one obtains

〈∂zuk|u2
k(uAk −

√
ε)− uk(uAk −

√
ε)2 + uAk

√
ε(uAk −

√
ε)〉 ≈ −a

2
e−2
√
ε/2∆. (4.37)

Analogously to previous analysis for the second term on the right side of Eq. (4.32),

one can perform the same type of approach3 and gets

〈∂zuAk|3u2
Ak(uk −

√
ε)− 3uAk(uk −

√
ε)2 + 3uk

√
ε(uk −

√
ε)〉 ≈ a

2
e−2
√
ε/2∆. (4.38)

3The difference that the spatial variation of the anti-kink compared with the kink is the opposite

sign
∫
∂zuk(z) = −

∫
∂zuAk(z).
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Figure 4.12: Kink interaction. a) Spatiotemporal evolution of a kinks pair. b) Numerical comparison

of the kink interaction and numerical simulation. Points are obtained numerically by considering

two close kink and anti-kink solution, then numerically the system evolves during a brief moment of

time, and finally the temporal variation of the kink position is calculated, where curves are defined by

f(∆) ≡ 〈χI |3u2k(uAk −
√
ε) + 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉, f1(∆) ≡ 〈χI |3uAk

√
ε(uAk −

√
ε)〉,

f2(∆) ≡ 〈χI |3u2k(uAk −
√
ε)〉, f3(∆) ≡ 〈χI |3uk(uAk −

√
ε)2〉 [53].

Therefore, the dynamics of the central positions of the kinks is δ̇ = 0. From this result

we can infer that the kinks dynamics can be characterized by either attract or repel the

kinks symmetrically. The above dynamic one also can be understood as a consequence

of the reflection invariance of Eq. (4.18)

Imposing the solvability conditions with respect to interaction mode |χI〉, after straight-

forward calculation we obtain

∆̇||χI ||2 = 〈∂zuk|3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉

− 〈∂zuAk|3u2
Ak(uk −

√
ε)− 3uAk(uk −

√
ε)2 + 3uk

√
ε(uk −

√
ε)〉. (4.39)

Using the results obtained in formulas (4.37,4.38), the dynamics for the distance be-

tween kinks ∆ satisfies (The kinematic law of kinks) [56]

∆̇ ≈ −be−
√

2ε∆, (4.40)

with b ≡ a/||χI ||2 = 3a/2ε3/2 > 0. Therefore, the kink interaction is characterized

by being attractive and decreased exponentially with the distance between kinks. The

system then seeks to find its overall energy minimum through the kink attract and

reach the homogeneous state. Figure ?? shows the spatiotemporal evolution of a kinks
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Figure 4.13: Spatiotemporal evolution of emergence of domains walls. Numerical simulation of model

Eq. (4.18) with noise before and after transition. xi accounts for the kink position.

pair and also the comparison of the different terms of the interaction with numerical

simulations. These results show an appropriate agreement even for distances of the

order of the kink core, where the other terms of the interaction have been take into

account [53].

4.5.2 Interaction of a gas of kinks: coarsegraning

Numerical simulations of model Eq. (4.18) with noise before the transition exhibit

fluctuations around the zero equilibrium. Crossing transition, the system presents the

emergence of diverse walls. These domains are separated by several kinks that are

interacting. Figure 4.13 illustrates the previous process. To account for these wall

domains, we consider the following ansatz (multiple kinks solutions)

u(x, t) ≈
∑
n

(−1)nuk(x− xn(t))−
√
ε, (4.41)

where xn stands for the position n-kink. Using the pair interaction law, Eq. (4.40),

between the kinks, we obtains (n-kink interaction law) [56]

ẋn = b
∑
i<n

(−1)ie−2
√
ε/2|xn−xi| − b

∑
i>n

(−1)ie−2
√
ε/2|xi−xn|. (4.42)
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Due to the n-kink interaction decays exponentially, we can approximate it by the in-

teraction of first neighbors, that is,

ẋn ≈ −be−2
√
ε/2(xn+1−xn) + be−2

√
ε/2(xn−xn−1). (4.43)

Then the closest kinks attract the central kink with the aim of annihilating it. It is

important to note that this type of force between kinks is weak and short-range, which

makes it difficult to verify this type of interaction numerically.

An unexpected property of the interaction of a gas of kinks is that it is self-similar,

that is, the interaction is simultaneously invariant to temporal and coordinate trans-

formations [146, 23]. As a result of this type of symmetry one expects to find laws for

the dynamics. A classic example of self-similarity is the Newton interaction that cause

the Kepler’s third law [146, 23]. Considering the transformation

(xn+1 − xn) → (xn+1 − xn + λ),

t → te
√

2ελ, (4.44)

that corresponds to a temporal and spatial dilatation, the kink interaction Eq. (4.43) is

invariant. This means that if one separates the distance between kinks in a λ distance

is equivalent to delay time by a fact e2
√
ε/2λ.

A macroscopic parameter characterizing the dynamics of kinks is the average distance

between kinks 〈l〉, defined by

〈l(t)〉 ≡
∑
i

xi+1(t)− xi(t)
N(t)

=
L

N(t)
, (4.45)

where N(t) the number of kinks at time t. Indeed, this quantitive characterizes the

number of kink inside the system. Since the kink interaction controls the dynamics of

these defects, the above expression also must be controlled by this interaction. Thus,

this also should be self-similar, i.e.

〈l + λ〉 = 〈l(te
√

2ελ)〉,

〈l + λ〉 = 〈l(t)〉+ λ (4.46)



4.5. KINK INTERACTION 145

then

〈l(te
√

2ελ)〉 = 〈l(t)〉+ λ. (4.47)

The only function that satisfies the above property is

〈l(t)〉 =
1√
2ε

ln(t). (4.48)

Therefore, one can infer that the number of kink decrease logarithmic in time, N(t) =
√

2ε/ ln(t). That is, from interaction laws of defects one can deduce macroscopic laws.

This type of behavior is usually denominated as coarsening dynamics [139]. Figure 4.14

shows a set up of inhomogeneous electro-convection, which has interface between two

convection rolls [126, 127]. This interface due to the anisotropic elastic constant is

unstable generating a complex dynamic of kinks as illustrated in Fig. 4.14. A kink

separates two regions with opposite slope. Experimentally it was studied the average

distance of kinks as a function of time and found that satisfies a logarithmic law [126].

This confirms the results presented above.

4.5.3 Effect of discretization kink interaction

Numerical simulations of model Eq. (4.18) from an initial uniform solution u = 0 with

noise and positive ε is characterized by the appearance of several domains (cf. Fig.

4.13). The interaction between nearest walls is characterized by annihilating, kinks

interaction; however for sufficiently large time, the system is frozen. That is, domains

are no longer changed in the course of time. This phenomenon can be understood by

the combination of two factors: firstly the kink interaction which is very weak and on

the other hand the discreteness of the system under simulation. As we have shown in

Sec. 3.7.1, a discrete system can be described by an effective continuos equation of the

∂tu = εu− u3 + ∂xxu+ Γdx(x)∂xxu+ Γ′dx(x)∂xu, (4.49)

where Γdx(x) is a small spatial periodic function with dx period, Γdx(x+ dx) = Γdx(x),

and Γ′dx accounts for derivative of Γdx. This function accounts for the discreteness of
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Figure 4.14: Kink dynamics in inhomogeneous electro-convection experiment. In top left panel is

schematic repersented the setup, in top right panel panel is depicted the interface between two con-

vection rolls, in bottom left panel is illustrated a sequence of temporal snapshot of the interface and

in bottom right panel the temporal evolution of average length between kinks [126].

