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Chapter 1

Particles in Physics

Particles have been a fundamental concept of physics [183], which has accompanied it

since the dawn of modern physics. Intuitively, a particle or corpuscle is a tiny proportion

of matter, that is, a localized object, which is ascribed various physical properties

such as volume and mass. The main characteristic of a particle is to be a localized

object; that is, this corpuscle is described by a position. According to their size, the

particles are described as being sub-atomic particles (electrons, neutrinos, and quarks),

or microscopic like atoms or molecules, or macroscopic like dust in the air (see Fig. 1.1).

Classically, particularly in mechanics and statistical mechanics, particles are described

as material points that exchange energy and momentum through their interaction.

Figure 1.1: Miscellaneous standard particles.
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8 CHAPTER 1. PARTICLES IN PHYSICS

Figure 1.2: Observation of the electron orbitals of an excited hydrogen atom [193].

Contrary to the microscopic level in the world governed by quantum mechanics, the

particles are described by the wave function. That is, they are described by a complex

field whose modulus accounts for the probability density. Then at a fundamental level,

the particles are described by fields that ascribe or occupy all space. These fields are

concentrated in a region that is interpreted where the particle is. Recently, thanks to

quantum microscopy (photoionization microscopy), the structure of a wave function

have been observed [193]. Figure 1.2 shows the wave function of a hydrogen atom.

In simple terms, the particles correspond to localized solutions of the wave function.

Macroscopic systems, that is, those systems made up of a large number of constituents,

Figure 1.3: Collage of the localized structures in nature.
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are described by fields. These fields also exhibit localized solutions, which are called

particle-type solutions or dissipative structures. Figure 1.3 illustrates a collage of ex-

amples of particle type solutions. The main objective of this monograph is to study

the mechanisms, existence, stability properties, dynamical evolution, and bifurcation

diagrams of localized solutions.



10 CHAPTER 1. PARTICLES IN PHYSICS



Chapter 2

Conservative Solitary Waves: Solitons

Macroscopic systems in equilibrium, that is, systems composed of many fundamental

constituents isolated or in contact with a thermostat that can exchange energy, particles,

momentum, or some other physical quantity, are characterized by exhibiting temporally

homogeneous and spatially uniform equilibria. This type of equilibrium is known as

the thermodynamic equilibrium [134]. Local disturbances of these equilibrium states are

characterized by exhibiting linear waves that dampen their amplitude as a function of

time. Figure 2.1 illustrates this type of disturbance. This type of behavior is described

by means of the equation of waves or dispersive medium with dissipation

Therefore, macroscopic media in equilibrium are dispersive wave media with dissipa-

tion. However, this type of behavior changes dramatically when localized disturbances

of finite large amplitude occur. This type of localized disturbance can give rise to one

Figure 2.1: Damped waves observed in the ocean (snapshots obtained from the internet).
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12 CHAPTER 2. CONSERVATIVE SOLITARY WAVES: SOLITONS

of the paradigmatic phenomena of Nonlinear Physics, the emergence, and evolution of

solitary waves or solitons [88, 150, 177].

2.1 Nonlinear wave paradigm: Solitary waves or Soliton

In 1834 physics will have a celebrated year thanks to the observations of the Scot-

tish engineer John Scott Russell, while conducting experiments to determine the most

efficient design for ships in a canal, he discovered a phenomenon that he described as

the translation wave. In fluid dynamics, this wave or non-linear wave is now called a

solitary wave or soliton. The discovery is described below, in his own original words.

"He was observing the movement of a ship that was being moved rapidly along a narrow

channel by a pair of horses, when the ship suddenly stopped, causing a The mass of

water in the canal had set in motion, which was accumulated around the bow of the

ship, and suddenly left behind, rolling forward with great speed, assuming the form of a

large solitary rise, a round mound, smooth and well-defined water, which continued its

course along the channel apparently without a change in shape or decrease in velocity.

I followed it on horseback, and it still outpaced at a rate of about eight to nine miles

per hour [14 km / h], retaining its original shape at about thirty feet [9 m] long and

one foot and a half. [300-450 mm] high. Its height gradually decreased, and after a one

or two-mile [2.3 km] chase, I lost it at the ends of the channel. Such is, in the month of

August 1834, it was my first opportunity to see this singular and beautiful phenomenon

that I have called the translation wave "(John Scott Russel) [187]. A recreation of the

solitary wave observed by John Scott Russell is illustrated in Figure 2.2. The use of the

soliton expression was proposed in the telecommunications context by Akira Hasegawa

[110].

Scott Russell subsequently carried out systematic experimental and theoretical investi-

gations of solitary waves and concluded: i) solitons are stable and can travel very long

distances, ii) The speed depends on the size of the wave, and its width in the depth of

the water. iii) Unlike normal waves, they will never merge, so a small wave is hit by a
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Figure 2.2: El ingeniero escocés John Scott Russell y una recreación de una onda solitaria similar

aquella observada por Scott Russell.

large one, rather than combining the two. If a wave is too large for the depth of the

water, it splits into two, one large and one small.

Observations:

• The first characterization can simply be understood as the result that this solu-

tion is a localized form of energy transport. In the ideal case of modeling this

phenomenon by means of Hamiltonian equations [132], these solutions propagate

without deformation forever. It is important to note that Scott Russell notes that

these solutions are out of balance in his terms "His height (soliton) was gradually

decreasing and after a chase of one or two miles"

• From his second observation, we can conclude that the shape is modified as a

function of the amount of transported water, which is in turn a manifestation

of the conservation of energy and mass. It is also the first manifestation of the
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Figure 2.3: Discrete model of a wave medium.

underlying non-linear phenomenon in solitons since its speed is not the same for

solitons of different heights. Which contradicts the typical behavior of a linear

wave medium.

• The third observation is a manifestation of the underlying nonlinear phenomenon

in solitons. Linear waves are characterized by being proportional to their cause,

that is, a double-amplitude disturbance generates double-amplitude waves. There-

fore, the collision of two waves is not the sum of their respective amplitudes, there

are phenomena of phase shift from their positions to their maximums, as we will

see later.

• The deformable solitary waves described by Scott Russell are of a one-dimensional

nature from a point of view of their characterization and dynamics, that is, the

transverse direction does not play any relevant role. However, if one performs a lo-

calized disturbance on a lake, that is to say, no longer a restricted one-dimensional

system as is the case of the channel, solitary waves are not observed.

It is important to note the spirit of an integral physicist of Scott Russell who, unlike

many of his contemporaries and predecessors, carried out a complementary activity

both experimental and theoretical.

2.1.1 Solitary waves at shallow limits

2.1.2 Localized linear waves

An extended oscillatory medium is characterized by being microscopically constituted

by elements around its equilibrium position, which can be modeled to a first approxi-



2.1. NONLINEAR WAVE PARADIGM: SOLITARY WAVES OR SOLITON 15

mation by coupled oscillators (see figure 2.3). For example, this is the usual description

of a bungee cord which is modeled by

z̈i(t) = k (zi+1 − 2zi+1 + zi−1) , (2.1)

where zi(t) it accounts for the displacement with respect to its equilibrium position

of the i-th element. The separation between these elements is characterized by dis-

tance dx. In the continuous limit, one can consider that dx → 0 and k → ∞ so that

c2 ≡ k/dx2 is finite and the variable zi(t) becomes a field z(x, t), where x accounts

for the spatial parameterization. The parameter c accounts for the speed of propaga-

tion of the disturbances around the equilibrium position. Then the coupled oscillator

equation (2.1) takes the form (linear wave equation)

∂ttz = c2∂xxz, (2.2)

The most intriguing solution to this equation is the solution proposed by D’Alembert

[77]

z(x, t) = f(x± ct), (2.3)

where f is an arbitrary function that must be differentiable at least twice. If the sign

± is − (+) the previous solution gives a solution with profile f that propagates to the

right (left) without deforming. Therefore, this system exhibits waves that propagate in

both directions at the same speed. Figure 2.4a shows the evolution of the D’Alembert

Figure 2.4: Soluciones localizadas de la ecuación de ondas (2.2).
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solution in a space-time diagram for the case of a localized profile. It is important to

note that regardless of the shape of the profile, it propagates with the same speed, as

illustrated in figure 2.4b. Therefore one disturbance can never reach another. Note

that these solutions do not transport matter but energy and momentum. Since the

profile is localized, one can naturally associate a position to this solution, for example,

the one that corresponds to its maximum. Then one can consider this solution as a

particle-like solution, which represents an isolated wave. A question of interest is what

happens if one collides two counter-propagative waves. That is, one considers a more

general D’Alembert solution

z(x, t) = f(x− ct) + h(x+ ct), (2.4)

As a consequence of the superposition principle, these two waves simply overlap when

they collide and continue without deformation and information that there was a colli-

sion. This process is illustrated in Figure 2.4c.

Observations:

• In these linear media, it is not possible to speak of solitary waves since the solution

acquires the form that one imposes in the initial conditions.

• As a consequence of the superposition principle, each localized solution is entirely

independent of the others, and therefore it makes no sense to speak of interaction;

that is, this system accounts for gas of independent particles, gas ideas without

any type of exchange.

2.2 Fermi-Pasta-Ulam-Tsingou problem

Naturally, one hopes that the image of the previous linear system should be slightly

modified with the inclusion of the first non-linearities, however, since the previous

behavior is not structurally stable, we will see how new dynamical behaviors emerge.