Δ

Δ

Figure 4.15: Kink interaction formula (4.50). the inset account for different localized states.

the system. Likewise, in Sec. 3.7.1, we have shown that the presence of periodic forcing

modified the front dynamics by a periodic force (Peierls- Nabarro force). Similarly, the
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kinematic law of kink Eq. (4.40), is modified by the presence of a periodic force, then

this reads

∆̇ ≈ −be−
√

2ε∆ + γdx(∆), (4.50)

where γdx(∆) is a periodic function, γdx(∆ + dx) = γdx(∆). Figure 4.15 depict the

typical kink force. For large enough distance between kinks (∆�
√
ε), the system has

several equilibrium positions as a result of discreteness, i.e. the interaction is completely

neglected. These positions correspond to the kink takes a symmetrical distribution of

the points that form it. Decreasing the distance between the kinks, the interaction

between kinks becomes more relevant. The system exhibits a family of localized states

with different widths. The localized structures width is of order of multiple of dx.

It is important to note that these localized solutions are not solutions of Eq. (4.18),

but are solutions of corresponding discrete model of Eq. (4.18)4 or effective Eq. (4.49).

Therefore from the discreteness we have visualized the possibility of localized states.

4.6 Localized states as result of kink interaction

During the last years, emerging macroscopic particle-type solutions or localized states

or localized structure in macroscopic extended dissipative systems have been observed

in different fields, such as: domains in magnetic materials, chiral bubbles in liquid

crystals, current filaments in gas discharge, spots in chemical reactions, localized states

in fluid surface waves, oscillons in granular media, isolated states in thermal convection,

solitary waves in nonlinear optics, among others [64, 137, 1]. Hence, one can infer

the universality of the localized states dynamics. Although these states are spatially

extended, they exhibit properties typically associated with particles. Consequently

one can characterized them with a family of continuous parameters such as position,

amplitude and width. This is exactly the type of description used in more fundamental

physical theories like Quantum Mechanics and Particle Physics. However, localized

states emerging in extended dissipative systems are characterized by being made of a
4which is using for the numerical analysis.
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Figure 4.16: Schematic representation of heteroclinic curves for a spatial dynamical system of different

dimensions. Top panels show the heteroclinic curves in their respective phase portrait. Bottom panels

display the respective profile of heteroclinic curves.

large number of atoms or molecules (of the order of Avogadro’s number) that behave

coherently.

In this section we want to respond to the possibility of localized structure as a result of

the kinks interaction. As we have seen in previous sections of kink interaction is deter-

mined by their asymptotic behavior. From the point of view of geometry in phase space,

the Kinks corresponds to heteroclinic solutions. The heteroclinic curves are trajectories

in phase portrait that connect hyperbolic points. In spatial dynamical systems of di-

mension two, the homoclinic curves does not exhibit spatial oscillations (cf. Fig. 4.16a).

This property is a consequence of that two-dimensional dynamic system stable man-

ifolds are one-dimensional. The above scenario changes when the associated spatial

dynamical systems have high dimensions. The hyperbolic points are characterized to

have complex eigenvalues, then the associated manifolds (attractive/repulsive) are char-

acterized to exhibit oscillatory trajectories around the hyperbolic point range. Indeed,
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a)                                            b)                                                c)

Figure 4.17: Kink solutions with damping spatial oscillations. a) fluidized granular media [111, 112],

b) vertically driven chain of pendula [48, 49], and c) forcing magnetic wire with easy plane [44].

the heteroclinic curves shows spatial damping oscillations as it tends to equilibrium.

Figure 4.16 shows the typical heteroclinic curves. Kinks with spatial damping oscilla-

tion have been observed in several contexts such as driven granular media [111, 112],

population dynamics [48, 49], vertically driven chain of pendula [44], forcing magnetic

wire [44], to mention a few. Figure 4.17 shows kinks solution with damping oscillation

in several contexts.

4.6.1 Simple model: Turing-Swift-Hohenberg equation

In the previous sections, we have considered a simple model, Eq. (4.18), that displays

spatially monotonic kinks. A natural generation of this equation, based on pioneering

spirit of the work of Alan Turing [61], is considered higher gradients, that is (Turing-

Swift-Hohenberg model)

∂tu = εu− u3 + ν∂xxu− ∂xxxxu, (4.51)

where u = u(x, y, t) is a real scalar field, x and y are spatial coordinates and t is

time. Depending on the context in which this equation has been derived, the physical

meaning of the field variable u(x, y, t) could be the electric field, deviation of molecular

orientations, phytomass density, amplitude of velocity or temperature modes, or chem-

ical concentration. The control or the bifurcation parameter ε measures the input field
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amplitude, the aridity parameter, temperature difference or chemical concentration.

The parameter ν stands for the diffusion coefficient, when this parameter is negative

(ν > 0), it induces an anti diffusion process. Thus the first two terms on the right hand

side of Eq. (4.65) account for homogeneous or local nonlinear dynamics, the third and

fourth term stand for the transport mechanisms or spatial coupling via diffusion and

hyperdiffusion, respectively.

Eq. (4.65) is a prototype model which exhibits both localized and extended patterns.

This is an isotropic nonlinear model deduced originally to describe the pattern formation

of Benard convection [151]. Usually this model is denominated as Swift-Hohenberg. An

important property of Eq. (4.65) is that it possess a gradient form, i.e.

∂u

∂t
= −δF [u, ∂xu, ∂xxu]

δu
, (4.52)

with the functional

F ≡
∫ (
−εu

2

2
+
u4

4
+ ν

(∂xu)2

2
+

(∂xxu)2

2

)
dx. (4.53)

Note that using the solutions of Eq. (4.65), this functional satisfies

dF

dt
= −

∫
dx (∂tu)2 ≤ 0. (4.54)

Hence, F is a Lyapunov functional that can only decrease in the course of time. This

functional guarantees that time evolution proceeds toward the state for which the func-

tional has the smallest possible value which is compatible with the systems boundary

conditions. Any initial distribution u(x, t) evolves towards a homogeneous or inho-

mogeneous (periodic or localized) stationary state corresponding to a local or global

minimum of F . The analysis of the functional F is provided in Ref. [164]. In the

bistability region (ε > 0), as result of hyperdiffusion the kink solutions exhibit spatial

damping oscillations (cf. Fig. 4.16b).



4.6. LOCALIZED STATES AS RESULT OF KINK INTERACTION 151

x+ x-
U(x,t)

xΔ

Figure 4.18: Schematic representation of a pair of kink solutions of model Eq. (??). ∆ is the distance

between kinks.

Kink interaction with damping oscillations

Analogously to section 4.5.1, to study the kink interaction we can consider the following

solutions

u(x, t) = uk[x− x−(t)] + uAk[x− x+(t)]−
√
ε+ w(x, x−, x+), (4.55)

where {x−, x+} are the kink positions that are promoted temporal function and w is a

small correction function. The third term of the above expression is necessary for that

the kink-antikink solution in infinite tends to −
√
ε. The above solution is represented

in Fig. 4.18. The analytical expression of the kink solution is unknown, nevertheless, its

asymptotic behavior is simple to characterize by linear analysis around the equilibria.

Thus,

uk(x→ ±∞)→ ±
√
ε
(
1− 2γe∓αx cos(βx+ δ0)

)
, (4.56)

where {α, β} correspond to the real and imaginary part of eigenvalue that characterize

the manifold around the equilibria ±
√
ε.

Introducing the above ansatz in Eq. (??), and linearized in w after straightforward

calculations we obtain

Lw ≡ −
(
ε− 3(uk + uAk −

√
ε)2 + ν∂xx − ∂xxxx

)
w = ẋ−∂zuk + ẋ+∂zuAk

− 3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε). (4.57)

Introducing the canonical inner product

〈f |g〉 =

∫ ∞
−∞

f(x)g(x)dx, (4.58)
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then L is a self adjoint operator. Similarly, to what shown in Sec. 4.5.1, the linear

operator L has two pseudo-eigenfunctions related to translation (|χT 〉) and interaction

(|χI〉) mode, which have the form

|χT 〉 = ∂xuk + ∂xuAk +O(e−
√
α∆),

|χI〉 = ∂xuk − ∂xuAk +O(e−
√
α∆). (4.59)

Introducing the central position δ(t) = (x−(t) + x+(t))/2 and the distance between

kinks ∆(t) = x−(t)− x+(t), the linear Eq. (4.57) reads

Lw = δ̇ (∂zuk + ∂zuAk)− ∆̇ (∂zuk − ∂zuAk)

− 3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε). (4.60)

Imposing the solvability condition, one gets

δ̇||χT ||2 = 〈∂zuk|3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉

+ 〈∂zuAk|3u2
Ak(uk −

√
ε)− 3uAk(uk −

√
ε)2 + 3uk

√
ε(uk −

√
ε)〉,

∆̇||χI ||2 = 〈∂zuk|3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉

− 〈∂zuAk|3u2
Ak(uk −

√
ε)− 3uAk(uk −

√
ε)2 + 3uk

√
ε(uk −

√
ε)〉. (4.61)

Using the asymptotic behaviors of kink and anti-kink solutions, symmetry arguments,

and similar arguments using in Sec. 4.5.1, after straightforward calculations we obtain

δ̇ = 0,

∆̇ = −b1e
−α∆ cos(β∆ + δ1), (4.62)

where {b1, δ1} are parameters determined numerically. The first equation tells us that

the center position is not changed by the displacement of the kinks. The second equation

tells us that the kink interaction alternates between being attractive and positive, and

its intensity decays exponentially with the kink distance. Hence, the system exhibits a

family of localized states with different widths, which are of the order of a multiple of
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Figure 4.19: Schematic representation of the kink interaction. a) Interaction law, ∆ accounts for the

localized structure width. Lsi stands for the i-localized structure. The insets account for the different

localized structures. b) Potential of the interaction.

the wavelength of the kink spatial oscillation [56, 55]. Figure 4.19 shows the profile of

the kink interaction and depicts the smallest localized structures. Notice that the kink

interaction is a variational dynamics, i.e.

∆̇ = −∂U
∂∆

, (4.63)

where the potential

U(∆) = −b1
e−α∆

β2 + α2
(α cos(β∆ + δ1)− β sin(β∆ + δ1)) . (4.64)

From this potential, we can conclude that the smaller the localized structure are more

stable. Likewise, the respective basins of attraction are bigger for smaller localized

structures. Hence, in present of noise the smaller states are more stable.

4.6.2 Localized structures as result front interaction

A natural generalization of of Turing-Swift-Hohenberg Eq. (4.65) is consider a constant

term in the dynamics, that is

∂tu = η + εu− u3 + ν∂xxu− ∂xxxxu, (4.65)
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Figure 4.20: Schematic representation of the front interaction. ∆ accounts for the localized structure

width. Lsi stands for the i-localized structure. The insets account for the different localized structures.

where η parameter breaks the reflection symmetry u → −u, thus it accounts for the

asymmetry between homogeneous states. This parameter becomes the pitchfork bifur-

cation in an imperfect one. This model was initially proposed to describe the dynamics

of the envelope electric field inside a nonlinear cavity, which is forced with an exter-

nal electric field at its resonant frequency [153, 114]. As we have shown in Sec. 4.3,

this extra parameter is responsible of front propagation between the asymmetric states.

That is, this term is responsible for a drift dynamic of fronts. In order to analyze how

this term affects the kink dynamics, we consider that this term as perturbative one. It

is a fact of matter that we can perform an analogous analysis to the previous section

incorporated the effect η (cf. Sec. 4.3) the front dynamics reads

δ̇ = 0,

∆̇ = −b1e
−α∆ cos(β∆ + δ1) +

3
√

2

ε
η. (4.66)

Then the last term of the equation of interaction can be interpreted as a constant force

on the dynamics of fronts. The presence of this extra force modified the size of localized

structures.



4.7. LIFTSHITZ NORMAL FORM: NONVARIATIONAL GENERALIZATION OF TURING-SWIFT-HOHENBERG EQUATION155

4.6.3 Flaming 2-π kinks in parametrically driven systems

see article 106,121

4.7 Liftshitz normal form: nonvariational generaliza-

tion of Turing-Swift-Hohenberg Equation

In the previous section, we considered a generalization of the Swift-Hohenberg equation

(4.65) that considers a term that breaks the reflection symmetry of the order parameter.

However, the relevant question that one must establish is the general model that de-

scribes the formation of the pattern in one-dimensional systems. As result of the spatial

and temporal scales separation of the microscopic variables, the dynamics of macro-

scopic systems is described by a small number of variables (coarse-graining process),

which generally satisfy non-variational or non-gradient equations [129, 133, 59, 58]. In-

deed, the evolution of these dynamic systems is not characterized by the minimization

of a free energy [30, 24]. Then, in this type of system, one expects to observe perma-

nent behavior such as oscillations, chaos, temporal space chaos, and turbulence among

others.

In this framework, walls connecting two equivalent vectorial fields through spontaneous

symmetry breaking can spread according to a given chirality of the vector field [?]. This

mechanism, the non-variational Ising–Bloch transition, is well known [?]. The deeper

understanding of the front propagation in macroscopic systems out of equilibrium will

open the possibilities for applications in non-equilibrium crystal growth, operation of

non-equilibrium magnetic and optical memories, control of non-equilibrium chemical

reactions, to mention a few.

The aim of this rapid comunication is to show that front solutions in scalar field mod-

els generically propagate based on two mechanism: i) the energy difference between

states, and ii) non-variational effects. Considering a simple non–variational bistable

model, we show analytically and numerically that the front propagation is leaded by
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non-variational dynamics. A quasi one–dimensional liquid–crystal light valve (LCLV)

experiment with optical feedback allow us to evidence non-variational front propagation

between different molecular orientations. Free diffraction length allows us to control

the variational or non-variational nature of this optical system. A phenomenological

model for small free diffraction length is derived. Numerical simulations of this model

have quite good agreement with experimental observations.