In the summer of 1953 nonlinear science entered a paradox: Fermi, Pasta, Ulam, and
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Mary Tsingou (cf. figure 2.5) carried out numerical simulations of a vibrating string

in a nonlinear regimen, that is, they are considered not so small deformations. It

is important to mention that this is the first performance of numerical experiments

to achieve a better understanding of physical systems. The behavior of the system

was found to be quite different from what intuition would have led to expect. Fermi

thought that after many iterations, the system could present thermalization, that is, a

distribution of equipartition of energy (ergodic behavior) between the modes and thus

forget its initial condition. This is based on the fact of believing that the systems with

few degrees of freedom exhibited chaotic behavior which does not equalize the energy,

but as one increases the degrees of freedom, the systems tend to equalize the energy as

observed in the thermodynamic limit. However, the system exhibits a very complicated

quasi-periodic dynamics, that is, certain privileged recurring behaviors emerged. They

Figure 2.5: Numerical evolution of energy for different modes.
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published their results in a technical report from Los Alamos in 1955 1 [92].

The behavior exhibited by this system is due to the fact that it does not tend to

thermodynamic equilibrium due to the reason that this system is integrable [14, 213],

that is, if the degree of freedom is increased, quantities are also added in the same

proportion conserved, so the dynamics are not simply to conserve energy but a series

of other quantities, which restrict the dynamics. As we will see, it is this in the context

that one expects for conservative systems to find localized solitary wave solutions. That

is, solitons are the consequence of integrable Hamiltonian systems [90].

2.2.1 Fermi-Pasta-Ulam-Tsingou problem and Kdv equation

To have a better understanding of the problem, we will take the continuous limit of

the chain of nonlinear oscillators following the line of thought of Kruskal and Zabusky

[210]. The equation that describes the chain of oscillators (2.1) can be generalized

considering that the coupling constant between the oscillators k is nonlinear, then the

equation that describes the chain of oscillators takes the form

z̈i(t) = (zi+1 − 2zi+1 + zi−1) (ko + α(zi+1 − zi−1)), (2.5)

where ko and α account for the linear coupling and nonlinearity between the oscillators,

to consider the continuous limit, we will consider the following strategy zi+1 = z(x+h)

and we will expand this expression to the derivatives of order four in order to generalize

the wave equation, that is, z(x+h) ≈ z(x)+h∂xz+h2∂xxz/2+h3∂xxxz/3!+h4∂xxxz/4!.

Introducing this approximation in the previous equation

∂ttz ≈
(
h2∂xxz +

h4

12
∂xxxxz

)(
ko + α2

(
h∂xz +

h3

6
∂xxz

))
. (2.6)

1Enrico Fermi died in 1954 and so this whitepaper was published after Fermi’s death. In this report,

despite the fact that Tsingou wrote the codes, which today would be simple but in the programming

dawn were complex, she was not consolidated as a co-author because perhaps "she fulfilled a technical

role" and not a scientific development, her contribution was recognized starting in 2008, where this

problem changed from being called Fermi-Pasta-Ulam to Fermi-Pasta-Ulam-Tsingou [87].
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considering the dominant terms, we obtain

∂ttz =h2ko∂xxz +
h4ko
12

∂xxxxz + α2h3∂xxz∂xz. (2.7)

In the limit h → 0 and ko → ∞ with hko = c2, one obtains the linear wave equation,

however if we consider the previous corrections and normalize the units of z so that the

non-linear coefficient is one, we obtain that the above equation takes the form

∂ttz = c2∂xxz + γ∂xxxxz + ∂xxz∂xz. (2.8)

where γ ≡ h4ko/12, which is a small number. This is a nonlinear wave equation.

Introducing the following variable u = ∂xz and taking the partial derivative with respect

to space, the previous equation takes the form (Boussinesq equation [33])

∂ttu = ∂xx

(
c2u+

u2

2
+ γ∂xxu

)
. (2.9)

This equation was derived by Boussinesq to account for the surface waves observed by

John Scott Russell [33].

To find the solution and describe the dynamics exhibited by equation (2.8) we will

consider the following ansatz z(x, t) = f(x − ct, τ = t) + w(x − ct, τ), where f(ζ ≡

x−ct, τ) is a small function (f � 1) and slowly variable in ζ and τ , that is, the successive

derivatives of f each time are smaller (∂ζζf � ∂ζf � 1 and ∂ττf � ∂τf � 1), ζ is

the coordinate in the co-mobile system, τ accounts for the slow dynamics and W is a

corrective function that will account for the nonlinear corrections for f . Introducing

the previous ansatz in equation (2.8) to the lowest order we have

∂ttf(x− ct) = c2∂xxf.

Which satisfies any sufficiently smooth function. In the following order, one get

∂ttW−c2∂xxW = c∂ζτf + γ∂ζζζζf + ∂ζζf∂ζf. (2.10)

To solve the equation for W we must invert this linear equation. Then we impose the

solubility condition, which means that there cannot be terms that explicitly depend on

ζ. Then f must satisfy

c∂ζτf = −γ∂ζζζζf − ∂ζζf∂ζf. (2.11)
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Figure 2.6: Solitary waves exhibited by the Korteweg-de Vries equation (2.13). a) a solitary wave and

its respective evolution in the space-time diagram; b) collision of two solitary waves.

Introduciendo el cambio de variable u(τ, ζ) = ∂ζf y normalizando el tiempo en unidades

de la velocidad de propagación de las ondas, satisface la ecuación de Korteweg-de Vries

∂τu = −γ∂ζζζu− u∂ζu. (2.12)

Usually, this model is called the KdV equation. This model was proposed to explain

shallow water surface waves by Diederik Korteweg and Gustav de Vries (Korteweg and

de Vries 1895) [128]2. It is particularly noteworthy that KdV is exactly solvable, that

is, a nonlinear partial derivative equation whose solutions can be exactly and with

calculated precision an integrable system.

Let us consider the moving system τ = t and ζ = ξ − vt, then

0 = ∂ξ

(
−γ∂ξξu−

u2

2
+ vu

)
. (2.13)

If the system does not have external flows, the constant of integration of the previous

equation is zero. Then, the stationary solutions of this system satisfy the following

Newton-type equation

γ∂ξξu = vu− u2

2
. (2.14)

The equilibria of this system are u = 0 and u = 2v. Linear analysis around the origin

tells us that this is a center (u = 2v) and that the other equilibrium is a hyperbolic point
2the first time the KdV equation is derived is by Boussinesq [33].
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(u = 0). In Figure 2.8, the respective phase space is illustrated. Where the equilibria

represent the uniform states, only the hyperbolic equilibrium point is stable, the orbits

around the center account for propagative periodic solutions. The solutions of equation

(2.14) can all be calculated analytically by means of elliptic functions [8]. However, these

solutions are unstable for the spatiotemporal system. The most attractive solution is

the homoclinic solution that connects the stable and unstable variety, respectively, of

the hyperbolic point. This solution accounts for a solitary wave (see figure 2.8). This

wave is a stable solution of the space-time system. The homoclinic can be obtained by

direct integration of the Newton-type equation (2.14), which has the solution (solitary

wave)

u(ζ − vτ) = 3vsech2

[√
v

4γ
(ζ − vτ)

]
. (2.15)

The previous solution is illustrated in Figure 2.8. We note that for the larger amplitude

of the localized solution, the speed is more significant and the relationship between

them is given by a power law of the square root type. Then solitary waves of greater

amplitude trap the smaller solitons (see figure 2.8). Because the equation is nonlinear,

the superposition principle is not valid. When the solitons collide, the amplitude of the

largest decreases and that of the smallest increases and also the largest and smallest

one is ahead and behind in their movement, respectively.

Figure 2.7: Phase space of the Newton-type equation (2.14). Periodic solutions account for periodic

waves. propagative and the homoclinic accounts for a localized wave.
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Figure 2.8: Bright and dark solitons obtained from the KdV equation (2.13) for positive and negative

nonlinearity.

By introducing the field u(x, t) we have succeeded in deducing the Korteweg and de

Vries equation, equation (2.13), which has solitary waves like those illustrated in figure

(2.6). In the case of considering a reflection in the field u(x, t) of the form u→ −u, the

KdV equation is only modified by means of the change of sign of the nonlinear term

∂τu = −γ∂ζζζu+ u∂ζu. (2.16)

This equation now exhibits depletion solitons, often referred to in the literature as dark

solitons, particularly in the context of nonlinear optics, which are associated with the

optical medium being of the focusing type. Then, we will say that when this sign is

positive (negative), the medium is of the focusing (defocusing) type.

2.2.2 Dynamics of counterpropagating solitons: Boussinesq equa-

tion

The Boussinesq equation (2.9) is invariant by spatial reflection, x→ −x. Unlike the

KdV model (2.13), which accounts for nonlinear waves propagating towards a given

flank3. Therefore, a finite localized perturbation of the Boussinesq equation is charac-

terized by the emergence of counterpropagating solitons to the left and to the right.

Figure 2.9 illustrates the propagation of a disturbance for the Boussinesq equation. In

order to describe this dynamic, let us consider an ansatz analogous to the one we use
3It is worthy to note that this model has broken the symmetry of spatial reflection.
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Figure 2.9: Propagation of two counterpropagating solitons of the Boussinesq equation (2.9). The

panels on the left side show different instants of the profile (to < t1 < t2). The right panel gives an

account of the space-time evolution of the solitons.

to describe the traveling wave to the right flank

u(x, t) = εf
[
ζ = ε1/2(x− ct), T = ε3/2t

]
+εg

[
θ = ε1/2(x+ ct), T

]
+ε2w(ζ, θ, T ), (2.17)

where ε � 1 is a multiple scaling control parameter [122] and w is a small correction

function. Introducing the previous ansatz in Eq. (2.9), we obtain a hierarchy of equa-

tions in powers of ε. Note that differential operators are calculated using the following

rules

∂

∂t
=

∂

∂ζ

∂ζ

∂t
+

∂

∂θ

∂θ

∂t
+

∂

∂T

∂T

∂t
= −ε1/2c ∂

∂ζ
+ ε1/2c

∂

∂θ
+ ε

∂

∂T
, (2.18)

∂

∂x
=

∂

∂ζ

∂ζ

∂x
+

∂

∂θ

∂θ

∂x
= ε1/2

∂

∂ζ
+ ε1/2

∂

∂θ
. (2.19)

At the order ε2, we get a trivial equality

c2∂ζζf + c2∂θθg = c2∂ζζf + c2∂θθg. (2.20)
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Figure 2.10: Gas evolution of counterpropagating solitons of the Boussinesq equation (2.9). The lower

and upper panels give an account of the initial and final conditions.