Simple bistable model.- Let us consider a bistable model

∂tu = η + µu− u3 + ∂xxu+ ε
[
c(∂xu)2 + bu∂xxu

]
,

= −δF
δu

+ εFNV , (4.67)

where the scalar field u(x, t) is an order parameter that accounts for an imperfect

pitchfork bifurcation [58], µ is a bifurcation parameter, η stands for the asymmetry

between the equilibria, ε is an small parameter, ε � 1, that controls non-variational

force FNM ≡ c(∂xu)2 +bu∂xxu, {c, b} account for, respectively, nonlinear convective and

diffusive terms, and the functional

F ≡
∫
dx

[
V (u) +

(∂xu)2

2

]
, (4.68)

where V (u) ≡ −ηu− µu2/2 + u4/4 is a potential. Notice the above model is invariant

under spatial reflection symmetry (x → −x). Moreover, model (4.67) is variational

when b = 2c.

For ε = 0, the above model (4.67) becomes a variational one. This model has two

stable equilibria for η small and positive µ, u = ±√µ + O(η), represented by {A,B}.

Figure 4.21 depicts the potential V (u) for different values of η. A nontrivial solution of

this variational model is front waves, uF (x − vt) ≈ ±√µ tanh(
√
µ/2(x − vt)) + O(η),

Figure 4.21: (color online) Front propagation in the bistable variational model Eq. (4.67) with ε = 0.

The upper panels represent the potential, V (u), for different values of η, (a) η = 0.2, (b) η = 0, and

(c) η = −0.2 with µ = 1.0. The middle and lower panels illustrate the front profile and their respective

spatiotemporal evolution for µ = 1.0, η = 0.3 (d, f), and η = −0.3 (e, g).
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Figure 4.22: (color online) Non-variational front propagation model, Eq. (4.67), at Maxwell’s point

(η = 0, ε = 1, and µ = 1). (a) potential V (u). Front profiles at given instant for positive c = 3 (b),

negative c = −3 (c) and b = 0. Middle panels represents spatiotemporal evolution of front solution

with positive and negative parameter c and b = 0. (f) Front speed as function of parameter c. Points

account for the numerical front speed obtained from Eq. (4.71) with b = 0, η = 0 and ε = 1, solid

straight line is obtained from analytical formula vNV ≈ (2c− b)εµ
√

2/5, and soft line is obtained using

formula (4.70) with a numerical front profile uF .

that connects these two equilibria [?]. The middle and lower panels of Fig. 4.21 show

the profile of the front solutions and their respective spatiotemporal evolution. Notice

that fronts propagate at a constant speed. The location and the region of the space

where the front has greater variation is known as front position and core, respectively.

In the pioneering work of Pomeau [?], it is shown that front speed v is (η � 1)

v = vV ≡
V (A)− V (B)∫∞
−∞(∂xuF )2dx

≈ 3
√

2

2µ
η. (4.69)

Hence, the front speed is proportional to the energy difference between equilibria and the

front core shape (denominator). Indeed, the most energetically favorable state invades

the least favorable one (cf. Fig. 4.67). Likewise, when both states have the same

energy, η = 0, the front is motionless, corresponding to Maxwell’s point. Therefore,

for variational systems, the mechanism of front propagation is the energy difference

between the connected equilibria.

n the case of consider non-variational terms, ε 6= 0, the above scenario changes drasti-

cally. To figure out this changes, we consider model Eq. (4.67) at Maxwell’s point and

non-variational terms as perturbative type, ε � 1. Then, in this limit we can use the

Figure 4.23: (color online) Front propagation model Eq. (4.67) with η = 0.3 and µ = 1. (a) the

potential V (u). (b) Front profiles for zero (dashed line) and positive (solid line) c and b = 0. Right

panels (c,d) represent spatiotemporal evolution of front solution with zero and positive parameter c.

(f) Front speed as function of parameter c. Points account for the numerical front speed and continuos

curve v = vV + vNV .
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following ansatz for the front solution u(x, t) = uF (x − vt) + w(x − vt, v), where w is

a small adjustment function, which is of order of ε. Using this ansatz in Eq. (4.67),

linearizing in w and imposing solvability conditions, we get

vNV ≡ ε
c
∫ +∞
−∞ (∂xuF )3dx+ b

∫ +∞
−∞ uF∂xuF∂xxuFdx∫ +∞

−∞ (∂xuF )2dx
. (4.70)

Then, the front speed is proportional to the non-variational terms. Notice that a similar

method to obtain the speed of propagative front was used to characterize Ising-Bloch

transition [?].

From the above formula, we can conclude that the mechanism generating the spread

of this front is only the front shape. Namely, the front core shape [∂xuF ∼ O(1)]

determines the propagation speed and not the energy difference between equilibria. The

above expression can be approximated by vNV ≈ (2c−b)εµ
√

2/5. Figure 4.22 illustrates

the non-variational front propagation observed from model [4.67] for different values of

parameter c. For small c, the system exhibits a quite good agreement with the above

approximation. For large c, we can use formula (4.70) with uF obtained numerically.

This semi-analytical approach has quite fair agreement (cf. Fig. 4.22). Notice that

the nonlinear convection and diffusion are opposite effects for front speed. The front

becomes motionless when the system is variational (b = 2c).

Consider the general case of asymmetry between equilibria (η 6= 0) and the presence

of non-variational terms, front speed is determined by the two mechanisms discussed

above, i.e., front speed is v = vV +vNV . Figure 4.23 depicts the front propagation in the

generic case. Comparison between numerical simulations and theoretical results show a

quite good agreement (cf. Fig. 4.23). Note that there is always a point in the parameter

space where the front is motionless (vV = −vNV ), but which does not correspond to

equal energy between states.

Liquid–crystal light valve with optical feedback.- A simple physical system that exhibits

non-variational behaviors and multistability is a LCLV with optical feedback [?, 140].

This setup contains a LCLV inserted in an optical feedback loop (see Fig. ??). The

LCLV is composed with a nematic liquid–crystal film sandwiched in between a glass and



4.7. LIFTSHITZ NORMAL FORM: NONVARIATIONAL GENERALIZATION OF TURING-SWIFT-HOHENBERG EQUATION159

a photoconductive plate over which a dielectric mirror is deposed (see Rev. [140] and

references therein). The feedback loop is closed by an optical fiber bundle (FB) and is

designed in such a way that diffraction and polarization interference are simultaneously

present. The optical free propagation length is given by L.

The liquid–crystal film under consideration is planarly aligned (nematic director ~n par-

allel to the walls), with a thickness d = 15 µm. The liquid–crystal filling the LCLV

is a nematic LC-654, produced by NIOPIK. It is a mixture of cyano-biphenyls, with

a positive dielectric anisotropy ∆ε = ε‖ − ε⊥ = 10.7 and large optical birefringence,

∆n = n‖ − n⊥ = 0.2, where ε‖ and ε⊥ are the dielectric permittivities ‖ and ⊥ to

~n, respectively, and n‖ and are n⊥ are the extraordinary (‖ to ~n) and ordinary (⊥ to

~n) refractive index [?]. Transparent electrodes over the glass plates allow the applica-

tion of an electrical voltage V0 across the nematic layer. The photoconductor behaves

like a variable resistance, which decreases for increasing illumination. The light which

has passed through the liquid–crystal layer and has been reflected by the dielectric

mirror experiences a phase shift which depends on the liquid–crystal molecular orien-

tation and, on its turn, modulates the effective voltage that is locally applied to the

liquid–crystal sample. Over a critical voltage, molecules tend to orient along the di-

rection of the applied electric field, which changes local and dynamically following the

illumination spatial distribution present in the photoconductor wall of the cell. When

liquid–crystal molecules reorient, due to their birefringent nature, they induce a re-

fractive index change. Thus, the LCLV acts as a manageable Kerr medium, causing a

phase variation φ = β cos2 θ ≡ 2kd∆n cos2 θ in the reflected beam proportional to the

intensity of the incoming beam Iw on the photoconductive side, where θ is the longitu-

dinal average of molecular reorientation. Here, k = 2π/λ is the optical wave number.