To the next order ε3, we obtain the linear equation

∂ζθw − 2c∂ζTf + 2c∂θTg = ∂ζ(f∂ζf) + ∂θ(g∂θg)

+g∂ζζf + f∂θθg + γ∂ζζζζf + γ∂θθθθg, (2.21)

we can write the previous equation as follows

∂ζθw(θ, ζ) = ∂ζ (2c∂Tf + f∂ζf + γ∂ζζζf) + ∂θ (−2c∂Tg + g∂θg + γ∂θθθg) +

+g(θ)∂ζζf(ζ) + f(ζ)∂θθg(θ). (2.22)

To solve this linear equation for w, we introduce a inner product 〈h(ζ, θ)|p(ζ, θ)〉 ≡∫
h(ζ, θ)p(ζ, θ)dθdζ. Using this inner product he linear operator L = ∂ζθ is self-adjoint,

L = L†. The element of the kernel of L, Lψ = 0, is any function of a single variable,
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that is, ψ(ζ, θ) = ψ(θ) or ψ(ζ, θ) = ψ(ζ). Then applying the solvability condition of

the previous equation [95], we obtain

−2c∂Tf = f∂ζf + γ∂ζζζf, (2.23)

2c∂Tg = g∂θg + γ∂θθθg. (2.24)

The solvability condition is equivalent to imposing that the w function must explicitly

depend on both variables. Therefore, both functions f and g satisfy two independent

equations of KDV. From the previous model, we conclude that solitons that propagate

in opposite directions do not interact. Figure 2.10 shows the temporal evolution of

a soliton gas. From this chart, we conclude that the vortices that propagate in the

opposite direction are non-interacting at the dominant order.

2.2.3 Solitary waves in fluidized granular matter

Granular matter, when fluidized by continuous energy injection exhibits a variety

of phenomena that resemble those of molecular fluids like waves propagation, pattern

formation, and phase transition, to mention a few. The main difference with molecular

fluids is that, at collisions, grains dissipate kinetic energy into the internal degrees of

freedom of grains. Hence, energy must be supplied continuously to sustain a fluidized

Figure 2.11: Liquid-solid-like transition in quasi-one-dimensional driven granular media [51]. In the

left, middle, and right panel are a snapshot of the experiment, snapshots of the phase separation, and

a spatiotemporal diagram illustrating the propagation of waves.
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regime. Experimentally, energy is usually injected through vibrating walls or by the

gravitational field. It has been shown that a fluidized granular system in two spatial

dimensions with a vibrating wall and without gravity exhibits a phase separation [12, 36,

38, 51, 143], analogous to the spinodal decomposition of the gas-liquid transition in the

van der Waals model [134]. Molecular dynamics simulations of a granular system at the

onset of phase transition reveal a rich dynamical behavior characterized by appearance,

coalescence, and disappearance of bubbles (or clusters). The mechanism for this phase

separation is triggered by a negative compressibility [12, 38]. Namely, the origin of this

phase separation is of mechanical origin.

A continuous macroscopic description of granular flows is still an open fundamental

question. There are several models with different approximation schemes that produce

different hydrodynamic models. Nevertheless, using simple generic arguments, inde-

pendent of the specific macroscopic model, in Refs. [12, 38] it is shown that a fluidized

granular system that exhibits phase separation can be described, close to the critical

point, in a quite good agreement by the van der Waals normal form (VdW). This model

shows that the appearance, coalescence, interaction, and disappearance of bubbles is

mediated by nonlinear waves.

The VdW normal form is [12, 38]

∂ttu = ∂xx
(
εu+ u3 − ∂xxu+ ν∂tu

)
, (2.25)

where u(x, t) is the field that describes the correction to the critical average vertical den-

sity, x is the coordinate that describes the horizontal direction of the granular system,

ε is the bifurcation parameter which is proportional to the compressibility coefficient,

ν is the effective viscosity. The two first terms in the right hand side give account of

the pressure around the critical average vertical density. The term with high spatial

derivative depicts the interface tension [38]. It is important to note that this model is

similar to the Boussinesq equation (2.9) but with cubic nonlinearity.

The inviscid VdW model, ν = 0, has the form ∂ttu = ∂xx(εu + u3 − ∂xxu). In the

moving framework, ζ = x− ct, the stationary solutions satisfy a Newton-type equation
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Figure 2.12: Spatiotemporal evolution of the VdW model at the onset of the phase transition, with

time running up. The gray scale is proportional to the field u, with darker regions representing denser

regions in the system. The inset figures illustrate two different snapshots before and after solitary wave

emission.

of the form
d2u

dζ2
=
(
ε− c2

)
u+ u3 − λ, (2.26)

where λ is an integration constant related to the total mass, compatible with periodical

or zero flux boundary conditions. The equilibrium fixed points (u0) of this system

satisfy λ = (ε− c2)u0 + u3
0. It is easy to show that, when |λ| < 2 (c2 − ε) /3

√
3 and

ε < c2, this cubic equation has three real solutions, otherwise it just has one rqulibrium.

In the first case, two of them are hyperbolic fixed points, while the other is a center

fixed point. Then, Newton-type equations in general, have an homoclinic curve, which

corresponds to a traveling solitary wave of the inviscid VdW model. To have a solitary

wave solution, we must impose

u2
0 + ε < c2 < v2

s ≡ 3u2
0 + ε. (2.27)

Hence, the wave speed is bounded. vs is the sound speed about the homogeneous state

u0, therefore the solitary waves are subsonic. Due to the symmetry of λ → −λ and

u→ −u, we will suppose without loss of generality λ > 0. In that case, the homoclinic

orbit lies below the negative state u0 < 0 (the lowest fixed point). And we have bright
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solitary wave solutions [49]

u = u0 +
2 (3u2

0 + ε− c2)√
2 (c2 − u2

0 − ε) cosh
[√

(3u2
0 + ε− c2) ((x− x0)− ct)

]
− 2u0

(2.28)

In the opposite case, λ < 0, we have dark solitary wave solutions, which hold up the

upper fixed point. In the limiting case, λ = 0, there are two heteroclinic connections.

Hence, we have kink or anti-kink solutions. Figure 2.12 illustrates the solitary wave

solution.

2.3 Chain of coupled pendulums

Nonlinear oscillators such as the pendulum have played a primary role in the under-

standing of complex dynamics since the dawn of modern science [16, 98]. Even a simple

two-oscillators coupled system shows interesting behavior such as synchronization [171].

A chain of coupled oscillators to nearest neighbors also can present a rich spatiotemporal

dynamics [171, 130, 117], such as phase turbulence [130], synchronization [171], defects

turbulence [180], random occurrence of coherence events [151], defect-mediated turbu-

lence [71], spatiotemporal intermittency [41], quasiperiodicity in extended system [62]

and coexisting of coherent and incoherent behavior, known as chimera states [65, 67].

A prototype model of coupled nonlinear oscillators to nearest neighbors is the Frenkel-

Kontorova model [35, 127]. Figure 2.13 illustrates a chain of coupled pendula. In the

context of condensed matter, it is the simplest model that describes the dynamics of

a chain of particles interacting with the nearest neighbors under the influence of an

external periodic potential [35, 127]. The Frenkel-Kontorova has been used to model

several nonlinear phenomena such as solitons, kinks, breathers, and glass-like behavior.

Likewise, this model has been used to describe cluster of atoms in DNA-like chain, spin

in magnetic chain, fluxon in coupled Josephson junctions and plastic deformations in

metals (see textbook [35] and references therein).

Let us consider a chain of dissipative coupled pendulums, which is described by the

damped Frenkel- Kontorova equation, Let us consider a chain of dissipative coupled
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Figure 2.13: Frenkel-Kontorova model. (a) Schematic representation and snapshot of a chain of coupled

pendulums. (b) Schematic representation and snapshot of a coupled Josephson junctions.

pendula, which is described by the damped Frenkel-Kontorova equation,

θ̈i = −ω2 sin θi − µθ̇i + κ (θi+1 − 2θi + θi−1) , (2.29)

where θi(t) is the angle formed by the pendulum and the vertical axis in the i-position

at time t, θi = 0 (θi = π) corresponds to upright (upside-down) position of pendulum.

i is the index label of the i-th pendulum, ω is the pendulum natural frequency, µ

accounts for the damping coefficient, and κ stands for the coupled interaction between

adjacent pendulums. Notice each pendulum is coupled to the nearest neighbors. The

model Eq. (2.29) can be also applied to coupled identical Josephson junctions [42, 138].

A scheme of this system is depicted in Fig. 2.13b, where θi(t) accounts for the phase

difference between the wave function of each superconductors in the i-th junction.

To model these quantum elements, one can consider a quantum system consisting of

two superconductors described by two wave functions ψ1 and ψ2 which is separated by

an insulating film (see Fig. 4.2). When one applies a voltage difference, classically one

does not expect to observe electrical conduction, however, quantitatively one observe

a current through the device, even without voltage. To describe this phenomenon, one



30 CHAPTER 2. CONSERVATIVE SOLITARY WAVES: SOLITONS

y

x

z

W

h

(a) (b)Superconductor

Superconductor

Isolator

ψ
1

ψ
2

Figure 2.14: Josephson junctions. (a) Schematic representation of the Josephson junctions. ψ1 and

ψ2 account for the amplitud probability of the superconductor state of the respective superconductor.