The LCLV is illuminated by an expanded He-Ne laser beam, λ = 633 nm, with 1 cm

transverse diameter and power Iin = 6.5 mW/cm2, linearly polarized along the vertical

y-axis. A spatial light modulator (SLM, controlled through an external computer) was

placed in the input beam in order to carry out one-dimensional experiments. The sys-

tem dynamics is controlled by adjusting the external voltage V0 and free propagation
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length L.

Theoretical description of the LCLV.- The light intensity Iw reaching the photoconduc-

tor is given by Iw(θ, L) = Iin|e−i
L
2k
∂xx(1 + e−iβcos

2θ)|2/2 [140], where x is the transverse

direction of the liquid-crystal layer. As long as Iin is sufficiently small (Iin ∼ mW/cm2),

the effective voltage, Veff, applied to the liquid-crystal layer can be expressed as Veff =

ΓV0 + αIw, 0 < Γ < 1 is a transfer factor that depends on the electrical impedances of

the photoconductor, dielectric mirror and liquid-crystal while α is a phenomenological

dimensional parameter that describes the linear response of the photoconductor [140].

The dynamics of the average director tilt θ(x, t) is described by a nonlocal relaxation

equation of the form [?]

τ∂tθ = l2∂xxθ − θ +
π

2

(
1−

√
ΓVFT

ΓV0 + αIw(θ, L)

)
, (4.71)

with VFT ≈ 3.2 Vrms the threshold for the Fréedericksz transition, τ = 30 ms the

liquid-crystal relaxation time, and l = 30 µm the electric coherence length.

Let us consider zero free propagation length, L = 0, Iw(θ, L = 0) = Iin{1+cos(β cos2 θ)}/2.

In this limit Eq. (4.71) is a gradient model. To derive a simple description of the above

model, we study its dynamics around the emergence of bistability, i.e., when the system

becomes multi-valued or exhibits a nascent of bistability [?]. Figure 4.24(a) depicts a

nascent of bistability. We express the expression for equilibria θ(x, t) = θ0 as follow

V0(θ0) = VFT/Γ (1− 2π−1θ0)
2 − α Iin [1 + cos(β cos2 θ0)] /2Γ, and from this relation we

determine the values of parameters for the emergence of bistability. Indeed, in the

parameter space, the above expression generates a folded surface from which one can

geometrically infer the points of nascent of bistability (cf. Fig 4.24(a)). In fact, θ0

becomes multi-valued when the function V0(θ0, Iin) has a saddle point at θ0 = θc.

Around the saddle point V0(θc) creates two new extreme points that determine the

width of the bistability region. To find the saddle points of V0(θc, Iin), we have to

impose the conditions dV0/dθc = 0, d2V0/d
2θc = 0 and, after straightforward algebraic

calculations, we obtain the relations Iin = π2VFT/αβ (π/2− θc)3 sin(2θc) sin (β cos2 θc),

and (θc − π/2) [2 csc 2θc + β sin 2θc cot(β cos2 θc)] = 3. The first expression gives the
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Figure 4.24: (color online) Front propagation of numerical simulation of phenomenological model of

LCLV with optical feedback Eq. (4.71). (a) Bifurcation diagram of molecular average orientations θ0 as

function of voltage V0. V c
0 accounts for a critical value of voltage for which the system exhibits nascent

of bistability at θ0 = θc. (b) Front speeds as function of voltage V0 for difference free propagation

length.

critical value of Iin for which V0 becomes multi-valued. The second expression is an

algebraic equation that depends only on the parameter β and determines all the points

of nascent of bistability. Notice that only half of them have physical significance because

the other half correspond to negative values of the intensity. By taking into account

the constraint that the intensity must be positive and considering that the cotangent

function is π-periodic, we have that the actual number of points of nascent of bistability

is equal to the next smallest integer of β/2π. For the values considered in our experiment

β is about 54, then one expects to find 8 points of nascent of bistability in the entire

(V0, Iin) parameter space, a prediction that is confirmed by the experiment [?].

The dynamics around a nascent of bistability point can be described by a scalar field

u(x, t) governed by a cubic nonlinearity. Hence, close to this point, Iin ≡ Icin, V0 ≡ V c
0 ,

and we can consider

θ(x, t) ≈ θc + u(x, t)/u0, (4.72)

where u2
0 ≡ 2β cos 2θc cot(β cos2 θc)+(4+β2 sin 2θc)/3−2/ (π/2− θc)2 is a normalization

constant.

Considering the above ansatz into Eq. (4.71) with zero free propagation length, L =

0, and developing in Taylor series by keeping the cubic terms, after straightforward

algebraic calculations, we can reduce the full LCLV model to a simple bistable model

τ∂tu = η + µu− u3 + l2∂xxu, (4.73)

where η ≡ α [1− cos(β cos2 θc)] (π/2− θc)3 [Iin − Ic + α(1− cos(β cos2 θc)(V0 − Vc)/2] /π2VFT ,

and µ ≡ 12Γ[(π/2− θc)2 (V0 − Vc) + (π2 VFT/12− (π/2− θc)2) (Iin − Ic) /Ic]/π2VFT .

For small free propagation length (L ∼ ε � 1), the light intensity Iw reached in the
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photoconductor can be approximated by a local model characterized by

Iw(θ, L) ≈ Iin{1 + cos(β cos2 θ)

+L(1 + cos(β cos2 θ)∂xx sin(β cos2 θ))/k

−L sin(β cos2 θ)∂xx cos(β cos2 θ)/k}/2.

Introducing this expression in Eq. (4.71), using ansatz (4.72), developing in Taylor series

by keeping the cubic terms in u, considering that the order parameter is a slow variable

in space (∂xxu� ∂xu� 1), renormalizing space and after straightforward calculations

we obtain Eq. (4.67), with

b = c ≡ −
παβ cos(2θc)Ic

(
VFT

2Vc+αIc(1+cos(β cos2 θc))

)
3/2

√
2lu0VFT

.

Hence, close to the nascent of bistability, model Eq. (4.71) can be approximated by

a simple non-variational model Eq. (4.67), which describes the complex dynamics ob-

served around this critical point.

Numerical simulations of model (4.71) in the region of bistability for small free propa-

gation length show that the system exhibits front solutions. The front speed is affected

when the free propagation length is changed. Therefore, these fronts present a propa-

gation mechanism of a non-variational nature.

Experimental non-variational fronts propagation.- Using the SLM, we have conducted

quasi-one dimensional experiments in a LCLV with optical feedback. As voltage V0

is varied as a control parameter, we identify the bistable region, where two different

molecular orientation states coexist. In this bistability region, the SLM is not only

used to create a one-dimensional channel, but also to create localized perturbations,

which allow us to observe the emergence of fronts between two different molecular

orientations. Hence, the light observed in the near field has different intensities, which

are associated with the molecular orientations. Figure ??b shows a temporal sequence

of snapshots of front propagation. By recording with a CCD camera the interface

evolution over the channel, we have measured the front speed, which is plotted in

Fig. ??c as a function of V0 for different values of free propagation length L. For small
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L experimental imperfections are relevant. We consider non-small L. Note that as

free propagation length increases, the front speed increases, which is consistent with

the theoretical prediction. Therefore the mechanism that generates the spread of these

fronts is the energy difference and front core shape (non-variational effect).