(b) snapshots of the Josephson junction

can consider a two-state quantum system described by

ih̄∂tψ1 = E1ψ1 + kψ2, (2.30)

ih̄∂tψ2 = E2ψ2 + kψ1, (2.31)

where h̄ is the Planck constant, E1 and E2 account for the energy of the superconductor,

E2 − E1 = −qV , where V is the voltage between superconductors and q the electrical

charge, and k accounts for the coupling between superconductors, which is determined

by the properties and geometry of the insulating material. Introducing polar represen-

tation ψl(t) ≡
√
ρl(t)e

iφl(t) (l = {1, 2}), where ρl(t) accounts for the density of cooper

pair, the set of equations read

∂tρ1 =
k
√
ρ2ρ1

h̄
sin(φ2 − φ1), (2.32)

∂tρ2 = −
k
√
ρ2ρ1

h̄
sin(φ2 − φ1), (2.33)

∂tφ1 = −E1

h̄
− k

h̄

√
ρ2

ρ1

cos(φ2 − φ1), (2.34)

∂tφ2 = −E2

h̄
− k

h̄

√
ρ1

ρ2

cos(φ2 − φ1). (2.35)

the current between superconductors is given by

Js ≡ ∂tρ1 = −∂tρ1 =
k
√
ρ2ρ1

h̄
sin(φ2 − φ1). (2.36)
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Hence, if there is a phase difference φ ≡ φ2 − φ1 between the superconductors, there is

a current. This phase difference satisfies

∂tφ =
qV

h̄
− k

h̄
cos(φ)

[√
ρ2

ρ1

−
√
ρ1

ρ2

]
. (2.37)

Considering that both states have the same density ρ0 ≡ ρ1 = ρ2, one finds Josephson’s

relationships

Js =
kρ0

h̄
sin(φ), (2.38)

∂tφ =
qV

h̄
. (2.39)

Note that even without voltage (V = 0), but with a phase difference, one can see a

quantum current (Josephson effect). On the other hand, the current and the voltage

are connected by means of Maxwell equations, particularly by(
∂tt
c2
−∇2

)
~E = µ0∂t ~J, (2.40)

where ~E and ~J are the electric field and current between the superconductor, respec-

tively. If the insulator is a thin film then ~E ≈ −V/d ŷ with d the thickness of the

insulator, and the current is composed of a normal and a superconductor current,
~J = (Js + Jn)ŷ. The normal current satisfies the Ohm law Jn = −V/ηd with η is the

resistivity. Using the Maxwell equation, Josephson relations, the previous approxima-

tion and assuming that phase difference depend of the transversal coordinate φ(x, t),

one gets

∂ttφ = −c
2kρ0dµ0

h̄2q
sinφ− c2µ0

η
∂tφ+ c2∂xxφ. (2.41)

Hence, the Josephson junctions is describe by sine-Gordon equation, where the natural

frequency depends of the density of cooper pairs, electric charge, constant of coupled

between the superconductor, and the thickness of the insulator. Hence, in the sine-

Gordon equation (2.43) the parameter ω2 stands for the superconductor current in the

junctions, and its value is determined by the particular characteristics of the junction.

The parameter µ accounts for the normal current and the parameter k accounts for the
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coupling between nearest junctions. Likewise, the model Eq. (2.29) accounts for the

coupling superconducting quantum interference devices (SQUIDS, see [42] and refer-

ences therein). In this latter case, θi accounts for the magnetic flux over i-th SQUIDS.

These devices have played a fundamental role in detecting small magnetic fields in

prospecting for mineral deposits, magnetoencephalography, and cosmic waves [42].

2.3.1 sine-Gordon Equation

In the continuous limit, considering θ(x, t) = limdx→0 θi(t), x = limdx→0 idx, κ →

∞, and κdx−2 → C2 (C is a finite constant that stand for the elastic coefficient),

equation (2.29) becomes in the damped sine-Gordon equation [76].

∂ttθ = −ω2 sin θ − µ∂tθ + C2∂xxθ. (2.42)

When we neglect the damping effect µ = 0, the system is described by the sine-Gordon

equation [76].

∂ttθ = −ω2 sin θ + C2∂xxθ. (2.43)

It was originally introduced by Edmond Bour (1862) in the course of study of surfaces of

constant negative curvature as the Gauss-Codazzi equation for surfaces of curvature [32]

and rediscovered by Frenkel and Kontorova (1939) in their study of crystal dislocations

known as the Frenkel-Kontorova model [35, 127]. The trivial solution is that the pen-

dulums are in the upright state, θ = 0. By uniformly disturbing the pendulums, with

small amplitud, they all oscillate close to the natural omega frequency which depends

on the square root of the length established by Galileo Galilei [98]. Figure 2.15 shows

the spatiotemporal evolution of a uniform disturbance of small and long amplitude.

Therefore, for small amplitudes, we conclude that the pendulums can be synchronized

[171]. Conversely, when the coupled oscillators are near the homoclinic bifurcation of

an elementary oscillator, the synchronization becomes unstable [12]. Namely, the pre-

vious phenomenon corresponds to the emergence of space-time chaos by a homoclinic

bifurcation, a phenomenon established for low-dimensional systems by Andronov [7].
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Figure 2.15: Numerical simulation of sine-Gordon equation (2.43) with ω = 1 and C = 1. The lower

and upper panels account for the initial and final conditions, respectively. Spatiotemporal evolution

of a small (a) and large (a) uniform angle amplitude initial condition. (c) Spatiotemporal diagram of

an asymmetrical localized initial condition.

Unexpectedly, the last scenario changes when one makes an asymmetrically localized

disturbance, which generates a solitary wave that spreads surrounded by a sea of waves

of small amplitude. Figure 2.15c shows the spatiotemporal diagram of a localized distur-

bance. Depending on the initial conditions, we observe different speeds of propagation

of the solitary waves. Observe that these waves always have a bell-like shape.

To shed light on the observed dynamics, let us consider the dynamics of the sine-Gordon

equation (2.43) around the upright pendula, θ � 1, that is,

∂ttθ = −ω2θ + C2∂xxθ. (2.44)

This equation is known in the literature as the Klein-Gordon equation [105, 126]. Pro-

posed scalar model to describe the relativistic quantum mechanics of electrons; however,

electrons have spin, the correct theory of electron is the Dirac equation [84]. From a

point of view of quantum mechanics, this model describes particles with mass without

spins, so it adequately describes pions and Higgs bosons.

The origin of the name of the sine-Gordon equation is simply the sine of the above

equation [76]. The Kelin-Gordon equation (2.44) is a dispersive linear wave equation.
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Figure 2.16: Dispersion relationship of the Klein-Gordon equation (2.45) and space-time evolution of

waves.

Let us consider the following ansatz θ = Aei(Ωt−kx), we obtain the relation dispersion

Ω =
√
ω2 + C2k2. (2.45)

Figure 2.17 shows the relation dispersion and spatiotemporal evolution of waves in the

sine-gordon Equation. Therefore, this model has a cutoff frequency equal to ω; that

is, only waves with higher frequencies are allowed. Frequencies lower than ω have

imaginary wave numbers, so they are waves that are damped. Another important

property of sine-Gordon and Klein-Gordon is that they are invariant under Lorentz

transformation

x′ =
x− vt√
1− v2

C2

and t′ =
t− vx

C2√
1− v2

C2

, (2.46)

where v < C is an arbitrary speed. To show this property, let us rewrite the sine

Gordon equation as follows

(∂tt − C2∂xx)θ = (∂t − C∂x)(∂t + C∂x)θ = −ω2 sin θ. (2.47)

Using the Lorentz transformation one have

∂

∂t
=

∂

∂t′
∂t′

∂t
+

∂

∂x′
∂x′

∂t
=

1√
1− v2

C2

(
∂

∂t′
− v ∂

∂x′

)
, (2.48)

∂

∂x
=

∂

∂t′
∂t′

∂x
+

∂

∂x′
∂x′

∂x
=

1√
1− v2

C2

(
∂

∂x′
− v

C2

∂

∂t′

)
. (2.49)
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Figure 2.17: Collisions of breather solitons in the sine-Gordon equation (2.43) with ω = 1 and C = 1.

The insets show the initial and final conditions, respectively.

It is trivial to show that

(∂t − C∂x)(∂t + C∂x) = (∂t′ − C∂x′)(∂t′ + C∂x′). (2.50)

Hence, the sine-Gordon equation is invariant under the Lorentz boost. Namely, any

solution of the sine-Gordon can be propagative when applying this transformation.

2.3.2 Breather solitons and weak nonlinear analysis

As illustrated in Figure 2.15, the system exhibits localized propagative oscillatory so-

lutions, breather solitons [1]. This intriguing dynamical behavior was characterized

analytically by using the inverse scattering method [1]. The breather solitons have the

expression [185]

θ(x, t) = 4 arctan

√1− Ω2

Ω
sech

√1− Ω2
x− vt√
1− v2

C2

 sin

Ω
t− vx

C2√
1− v2

C2

 (2.51)

where Ω accounts for the amplitude and size of the soliton. In other words, solitons

are a family of solutions parameterized by Ω. For small disturbances, the solitons have

bell-like shapes, as illustrated in figure 2.15. Notice that in this limit, the system has

some similarities with the solitons observed in the Boussinesq and Korteweg de Vries
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equation. To emphasize this, we consider in figure 2.17 the collision of two solitons with

different speed and amplitude. From this chart, we conclude that the solitons collide

in a non-linear way so that there is a displacement of the solitons when they collide,

similar to that observed in Korteweg de Vries.

In order to achieve a better understanding of this type of solitons and to describe

them in a universal manner, we will now consider the weakly nonlinear analysis. Let

us consider the ansatz

θ(x, t) = A(X,T )eiωt + Ā(X,T )e−iωt +W (A, Ā, t), (2.52)

where A is a slowly variable amplitude in time and space (∂TTA � ω∂TA � ω2A

and ∂XXA � (C/ω)∂XA � (C/ω)2A ), which accounts for the envelope concerning

the upright position of the pendulum. X, T , and t account for the slow spatial and

temporal variable and the fast temporal variable, respectively. Ā stand for the complex

conjugate of the amplitude A. W accounts for nonlinear corrections in the amplitude.

Introducing the ansatz (2.52) in equation (2.43) and linearizing in w, one obtain

∂ttθ = −ω2Aeiωt + i2ω∂TAe
iωt + ∂TTAe

iωt + ∂ttW + c.c.

= −ω2sinθ + C2∂xxθ ≈ −ω2(θ − θ3

6
) + C2∂xxθ

≈ −ω2W − ω2

(
Aeiωt − A3ei3ωt + 3|A|2Aeiωt

6

)
+ C2∂XXAe

iωt + c.c, (2.53)

where the symbol c.c. accounts for complex conjugate. Considering the dominate terms

the above equation reads

(∂tt + ω2)W =

(
−i2ω∂TA+ ω2 |A|2A

2
+ C2∂XXA

)
eiωt +

ω2A3ei3ωt

6
+ c.c. (2.54)

To solve the linear equation inW , one can introduce the inner product (Fourier product)

〈f |g〉 =
ω

2nπ

∫ T+n 2π
ω

T

f̄(t)g(t)dt, (2.55)

the linear operator L ≡ ∂tt+ω2 is self-adjoint. The element of the kernel of L are of the

form {eiωt, e−iωt}. Therefore, for the linear equation (2.54) to have a solution–solvability



2.3. CHAIN OF COUPLED PENDULUMS 37

Figure 2.18: Solitons in the nonlinear schrödinger equation (2.56) (a) Spatiotemporal evolution of

solitary wave propagation. (b) counter propagative solitons collision. Top and bottom panels stand

for the initial final condition.

condition [95]–the elements on the right side must not be proportional to eiωt or e−iωt.

Hence, the amplitud satisfies (Nonlinear Schrödinger equation, NLS [39, 94, 156, 164,

150, 195])

∂TA = −iω |A|
2A

4
− iC

2

2ω
∂XXA. (2.56)

2.3.3 Nonlinear Schrödinger equation

Renormalizing space and the amplitude the above equation (2.56) can be written as

i∂TA = |A|2A+ ∂XXA. (2.57)

This model is a is a nonlinear variation of the Schrödinger equation [39, 94, 156, 164,

150, 195]. Due to this model describes the envelope of coupled oscillators it has been

used to describe the propagation of light in nonlinear optical fibers [3, 164], planar

waveguides and Bose-Einstein condensates [173], small-amplitude gravity waves on the

surface of deep inviscid fluid, and the Langmuir waves in hot plasmas [24]. The nonlinear

schrödinger equation (2.56) is not Lorentz invariance. However, this is invariant under
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Figure 2.19: Phase space of the stationary system associated with the the nonlinear schrödinger

equation (2.56). The red and blue curves account for bright and dark soliton.

the Galileo transformation

x→ x′ = x+ 2vt, (2.58)

t→ t′ = t, (2.59)

A(x, t)→ A(x, t) = A′(x′ − 2vt′, t′)eiv(x′−vt′), (2.60)

where A′ satisfied the nonlinear schrödinger equation in the co-moving system {x′, t′}.

Hence, one found solutions of the NLS equation can inhibit propagative solutions.

When performing localized perturbations of the NLS equation, one observes the

emergence of solitary waves, solitons. Figure 2.18 shows the typical soliton observed in

the Nonlinear Schrödinger equation (2.56).To shed light on this solution, let us consider

the following ansatz for the amplitude

A = R(x)e−iω0t, (2.61)

where R and ω0 stand for the magnitud and oscillatory frequency of the amplitude,

respectively. The magnitud of the amplitude satisfies (Newton type equation)

∂xxR = ωoR−R3, (2.62)
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The trivial equilibria in this equation are R = 0 and R =
√
ω0, which is a hyperbolic

and center equilibrium, respectively. the phase space of this equation is illustrated in

figure 2.19. The only hyperbolic curve is the homoclinic curves, which represent the

solitons. To account for this curve, we use the ansatz

R = asech(bx), ∂xR = −ab tanh(bx)sech(bx),

∂xxR = ab2 tanh2(bx)sech(bx)− ab2sech3(bx). (2.63)

The last relation can rewrite as ∂xxR = ab2sech(bx)[1 − 2sech2(bx)]. Replacing these

expressions in Eq. (2.62), one gets

ab2sech(bx)[1− 2sech2(bx)] = ωoasech(bx)− a3sech3(bx). (2.64)

Equating the terms in the different powers of secants, it obtains b =
√
ω and a =

√
2ω. Hence, the homoclinic curve has the form R =

√
2ωsech(ωx). Using, the Galileo

transformation (2.60) and the ansatz (2.61), the soliton has the form

A(x− 2vt, t, v, ωo) =
√

2ωo sech[ωo(x− vt)]eiω0teiv(x−vt), (2.65)

where the solitons are parameterized by a family of two parameters ω and v. ω char-

acterizes the height and width of the soliton, for larger, thicker, and thinner ω is the

soliton. v characterizes the speed of propagation of the solitons. Figure 2.18 shows the

typical soliton observed in the Nonlinear Schrödinger equation (2.56). Likewise, as the

examples previously studied, solitons correspond to solitary waves that propagate with-

out deformation, characterized by the fact that when they collide with other solitons,

a shift of the position of the solitary waves occurs [177].

Based on weakly nonlinear analysis, Zakharov [211] shows that the envelope deep-

water wave train is described by an the nonlinear Schrödinger equation (2.57). Fur-

thermore, this equation was solved exactly by Zakharov and Shabat [212] by using the

inverse-scattering method. These solutions were verified experimentally by Yuen and

Lake [199]. In the case of deep water, an envelope soliton consists of a sech-shaped

hyperbolic secant envelope which modulates a periodic wave was observed. Likewise,
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solitary wave of enveloped was observed in a single fiber [163]. Physically, these optical

solitons originate from a simple kind of nonlinearity manifested through the intensity

dependence of the refractive index.

2.3.4 Nonlinear enveloped equation in kerr media

Maxwell equations are characterized by accounting for electromagnetic waves. In

a vacuum or uniform homogeneous dielectric and lineal media, linear waveforms are

observed [93]. The previous scenario changes radically when the dielectric medium has

a nonlinear response [34, 164]. The propagation of the electric field ~E in a nonlinear

dielectric medium is describing by the Maxwell wave equation

1

c2
∂tt ~E +∇×∇× ~E = − 1

εoc2
∂tt ~P , (2.66)

where ~P accounts for the polarization density of the medium. Unlike a uniform and

linear medium, a nonlinear medium, the polarization density, and the electric field

satisfy the relationship [27]

~P = ~PL + ~PNL = εo

(
χ(1) ∗ ~E + χ(2)|E| ∗ ~E + χ(3)|E|2 ∗ ~E + · · ·

)
, (2.67)

Usually, it is assumed that the polarizing process is instantaneous, that is, χ(1) ∗ ~E =

χ(1) ~E. However, the response and organization of the charges is not instantaneous,

generating a delayed response for the electric field of the form [133]

χ(1) ∗ ~E =

∫ t

−∞
χ(1)(t− τ) ~E(τ)dτ, (2.68)

where χ(1)(t − τ) is the linear kernel response. In the case of a system that presents

instantaneous response, this response function can be modeled by χ(1)(t−τ) = 2χ
(1)
0 δ(t−

τ), i.e., χ(1) ∗ ~E = χ
(1)
0
~E(t). The formula (2.68) can rewrite as

χ(1) ∗ ~E =

∫ t

−∞
χ(1)(t− τ) ~E(τ)dτ =

∫ ∞
0

χ(1)(τ ′) ~E(t− τ ′)dτ ′. (2.69)

Assuming that the kernel is a good function that decays fast enough, one can expand

the above expression as follows

χ(1) ∗ ~E =

∫ ∞
0

χ(1)(τ ′) ~E(t− τ ′)dτ ′ = χ
(1)
0
~E(t) + · · ·+ χ(1)

n

dn ~E(t)

dtn
+ · · · , (2.70)
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Figure 2.20: Light propagation in a nonlinear medium, Kerr medium. The left panel shows the

propagation of light in a nematic liquid crystal. The right panel realizes the propagation of light in an

optical fiber.

where

χ(1)
n =

(−1)n

n!

∫ ∞
0

χ(1)(τ ′)τ ′ndτ ′. (2.71)

The index of refraction of the linear medium has the form n = 1 + χ
(1)
0 . The physical

system has the time reflection symmetry (t→ −t) then χ(1)
2p = 0, p = 1, 2, · · · . For the

sake of simplicity, it will consider that the nonlinear terms are instantaneous. Hence,

nonlinear polarization density reads

~PNL = εo

(
χ(2)|E| ~E + χ(3)|E|2 ~E + · · ·

)
, (2.72)

and χ(n) constant accounts for the n-th nonlinearity. A Kerr medium is called when

the first nonlinearity is cubic [121]. In optical fibers, the nonlocal delayed response is

provided by the Raman effect [3], which occurs spontaneously when an intense optical

beam is passed through a fiber. Figure 2.20 sketches the propagation of light on an

optical fiber.

Assuming the hypothesis that the medium has no free charges, then ∇ ~E = 0, the

wave equation reads

∇2 ~E − 1

c2
∂tt ~E =

1

εoc2
∂tt ~P . (2.73)

finally, considering the dominant terms in the linear response, temporal reflection in-

variance, and assuming that the medium is of the Kerr type, it is obtained

∇2 ~E − n2

c2
∂tt ~E =

χ(3)

c2

∂2

∂t2
|E|2 ~E +

χ
(1)
2

c2

∂4

∂t4
~E (2.74)
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Figure 2.21: Dispersion relationship of the Maxwell wave equation (2.74) with normal dispersion

χ
(1)
2 < 0, formula (2.21), and space-time evolution of waves in the Nonlinear Schrödinger equation.