In summary, we have characterized a mechanism of non-variational front propagation

in one-dimension scalar fields, where the responsible process generating the spread of

this front is the front shape and not the energy difference between equilibria. In higher

dimensions we expect that the propagation is only corrected by curvature effects, e.g.

Gibbs-Thomson effect [?].

4.8 The universal law of the front speed close to the

disappearance of bistability

The bistable fronts exhibit a single propagation speed that does not depend on the initial

conditions. Regarding one-dimensional variational or gradient systems, propagation

speed depends on the energy difference between the two equilibria [135, 87]. Hence,

the more stable state invades, the less stable one. Then, one expects a point in the

parameter space where the relative energy between the two equilibria is equal, the

Maxwell point [79], at which the front is motionless. In his pioneering work, Pomeau

proposes a universal semi-implicit formula for the front speed (see formula (4.13)[135]),

which accounts for the energy difference between states. Analytical results are only

accessible close to the Maxwell point from this general expression. The front speed is

linear around the Maxwell point. In one-dimensional bistable non-variational systems,

fronts can be motionless at a point in the parameter space without the need for both

equilibria to have equal energy [13]. This extends the Maxwell point concept for systems

without free energy. Even walls connecting two equivalent vectorial fields through

spontaneous symmetry breaking can spread according to a given chirality of the vector

field [57, 44, 120]
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Figure 4.25: (Retrieved from [3]) Front propagation on a liquid crystal light valve (LCLV) with optical

feedback close to the disappearance of bistability. (a) Schematic representation of LCLV with optical

feedback setup. HeNe accounts for a Helium-Neon laser, SLM stands for spatial light modulator; this

device selects a quasi-1D region under static and uniform illumination, M are mirrors, PBS is the

polarized beam splitter, V0 is the driven voltage applied to LCLV, O is an optical objective, FB is a

fiber bundle, CCD is a Charge-Coupled Device to monitor the LCLV evolution, and L accounts for

the free propagation length. Lower panels show temporal snapshots sequence of the front propagation

exhibited in the LCLV close to the disappearance of bistability. (b) Bifurcation diagram of the total

intensity and front speed of the LCLV with optical feedback as a function of the voltage applied V0

by L = 0.0 cm. The normal (4) and inverted (5) triangles account for the total intensity of light

measured by raising and lowering the voltage. The region of bistability is painted. V +
sn accounts for

the Fréedericksz voltage. The points with error bars account for the front speed between the different

molecular orientations. Insets show a zoom of the front speed versus voltage V0 near each bistability

disappearance points. The continuous curves are the fits found for the front speeds, which have the

form v = v0 +A
√
|V0 − V ±sn|, where {v0 = −183 µm/s,A = 475.6 V

−1/2
rms µm/s, V −sn = 2.41 Vrms}, and

{v0 = 208.3 µm/s,A = −292.3 V
−1/2
rms µm/s, V +

sn = 3.069 Vrms}, for the left and right fit, respectively.
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When a liquid crystal light valve is illuminated, the voltage applied to the cell V0

is modified. Due to optical feedback, the system exhibits a subcritical bifurcation

characterized by two different molecular orientation states [140, 52]. The Fréedericksz

voltage characterizes the reorientation transition (see V +
sn in Fig. 4.25b). Because these

molecular orientations have different refractive indices, each equilibrium has a different

intensity (see snapshots in Fig. 4.25a). Using the SLM, we can induce different domain

walls and study the front propagation. Most precisely, fronts are usually triggered by

the edges of the area under study, a quasi-1D channel induced by the SLM, or by local

perturbations generated by the SLM that increase or decrease the illumination inside

the channel. The bistability region is bounded by {V −sn, V +
sn}, where V ±sn accounts for

the disappearance of the bistability points. We have measured the front speed between

two stable states close to the disappearance of bistability. Figure 4.25b) summarizes

the results found. From this chart, we conclude that the front speed is close to the

bistability disappearance exhibits a law of the form

v = v0 + A
√
|V0 − V ±sn|, (4.74)

where vo is the front speed at the fold points. The main origin of the error bars and

the initial propagation of the front are the inherent fluctuations of the system (noise)

and the heterogeneities of the experimental setup. To illuminate the origin of this law,

we will now consider different bistability models and analyze the front propagation.

4.8.1 Front propagation in prototype bistable models

A simple model that accounts for the transition from disordered to oriented molecules

state (nematic-isotropic transition or clearance instability) was proposed by De Gennes

[62], which has the dimensionless form [the Landau-De Gennes model Eq. (3.90)]

∂tu = µu+ αu2 − u3 + ∂xxu, (4.75)

where u(x, t) is an order parameter, µ is the bifurcation parameter, α accounts for

the nonlinear response. The last term accounts for elastic coupling, where ∂xx is the
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Figure 4.26: (Retrieved from [3]) Bifurcation diagram of Eq. (4.75) or (3.90). Equilibria u (u0, u−,

and u+) as a function of the bifurcation parameter µ. The hard and dashed curves account for stable

and unstable states, respectively. The painted region stands for the bistable zone. The thick curve

v stands for the front speed v =
√

2(α − 3µ/u+)/2 between u0 and u+ state. µM accounts for the

Maxwell point. The inset stands for a front profile.

Laplacian operator. The model Eq. (4.75) has also been used to describe hard colloidal

rods [67], and anisotropic superfluid [16]. Equation (4.75) has three trivial equilibria

u = u0 ≡ 0 and u = u± ≡ (α±
√
α2 + 4µ)/2. Figure 4.26 shows the bifurcation diagram

of Eq. (4.75). For µ < 0, the u0 state is stable, and for µ = µT ≡ 0, the system exhibits

a transcritical instability, which generates that u+ and u− state are stable ones. The

system is monostable when µ ≤ µsn ≡ −α2/4, where the only stable equilibrium is u0.

The system is bistable for µ > µsn (cf. Fig. 4.26). Namely, the system transitions from

a bistable to a monostable region for µ = µsn (disappearance of bistability). Then, the

model presents a bistability region for −α2/4 ≤ µ ≤ 0. Within this interval, the model

Eq. (4.75) has fronts between u0 and u+ state, which has the form

uF (x, t) =
u+

2

[
1 + tanh

(
u+(x− vt)

2
√

2

)]
, (4.76)

where v = (α − 3u+/2)/
√

2 (for more details see the Section 3.2.2). This is one of a

few examples where the front speed is known in the entire parameter space. Close to

disappearance of bistability, µ = −α2/4+∆µ where ∆µ is a small parameter (∆µ� 1)
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and u+ ∼ α/2 +
√

∆µ, the front speed between stable states takes the form v =

v0 + A
√

∆µ with v0 ≡ α/4
√

2 and A ≡ −3/2
√

2.