To figure out the dynamics of linear waves, let us consider the following ansatz ~E =

Aei(kx−ωt)x̂ in equation (2.74), it is obtained the relation dispersion

k2 =
n2

c2
ω2 − χ

(1)
2

c2
ω4. (2.75)

Figure 2.21 shows the relation dispersion. Hence, fiber optics is a dispersive medium

as a consequence of the non-instantaneous response of the polarization. To account

for nonlinearities, one can consider the limit of weak amplitude and slow spatial and

temporal variation, that is,

~E =
[
A(X,T )ei(kx−ωt) + Ā(X,T )e−i(kx−ωt) +W (A, Ā, t, x)

]
x̂, (2.76)

where W is a nonlinear correction (W � A). Introducing the previous ansatz in

the nonlinear Maxwell wave equation (2.74), and assuming the wavenumber and the

frequency satisfies the relation dispersion (2.75), at dominate order one get[
∇2 ~E − n2

c2
∂tt ~E

]
· x̂ =

(
−k2 +

n2ω2

c2

)
Aei(kx−ωt) + (2ik∂x − 2i

ωn2

c2
∂T )Aei(kx−ωt) +(

∂xx +
n2ω2

c2
∂tt

)
W + c.c. = −3χ(3)ω2

c2
|A|2Aei(kx−ωt) − 9χ(3)ω2

c2
A3ei3(kx−ωt) +

+
χ

(1)
2 ω4

c2
Aei(kx−ωt) + i

χ
(1)
2 4ω3

c2
∂TAe

i(kx−ωt) − χ
(1)
2 6ω2

c2
∂TTAe

i(kx−ωt) +

+
χ

(1)
2

c2

∂4

∂t4
W + c.c.(2.77)
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rewriting the above expression (
∂xx +

n2ω2

c2
∂tt −

χ
(1)
2

c2

∂4

∂t4

)
W =(

−2ik∂x +

[
2iω

n2

c2
− iχ

(1)
2 4ω3

c2

]
∂T −

3χ(3)ω2

c2
|A|2 − χ

(1)
2 6ω2

c2
∂TT

)
Aei(kx−ωt)

−9χ(3)ω2

c2
A3ei3(kx−ωt) + c.c. (2.78)

To solve this linear equation, we impose the solubility condition, which sets that all the

terms proportional to ei(kx−ωt) are zero, that is,

2i

(
k∂x −

[
ω
n2

c2
− 2χ

(1)
2 ω3

c2

]
∂T

)
A = −3χ(3)ω2

c2
|A|2A− χ

(1)
2 6ω2

c2
∂TTA. (2.79)

Introducing the co-moving frame coordinate system

ζ = x−
ω n2

c2
− 2ω3χ

(1)
2

c2

k
t, (2.80)

Z = t. (2.81)

the amplitude equation reads (the Nonlinear Schrödinger equation) [3, 111]

− 2i∂ζA =
3χ(3)ω2

c2
|A|2A+

χ
(1)
2 6ω2

c2
∂TTA. (2.82)

where β2 ≡ χ
(1)
2 6ω2/c2 is the dispersion. When this quantitive is negativa or positive

this coefficients accounts for normal or abnormal dispersion [3, 111]. It is important

to note that in the case of abnormal dispersion, the dispersion relationship should be

multi-evaluated. The nonlinear term accounts for self-phase modulation.

In the case dispersion is abnormal, and the nonlinearity is positive, the optical fiber

can present soliton solutions, see formula (2.65). In optics, these solitons are called

bright solitons. It is important to note that these solitons represent the envelope of

the wave. That is, the soliton represents a propagative wave that describes a ripple

that increases and decreases. Figure 2.22 show a schematic representation of a bright

soliton.
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Figure 2.22: Dispersion relationship of the Maxwell wave equation (2.74) with normal dispersion

χ
(1)
2 < 0, formula (2.21), and space-time evolution of waves in the Nonlinear Schrödinger equation.

Dark soliton in NLS

In the case of normal dispersion, the nonlinear Schrödinger equation can be written as

follows after normalizing the Z coordinate and magnitude of the amplitude

i∂ζA = −|A|2A+ ∂ZZA. (2.83)

This equation supports hole-type solutions [124, 206], which has the form

A = Ao

√
1−m2sech2

(
m√

2
(z − vζ)

)
eiφ, (2.84)

where φ = m√
2

[
Ao
√

1−m2(z − vζ) + arctan
(

m√
1−m2 tanh

(
mA√

2
(z − vζ)

))]
− (3−m2)A2

0Z

2
.

In summary, bright and dark solitons have been observed in optical media, how-

ever nonlinear and nonlocal responses and higher-order dispersive effects are critical

to understanding the nonlinear wave dynamics observed in optical fibers, non-linear

crystals, liquid crystals, and nonlinear optical media in general. Therefore, the gen-

eralizations of nonlinear Schrödinger equation that include the nonlinear and nonlocal

responses and higher-order dispersive effects are better suited to describe experimental

observations [3, 111].



Chapter 3

Dissipative solitons in parametric

systems

Macroscopic systems spontaneously transmit energy at their internal degrees of

freedom. As a consequence of this process, the dynamics of macroscopic variables are

characterized by including dissipative energy processes. The inclusion of this type of

process produces the degradation and disparity of the solitons or solitary waves. Fig-

ure 3.1 illustrates the degradation of solitons under the presence of a damped effect.

To ensure that these solutions do not degrade, it is necessary to inject energy into

the system. An efficient way to inject energy into an oscillator is to force it with an

external oscillatory force at a frequency close to its natural frequency, a phenomenon

known as resonance1. A similar phenomenon can be achieved by means of the temporal

modulation of some physical parameter in a multiple of half of the natural frequency,

which can generate linear instabilities of the equilibria under study. This phenomenon

is known as parametric resonance [131]. A generalization of resonance phenomenon to

a system that is not an oscillator can also be achieved, that is when a system is simply

subjected to frequency forcing ω, and it responds to the subharmonic frequency ω/2.

1Since the dawn of modern physics, this phenomenon was recognized and characterized by one of

the founders of modern physics, Galileo Galilei [98].

45
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Figure 3.1: Degradation of solitons. Spatiotemporal evolution of numerical simulations of the non-

linear Schrödinger equation under the effect of a damping term, imaginary term proportional to the

amplitude.

This phenomenon can be understood by means of forcing inducing an oscillator and in

turn making it resonate, self-parametric resonance [60]. Then to account for the dynam-

ics exhibited by these systems, it is necessary to take into account the mechanisms of

energy dissipation. The balance between dissipation and energy injection will generate

attractive behaviors, which are usually called self-organization equilibrium [149].

3.1 Experimental observations of dissipative solitons

in parametric systems

When one considers a channel with water, and it oscillates vertically, dissipative soli-

tons are observed for adequate initial conditions and parameters (see Fig. 3.2) [207], in

this particular context they are called non-propagative hydrodynamic solitons. However,

when one considers a container extended in two dimensions with water or other Newto-

nian fluids, the same type of localized behavior is not observed. In this case, localized

propagative solutions are observed (c.f. Fig 3.2b)[140]. The direction of propagation is

chosen by a spontaneous break in the symmetry of revolution of the solution. However,

if one considers other types of more complex fluids parametrically forced as colloidal

fluids [141] or fluidized granular media [198], in two spatial dimensions, one can observe

stable localized solutions (cf. Fig. 3.3). These types of solutions are often referred to as

oscillons. since it corresponds to localized and oscillatory particle type solutions. All

these solutions are characterized by being found in the region where the uniform state
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Figure 3.2: Observed parametric dissipative solitons: a) in a vertically driven oscillating water channel

[207], these localized structures are stationary. b) Vertically driven vibrated cylindrical container [140],

in this case, the localized structures are of propagative nature.

that supports these solutions is stable. Furthermore, this occurs in the parameter region

close to where the system presents pattern formation. Then there are two simple ways

to observe these solutions: i) perform a localized finite disturbance, which overcomes

a nucleation barrier, which originates the localized structure, ii) Inherent fluctuations

can excite various spatial modes; in particular, they can excite localized modes, which

give rise to localized oscillatory localized solutions, dissipative breathers. iii) be in the

parameter region where patterns are observed and move the parameters to the localized

structure region. In this last region, the pattern breaks down into a sum of localized

structures [53].

From all the examples mentioned above, one can conclude that localized structures

or dissipative solitons belong to a universal class of phenomena in parametric systems.

To understand this, in the next section, we will analyze a prototype example of a
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Figure 3.3: Observed parametric dissipative solitons: a) vertically vibrated granular medium, oscillons

[198]. b) vertically vibrated colloidal fluid [141].

parametric system.

3.2 Parametrically forced pendulum chain

A prototype physical system exhibiting a parametric resonance is a vertically driven,

damped, and coupled pendulum chain, illustrated in Fig. 3.4, which is described in the

continuous limit by

θ̈(z, t) = −
[
ω2
o + γ sin(ωt)

]
sin θ − µθ̇ + κ∂zzθ, (3.1)

where θ(z, t) accounts for the angle of the pendulum with the vertical at position x

at an instant t, ωo is the natural frequency of the pendulums, which corresponds in

the idealized case to ωo =
√
g/lo with g = 9.8m/s2 and lo is the pendulum length.

γ accounts for the amplitude of the forcing, which is related to the displacement of

the vertical bar a, through the relation γ = aω2/lo y ω and ω is the frequency of the

forcing. µ accounts for the energy dissipation mechanisms and κ accounts for the elastic

coupling between pendulums.

In the limit γ = ν = 0, the previous equation corresponds to a Hamiltonian system

known in the literature as the sine-Gordon model, which is also temporally reversible,
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Figure 3.4: Schematic representation of chain of vertically driven coupled pendulums. Insets account

for the spatiotemporal evolution of the pendula chain for different parameters. In particular, these

insets illustrate localized and extended dissipative structures, spatiotemporal chaos, and intermittency.

when one considers the transformationt → −t and θ → θ. A trivial solution of the

previous system, equation (4.13), is the upright pendula θ(x, t) = 0, which corresponds

to the solution of the pendulums that oscillate simultaneously vertically. If one forces

the system to a frequency close to the natural frequency ω = 2(ω + ν), where ν is the

mismatch parameter between the frequencies2. A linear analysis of the vertical solution

shows that this solution is unstable within the region ν2 + µ2/4 = γ2/16 for small

detuning and forcing amplitude. This region is usually called the Arnold language [14].

Figure 3.5 illustrates this Arnold language in the parameter space {γ, ν}. In addition,

this figure illustrates some of the dynamic behaviors observed by this system, such as

uniform oscillations, dissipative solitons, localized structures, fronts, and kink solutions.

Due to the complex dynamics exhibited by the pendulum chain, one strategy is to

study equation (4.13) analytically. However, this equation is from a complex analytical

study. A second possibility is to study this equation numerically accompanied simul-

taneously by simplified equations valid in certain limits. Which will allow us to make

approximate analytical calculations.

2This parameter is known as detuning.
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Figure 3.5: Arnold’s tongue, bifurcation diagram of the chain of vertically coupled pendulums.

3.2.1 Quasi-reversible limit: parametrically forced nonlinear Schrodinger

equation

It is considered the limit where the injection and dissipation of energy are small [45],

that is, γ ∼ µ ∼ ε � 1 where ε is a small scale control parameter. Therefore, we will

consider the disturbed Sine-Gordon limit. In addition, for the energy injection to be

efficient, one will consider the forcing frequency is close to twice the natural frequency,

that is, ω = 2(ω0 + ν), where ν is the detuning parameter and satisfies ν ∼ ε. Then

equation (4.13) can be rewritten

θ̈(z, t) = −ω2
o sin θ + κ∂zzθ−µθ̇ + γ sin (2(ω + ν)t), (3.2)
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where the colored terms are perturbative nature of order ε. Introducing the following

ansatz based on the nonlinear perturbation of the oscillatory field [52].

θ(z, t) = 2

√
ε

ωo
A(x, τ)ei(ωo+ν)t − 2

√
ε

ωo

{
A3 (x, τ)

48

+
iγ

16ω2
0

A(x, τ)− iγε

8ω3
0

|A (x, τ) |2A(x, τ)

}
e3i(ωo+ν)t

+c.c.+ h.o.t, (3.3)

where A(x, τ) is the envelope of the uniform vertical oscillation, τ ≡ εt, and x ≡√
2εω0/kz are slow variables, that is, they account for the slow variation of this system.

Which is a consequence of the separation of scales between the oscillation and the

dynamics of the envelope. The symbols c.c. and h.o.t. account for the complex conjugate

and higher corrective terms, respectively.

By introducing the above ansatz into equation (3.2) and after a lot of direct steps one

can obtain the following equation for the envelope to the dominant order (this model is

known as the parametrically driven nonlinear Schrödinger equation [17, 161, 162, 214])

∂τA = −iνA− i |A|2A− i∂2
xA− µ̃A+ γ̃Ā, (3.4)

where µ̃ ≡ µ/2, γ̃ ≡ γ/4, and Ā stands for the complex conjugate of the amplitude A.

The terms of the previous equation are of order ε3/2 and the first corrections are of order

ε5/2. This model has been used extensively to describe the formation of patterns and

localized structures in various physical systems such as: vertically forced water channel

[162, 54], spatial structures in non-linear networks [86], parametric optical oscillators

[144], magnetic strands forced with an oscillatory field [17, 55], fluidized granular media

by means of temporally modulated fluxes [100], to name a few. From the previous

examples, we infer that model (3.4) is universal since it accounts for a wide range

of physical systems. Therefore, its understanding will allow us to understand various

physical systems that share various phenomena. The change of variable (1) corresponds

to a transformation of a variable to a periodic coefficient, which transforms the system

into a nonlinear equation with coefficients independent of time. Which corresponds to
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a nonlinear extension of the Floquet transformation [97, 108]. Through the use of the

theory of normal forms this method can be systematized [89].

It is important to mention that the previous equation in the reversible limit, that is,

not considering energy injection and dissipation (γ = µ = 0), describes the nonlinear

Schrödinger equation, which has the form

∂τA = −iνA− i |A|2A− i∂2
xA. (3.5)

This is a reversible Hamiltonian equation3, and perhaps its most surprising property

is that it is integrable, then it exhibits solitons or solitary waves [150], see chapter 2.

This classic field equation presents applications in optics, Bose-Einstein condensate,

and water waves. A simple interpretation of the above equation is that it accounts for

the enveloped dynamics of the chain of coupled nonlinear oscillators.

Dissipative Solitons

The figure (3.6) illustrates the bifurcation diagram of the parametrically driven nonlin-

ear Schrodinger equation (3.4). In which the region where localized solutions exhibited

by this model are observed, which accounts for breather solutions of the pendulum

chain (4.13), is illustrated. In order to obtain these solutions, one can introduce the

following polar representation A(x, t) = R(x, t)eiθ(x,t), then the equations take the form

∂tR = 2∂xR∂xθ +R∂xxθ − µR + γR cos(2θ), (3.6)

R∂tθ = −νR−R3 − ∂xxR +R(∂xθ)
2 − γR sin(2θ). (3.7)

The solution that accounts for the vertical pendulums is R = 0 and θ arbitrary. Let us

consider the following ansatz A(x, t) = R(x)eiθ0 [17, 161], that is, the phase is constant

and the amplitude is just a function of space. Then

0 = −µR + γR cos(2θ0), (3.8)

0 = −νR−R3 − ∂xxR− γR sin(2θ0). (3.9)
3Reversibility transformation is t→ −t and A→ −A.
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Figure 3.6: Bifurcation diagram of the parametrically driven nonlinear Schrodinger equation. The red

line shows the saddle-node fork where these solutions are born. In the Arnold curve, these solutions

disappear because the homogeneous support is unstable.

Then one finds that

cos (2θ0) =
µ

γ
. (3.10)

The second equation takes the form of a Newton-type equation [see chapter 2 and

Eq. (2.62)]

∂xxR = δ±R−R3. (3.11)

where δ± ≡ −ν−γ sin (2θ) = −ν±
√
γ2 − µ2. The Newton equation has a characterized

phase space symmetric with respect to the ∂xR axis, then it has three equilibrium points

R = 0 y R =
√
δ±, respectively one is hyperbolic and the others are centers. Since this

system is conservative and Hamiltonian. Families of periodic orbits surround centers;

their respective separatrices or homoclinic orbits separate these families associated with

each center. All this is illustrated in the respective figure of the phase portrait (see

figure 3.7). The homoclinic curves correspond to dissipative solitons [73]. To obtain
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Figure 3.7: Phase portrait of the Newton-type equation 3.11. The points a, b account for the equilib-

rium points of the system. The red curve represents the homoclinic solution.

these solutions, we integrate Newton type equation

E =
(∂xR)2

2
− δ±

R2

2
+
R4

4
,

where E is the respective effective energy associated with the Newton-type equation,

considering that the solution asymptotically converges to the zero states. The energy

of these homoclinic curves is zero, then we integrate the previous equation and obtain

∫ √
2dR

R
√

2δ± −R2
=

∫
dx = x− xo.

Introducing the change of variable u(x) = 1/R(x), then du = dr/R2

∫ √
2du√

2δ±u2 − 1
= x− xo.

Later one considers the change u(x) = cosh(φ(x))/
√

2δ±, thereby∫
dφ = φ =

√
δ±(x− xo),

taking the hyperbolic cosine of this expression we obtain and dividing by
√

2δ±
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u =
coshφ√

2δ±
=

cosh
(√

δ±(x− xo)
)

√
2δ±

,

finally, the dissipative soliton solution has the form

R±(x) =
1

u
=
√

2δ± sech
(√

δ±(x− xo)
)
, (3.12)

cos(2θ) =
µ

γ
, (3.13)

The amplitude and the respective width of the soliton are characterized by the param-

eter δ±. On the other hand, the phase of the soliton is fixed by the balance between

dissipation and energy injection. El parámetro δ± = −ν ±
√
γ2 − µ2. Where the curve

ν2 = γ2 − µ2, Arnold’s language, accounts for the region in the parameter space where

the uniform solution of upright oscillating pendulums θ = 0 (A = 0) is unstable. We

note that the expression δ± only real for γ2 > µ2, that is, when the energy injection ex-

ceeds the dissipation, the system exhibits the emergence of localized solutions through

a saddle-node bifurcation. Therefore, a pair of finite extended solutions emerge, and

for topological reasons, one must be stable and the other unstable. As one continues

to increase, for example, the forcing, these solutions become different as one increases

in amplitude and decrease in width–which is determined by δ+–and the other inversely

decreases in amplitude and increases in width (see figure 3.8), which is determined by

δ+. Then when the forcing parameter coincides with Arnold’s language δ− it becomes

zero, then the dissipative soliton of small amplitude collides with the uniform solution,

causing it to become unstable. Notice that this corresponds to the parametric instabil-

Figure 3.8: Schematic representation of solitons for different forcing amplitudes γ1 < γ2 < γ3. The

continuous and segmented solution corresponds to δ+ (stable) and δ− (unstable), respectively.
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ity of the vertical solution. Then by topological consistency, since the vertical uniform

solution was stable, then the soliton of small amplitude (δ−) must be unstable and then

the other one with a large amplitude is stable. However, inside Arnold’s tongue, the

uniform solution that supports the soliton is unstable, so in this region, the soliton is

also unstable. The reason for this is that a stable localized solution must be supported

in a stable extended state because if it is stable, it must be stable at its asymptomatic

ends. In summary, the largest dissipative soliton is stable and arises from saddle-node

at γ2 = µ2and is unstable on the Arnold tongue curve. The colored region in figure 3.6

illustrates the zone where dissipative solitons are observed.