4.8.2 Generic variational reaction-diffusion model

In one-dimension dynamical systems, a general description of a bistable system is given

by the reaction-diffusion equation, which reads

∂tu = −∂V
∂u

+ ∂xxu, (4.77)

where u(x, t) is a variable that describes the system under study and V (u) is a bistable

potential. In the case that the potential describes a symmetric system (Allen-Cahn

Eq. [12]), the above model describes the domain wall dynamics. Assuming that the

system has two equilibria, A and B, that is, ∂V (A)/∂u = ∂V (B)/∂u = 0. One ex-

pects the system to exhibit propagative fronts between these two equilibria of the form

u(x, t) = uF (x−vt). Introducing this ansatz into the diffusion-reaction Eq. (4.77), mul-

tiplying by ∂xu and integrating over the whole space, after straightforward calculations,

one obtains the speed of bistable fronts [135]

v =
V (B)− V (A)∫

(∂xu)2dx
. (4.78)

As we have mentioned, in case both states have the same energy, V (A) = V (B), the

speed is zero (Maxwell point).

Let us consider that equilibrium B is close to a saddle-node bifurcation (bistability

disappearance), controlled by the bifurcation parameter ∆ (∆� 1). Then B ≈ Bsn +

B1

√
∆ where Bsn is the equilibrium value at the bifurcation point. Since the front

solution is proportional to the difference between equilibria, we can use u(x, t) = (B −

A)H(x− vt). Using the above ansatz in formula (4.78), expanding in the Taylor series,

one gets the universal law of front speed

v ≈ V (Bsn)− V (A)

(Bsn −A)2
∫

(∂xH0)2dx

(
1− 2B1

√
∆

Bsn −A

)
, (4.79)

≈ v0 + A
√

∆, (4.80)
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Figure 4.27: (Retrieved from [3]) Front propagation on the reaction-diffusion model (4.77) with cubic-

quintic nonlinearity, V (u) = −µu2/2−βu3/3−δu4/4+u6/6. (a) Bifurcation diagram, ||u|| =
√∫

u2dx

as a function of the bifurcation parameter µ with β = 0.5 and δ = 0.8 . The solid and dashed red

curves are the analytical curves obtained by multiplying the equilibria by the length of the system.

The insets show the potential in different regions of parameter space. The points show the results

obtained numerically. (b) Front speed as a function of the bifurcation parameter µ. The diamonds (�)

are the numerical results, and the continuous curve is the fit curve, formula (??), with v0 = −0.383,

A = 1.971, and µsn = 0.45. The inset shows a typical profile of a front solution.

where v0 is the front speed at the bistability disappearance point and H0 = H(x −

v0t). Hence, any one-dimensional diffusion reaction-like system near the bistability

disappearance will exhibit a square root-law front speed as a function of the bifurcation

parameter. This is consistent with the experimental (see Fig. 4.25) and theoretical

observations (cf. Fig. 4.26) discussed above.

To verify the validity of the universal formula (4.80), we consider the bistable cubic-

quintic model with the potential V (u) = −µu2/2−βu3/3−δu4/4+u6/6. This potential

has been used to study the dynamics of molecular reorientation of optical valves with

spatially modulated optical feedback [8]. Figure 4.27 shows the bifurcation diagram

of this model with cubic-quintic nonlinearity and the front speed as a function of the

bifurcation parameter. Note that this model has no analytical formula for the front

speed. Unexpectedly, the universal formula (4.74) describes the front speed quite well,
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Figure 4.28: (Retrieved from [3]) Front propagation in the reaction-diffusion model (4.77) for a nascent

bistability potential, V (u) = −ηu−µu2+u4/4. (a) Typical front profile. (b) Bifurcation diagram (green

points and curves) and the front speed (black stars) as a function of the bifurcation parameter η with

µ = 0.2. The left and right vertical axes account for equilibria (ueq) and the front speed, respectively.

The solid and dashed curves are the stable (u+, u0) and unstable (u−) states, respectively. The points

show the results obtained numerically. The red solid (v0 = 1.358, A = −2.45, and ηsn = 0.3) and

dashed (v0 = −1.342, A = 2.401, and ηsn = 0.3) curves are the fit curve formula (??). (c) The

potential in different parameter space points with µ = 0.8.

even far from its validity region.

Another relevant bistable model used to describe the nascent of bistability [153] or

an imperfect pitchfork bifurcation, is the one governed by Eq. (4.77) with V (u) =

−ηu − µu2 + u4/4). This type of reaction-diffusion equation has been used to explain

chemical reactions, biological models, and optical systems [99, 47]. Figure 4.28 shows

the bifurcation diagram for this potential, its respective bistability zone, the shape

of the potential for different values of the η parameter, the profile of the observed

fronts, and the front speed as a function of the bifurcation parameter. In this case, the

bistability region is bounded by two critical points (saddle-node bifurcations). We find
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the universal law for the front speed (4.74) at each of these critical points.

4.8.3 Non-variational systems

The experimental and theoretical results presented above are valid for gradient or vari-

ational systems. Namely, the dynamics of these systems minimize a given free energy.

However, one can consider nonvariational effects (such as nonlinear gradients or dif-

fusions) and study how the front propagation is modified [13]. Let us consider the

following prototype nonvariational bistable model [13, 15]

∂tu = η + µu− u3 + ∂xxu+ c(∂xu)2 + bu∂xxu,

= −∂V
∂u

+ ∂xxu+ c(∂xu)2 + bu∂xxu, (4.81)

where the last two terms account for nonlinear drift and diffusion. A similar model

with spatial instability (anti-diffusion) has been used to explain localized states with

spatiotemporal chaos [162]. The model Eq. (4.81) describes the LCLV with free diffrac-

tion (L 6= 0) and spatiotemporal modulated forcing [4]. This experiment is achieved

using the liquid crystal light valve with optical feedback shown in Fig. 4.25a, where the

SLM now does a double role, selecting the one-dimensional region and spatiotemporally

modulating the illumination in the optical liquid crystal light valve. Indeed, c = b = 0

when the experimental setup does not have free diffraction. Since the non-variational

terms are proportional to the spatial derivatives, they do not modify the equilibria.

Hence, the bifurcation diagram shown in Fig. 4.28 is still valid for the non-variational

model (4.81). Considering the non-variational terms as perturbative terms (c ∼ b� 1),

using the strategy presented in [13], we can calculate how formula (4.79) is modified.

Then, after straightforward calculations, we obtain the front speed between stable states

close to the disappearance of bistability

v ≈ V (Bsn)− V (A)

(Bsn −A)2
∫

(∂xH0)2dx

(
1− 2B1

√
∆

Bsn −A

)
+

(A− Bsn)
c
∫

(∂xH0)3dx+ b
∫

(H0∂xH0∂xxH0)dx∫
(∂xH0)2dx

. (4.82)
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Figure 4.29: (Retrieved from [3]) Bifurcation diagram and front speed in an LCLV with free diffrac-

tion L = −1.0 cm and spatiotemporal optical feedback. This diagram is obtained using the same

experimental setup as in Fig. 4.25a, where the SLM now fulfills a dual role, selecting the quasi-one-

dimensional region and spatiotemporally modulating the illumination on the optical liquid crystal light

valve. The diamonds and their respective error bars account for the front speed near the disappearance

of bistability. The solid line is obtained using fit (4.74) with v0 = 203.5 µm/s, A = −489.1 V
−1/2
rms µm/s,

and Vsn = 2.517 Vrms. Insets account for a magnification of the front speed as a function of V0. Lower

panels show temporal snapshots of the sequence of the front propagation.

Therefore, in the variational case, the front speed close to the bistability disappearance

point also follows formula (4.74). To verify the validity of this result, experimentally, we

introduce a standing wave type spatiotemporal forcing in the LCLV with optical feed-

back [4]. Figure 4.29 shows the bifurcation diagram and the front speed of the LCLV

in the presence of free diffraction and spatiotemporal optical feedback. We observe a

quite good agreement with the theoretical finding from this chart.

In brief, close to the transition between a bistable to a monostable region, we have

shown that the front speed between stable states follows a square root law as a function

of bifurcation parameters, independently the system is variational or not. The exper-

imental findings show a fairly fair agreement with the theoretical results. In the case

of other steady-state instabilities, the front speed may exhibit other critical exponents

depending on the bifurcation parameters; for example, in a transcritical bifurcation, a

linear law governs the front speed [27]. Because the fronts between bistable states are
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Figure 4.30: Landau-De Gennes and Nagumo model comparison. a) Phase diagram of the Landau-De

Gennes model Eq. (4.75) in the parameter space. Zone I accounts for the bistable region. The painted

region, II-monostable, corresponds to the monostable region, where the only solution is u0. The red

curve corresponds to the parabola µ = −α2/4. The blue curve, α = 1− µ, accounts for the parameter

space the Nagumo model covers. b) Bifurcation diagram of the Nagumo model as a function of the

a parameter. w0, wa, and w1 account for the uniform equilibria. T1 and T2 stand for transcritical

bifurcations. The insets give an account of the dynamics in the respective regions.

nonlinear, there are generally no analytical formulas for front speed. Then, studying

critical points or bifurcations (such as the Maxwell point or point of disappearance of

bistability) allows for universal behaviors for front speed.

4.8.4 Universal front speed behavior close to a transcritical bi-

furcation

Two prototypical bistability models are the Landau-De Gennes [62] and the Nagumo

model [124], which have the form, respectively

∂tu = µu+ αu2 − u3 + ∂xxu, Landau-De Gennes

∂tw = w(w − a)(1− w) + ∂xxw. Nagumo model (4.83)

The Nagumo model is characterized by a single parameter a, where the system has

solutions w = w0 ≡ 0, w = wa ≡ a, and w = w1 ≡ 1 as equilibria. A similar
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model Eq. (3.81) was studied in Section 3.2.1. Figure 4.30b shows the bifurcation

diagram of the Nagumo model. This model presents two bifurcations, represented by red

disks, where the stability is exchanged between equilibria, usually called a transcritical

bifurcation [150]. The states that interchange stability grow linearly with the bifurcation

parameter [150]. Then, the system has no monostable region. Hence, the model never

exhibits a transition from a bistable to a monostable region, that is, the Nagumo model

Eq. (4.83) does not exhibit the disappearance of bistability. To shed light on this

property, we rewrite the Nagumo model as the Landau-De Gennes one, i.e.

∂tw = −aw + (a+ 1)w2 − w3 + ∂xxw, (4.84)

which corresponds to the particular choice of parameters of the Landau-De Gennes

model (4.75) µ = −a and α = a+1. Then, in the parameter space (µ, α) of the Landau-

De Gennes model (cf. Fig. 4.30), the Nagumo model corresponds to the straight-line

α = 1− µ. The curve intersects the border of the bistable and monostable region but

does not cross it (red disk), which corresponds to a transcritical bifurcation. Therefore,

the Nagumo model never transits from the bistable to the monostable region.

In brief, Eq. (4.75) and (4.83) are not equivalent since it requires a renormalization pa-

rameter with complex values to cover the transitions between the bistable and monos-

table regions. Namely, the Nagumo model only covers the bistable region (cf. Fig. 4.30).

However, the Nagumo model for a = 0 connects an unstable saddle solution with a sta-

ble state, and one expects to find a new universal behavior different from that found

when bistability disappears. For an equivalent model of Nagumo model equation (3.81),

one has

∂τN = N(1−N)(1 + a′N) + ∂zzN. (4.85)

When a′ > 2, the front speed c between a stable and unstable state is characterized by

(cf. Formula 3.82)

c =
2 + a′√

2a′
. (4.86)

To transform the previous equation into the Nagumo equation, one can introduce the

parameter a = 1/a′ and the scaling τ = t/a′ and z = x/
√
a′. Thus, the front speed for
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the Nagumo model reads

c =
a√
a

(2a+ 1)
√
a

a
√

2
=

(2a+ 1)√
2

. (4.87)

The Nagumo model Eq. (4.83) shows a transcritical bifurcation for a = 0, as illustrated

in Fig. 4.30. Then, from the previous formula (4.88) for a ≈ ∆� 1, one can conclude

that the front speed increases linearly with the bifurcation parameter a,

c(a = ∆� 1) ≈
√

2 +
√

2∆. (4.88)

The previous result was obtained using the pushed fronts formula. We can then use

variational methods to show these universal results. Let us consider the general front

speed proposed by the in [27] (see Section 3.3)

c2 = max

(
2

∫ 1

0
fgdq∫ 1

0
(−g2/g′)dq

)
, (4.89)

where f(u, µ) is the drift or the reaction term of the system that has two equilibria

f(u = 0) = f(u = 1) = 0, µ is a parameter that characterizes the system, and g is a trial

function. Besides, let us consider the hypothesis that the system presents a transcritical

bifurcation for µ = µTB. Close to the transcritical bifurcation µ = µTB + ∆µ, where

∆µ is the bifurcation parameter, the reaction term can be written as

f(u, µ) ≈ f(u, µsd) + ∆µ
∂f(u, µsd)

∂µ
. (4.90)

Introducing this expression in formula (4.89), one gets

c2 ≈ max

(
2
∫ 1

0
f0gdq∫ 1

0
(−g2/g′)dq

)
+max

(
2
∫ 1

0
f1gdq∫ 1

0
(−g2/g′)dq

)
∆µ,

≈ c2
0 + c2

1∆µ, (4.91)

where f0 ≡ f(u, µsd), f1 ≡ ∂f(u, µsd)/∂µ, c0 is the front speed at the transcritical

bifurcation, and c1 accounts for the first dominant correction of formula (4.89). Trial

functions have no reason to be modified with the bifurcation parameter ∆µ. Applying
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square root to formula (4.91) and keeping the dominant terms after straightforward

calculations, one obtains

c ≈ c0 +
c2

1

c0

∆µ. (4.92)

Then, one infers that the front speed increases linearly with the bifurcation parameter

in a transcritical bifurcation.

4.9 Non-variational Ising-Bloch transition

see article 188

4.10 Asymmetric counterpropagating fronts without

flow

see article 90

4.11 Front propagation in inhomogeneous media

see article 76,79,107

4.12 Front propagation steered by a high-wavenumber

modulation

see article 152

4.13 Alee effect in population dynamics: NagumoModel

see article 49
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Chapter 5

Front between patterns and

homogeneous states

5.1 Prototype model of fronts between patterns and

homogeneous states

see article 39,42,46, 70

5.2 Internal noise induces Front propagation

The analysis and study presented in this section are based on article [50].

see article 87

5.3 Pinning-depinning transition of fronts between stand-

ing wave

see article 64
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