Another way to understand the mechanism of the appearance of these solutions is

by geometrically analyzing the condition that sets the phase cos(2θ) = µ/γ. Figure 3.9

illustrates the respective intercept of a constant with the trigonometric function in the

range (−π, π). Therefore for small γ, there is no intercept, that is, there are no solu-

tions. Increasing ? until it is equal to µ, then the previous equation has solutions, which
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Figure 3.9: Schematic representation of the dissipative soliton emergence mechanism, saddle-node. The

inserted figures give an account of the solutions in the respective Cartesian representation. Stable and

unstable solutions are represented by solid (empty) circles or inset figures with continuous (segmented)

frames.
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Figure 3.10: Dissipative solitons (a) Stable dissipative soliton observed in the model (3.4). (b) Image of

a non-propagative hydrodynamic soliton observed in a 45 cm long and 2.54 cm rectangular container,

filled with H = 1.5 cm of water and forced vertically. Only two-thirds of the carcass is shown. (c)

profile of the instantaneous surface (blue line) with the image shown in (b). The solid red line shows

the fit predicted by the solution (3.12).

appear in two pairs as illustrated in Fig. 3.9. The appearance of pairs is a consequence

of the reflection symmetry of the parametrically forced non-linear Schrodinger equation

((3.4), that is, the system is invariant before the transformation A → −A. Therefore

the system exhibits both stable and unstable solutions. In Figure 3.9, stable and un-

stable solutions are represented by solid (empty) circles or inset figures with continuous

(segmented) frames.

The previous analysis allows us to conclude that a natural mechanism for the emer-

gence of localized solutions is the emergence of a pair of solutions with complementary

stability (stable-unstable), saddle-node. This type of mechanism has been used to ex-

plain the emergence of pulses in generic oscillatory media [81].
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Figure 3.11: Equilibrium phase of the non-propagative soliton as a function of forcing. The points

represent experimental data raising and lowering the forcing. The dashed line is obtained using formula

(3.15).

Comparison with non-propagative hydrodynamic solitons in a vertically

forced fluid

Theoretically, a channel with parametrically forced water is described by the para-

metrically forced nonlinear Schrodinger equation [162, 205, 104], where the amplitude A

accounts for the transverse subharmonic mode for height4 and accounts for the poten-

tial for the fluid velocity. The amplitude equation with the dimensions of the channel’s

physical parameters takes the form

2iω∂tA− c2∂xxA+ (ω2
0 − ω2)A− a|A|2A = 0, (3.14)

where ω and ω0 are the frequency of the vertical oscillation and the frequency slosh-

ing motion. The channel dispersion (gravity wave dispersion) has the form ω2 =

kg tanh(kd) where g is the gravity, k the wavelength of the mode, and d is the width of

the channel. a ≡ k4(6T 4−5T 2 +16−T−2)/8 accounts for the nonlinear self-modulation

4If h is the hight, then h = Aeωt and φ is the velocity potential φ = Aeωt/2, i.e. ~v = −~∇φ.
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where T = tanh(kd). In figure 3.10 the non-propagative hydrodynamic soliton observed

in this system is illustrated and compared with the predicted solution, formula (3.12),

which shows a quite fair good agreement.

Another interesting property that one can deduce from the geometric condition is

the behavior of the phase as a function of the forcing parameter, in the case that the

forcing is of the order of dissipation γ = µ+ ∆γ, ∆γ � 1, then

cos(2θ0) =
µ

µ+ ∆γ
=

1

1 + ∆γ.
µ

≈ 1− ∆γ

µ

On the other hand, when the energy injection is of the order of dissipation, the angle

is small (see figure 3.10), then θ0 is small and then the cos(2θ0) ≈ 1 − (2θ0)2 /2, then

one finds the relationship between the phase and the forcing increment

θ0 ≈

√
∆γ

2µ
, (3.15)

that is, the phase grows with the square root of the forcing shift with respect to the

critical point. In Figure 3.10, the above law is verified.

3.3 Effective parametric resonance

The previous analysis used as a fundamental pillar of the parametric resonance based

on the fact that a system is forced at twice its natural frequency. However, this concept

can be generalized as follows: A system exhibits a parametric resonance when it is

subjected to a frequency ω and it responds to a subharmonic frequency of the forcing

nω/2. This type of phenomenon can occur in any system that does not even have a

natural frequency [60].

To emphasize the previous idea, we will follow the method proposed by E. Butikov [37],

to analyze the parametric instability of a forced oscillator described by the equation.

θ̈(t) = −
[
ω2
o + γ sin(ωt)

]
sin θ − µθ̇. (3.16)
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First, we will consider that the angle is small, then the previous equation can be rewrit-

ten

θ̈(t) ≈ −
[
ω2
o + γ sin(ωt)

]
θ − µθ̇. (3.17)

Let us consider the following ansatz

θ(t) =
∞∑
n=1

C2n−1e
iωt(2n−1)/2 + C̄2n−1e

−iωt(2n−1)/2,

where Cn are constants. Introducing the ansatz above in equation (3.17) one finds a

hierarchy of equations, where each term is proportional to eiωtn/2. For simplicity, to

first order we will consider the first modes and ignoring the higher modes5 which satisfy

the equation

−ω
2

4
C1 = −

(
ω2

0 + µ
iω

2

)
C1 − i

γ

2
C̄1, (3.18)

−ω
2

4
C̄1 = −

(
ω2

0 − µ
iω

2

)
C̄1 + i

γ

2
C1, (3.19)

5the galerkin methods [113].

Figure 3.12: Parametric instability curves. the curves are obtained using different numbers of modes.
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this expression can be rewritten ω2
0 + µ iω

2
− ω2

4
iγ

2

−iγ
2

ω2
0 − µ iω2 −

ω2

4

 C1

C̄1

 = 0,

this equation has a non-trivial solution if the determinant of the above matrix is zero,

then (
ω2

0 −
ω2

4

)2

−
(
µ
ω

2

)2

=
(γ

2

)2

.

Introducing the pendulum displacement in units of pendulum length γ = aω2, then the

above relationship takes the form(
ω2

0

ω2
− 1

4

)2

−
( µ

2ω

)2

=
(a

2

)2

.

In Figure 3.12, the black segmented curve illustrates the above formula. The above

expression can be improved by considering the other modes. That is, increasing the

size of the Galerkin understudy

θ = C1e
iωt/2 + C̄1e

−iωt/2 + C3e
i3ωt/2 + C̄3e

−i3ωt/2,

then one gets the set of equations.

−ω
2

4
C1 = −

(
ω2

0 + iµω
2

)
C1 − iγ2 C̄1 − iγ2C3, (3.20)

−ω
2

4
C̄1 = −

(
ω2

0 − i
µω
2

)
C̄1 + iγ

2
C1 + iγ

2
C̄3, (3.21)

−ω
2

4
C3 = −

(
ω2

0 + iµω
2

)
C3 − iγ2C1, (3.22)

−ω
2

4
C̄3 = −

(
ω2

0 − i
µω
2

)
C̄3 + iγ

2
C̄1. (3.23)

Then writing the above expression in matrix form
−ω2

4
+
(
ω2

0 + iµω
2

)
iγ

2
iγ

2
0

−iγ
2

−ω2

4
+
(
ω2

0 − i
µω
2

)
0 −iγ

2

iγ
2

0 −ω2

4
+
(
ω2

0 + iµω
2

)
0

0 −iγ
2

0 −ω2

4
+
(
ω2

0 − i
µω
2

)




C1

C̄1

C3

C̄3

 = 0,
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and by calculating the determinant one can determine the critical relationship. In

figure 3.12, this relationship and that also obtained using three modes is illustrated.

An interesting if one continues using more modes the curves converge to a common

curve. Which has one numerically can be verified and then find a fair good agreement

with this approximation based on this method of truncating modes. Therefore, one

can study the parametric instabilities away from the resonant condition. Even in the

previous method, the system is not required to have a resonant frequency since the

curve is well defined.

This method proposed by E. Butikov [37] has the advantage of transforming the

time-dependent problem into one or more variables to time-independent coefficients.

In brief, the parametric resonance phenomenon is based on the fact that if a system

is subjected to a frequency ω of parametric forcing and it responds to a subharmonic

frequency of the forcing nω/2.

It is important to note that equation (3.17), through the change of variable, can be

transformed into the equation

Mathieu Function comments

The equation for small amplitudes of the vertically driven pendulum chain is described

by equation (3.17). In general, a linear equation with temporal periodic coefficients is

not known how to solve. However, let us see how equation (3.17) was solved through

the incorporation of new functions, Mathieu functions [159]. Introducing change the

variable θ(t) = ψ(t)e−µt/2 and scaling time by t = 2τ/ω, thus equation (3.17) reads

ψ̈(τ) = −
[
Ω2 + 2q sin(2τ)

]
ψ, (3.24)

where Ω2 ≡ (4ω2
o − µ2)/ω2 and q ≡ γ/ω. This equation is known as the Mathieu

equation [158, 159]. This model were first introduced by Émile Léonard Mathieu, who

encountered them while studying vibrating elliptical drumheads [158]. To solve this

equation, Mathieu, consider the following strategy, Ω can be written as follows

Ω2 = m2 + qα1 + q2α2 + q3α3 + · · · , (3.25)
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where m = 1, 2, · · · is an integer number and αn are coefficients of expansion. To solve

equation (3.24), Mathieu considers the ansatz

ψ = cen(τ) ≡ cos(mτ) + qc1(τ) + q2c2(τ) + q3c3(τ) + · · · , (3.26)

ψ = sen(τ) ≡ sin(mτ) + qs1(τ) + q2s2(τ) + q3s3(τ) + · · · , (3.27)

with cn(τ) and sn(τ) are periodic functions. By replacing the previous Ansat in equation

(3.24), after imposing solvability conditions, one obtains a hierarchy of equations in q

that do not explicitly depend on time. To explain how the method works, let us consider

the ansatz (3.26) in equation (3.24), m = 1, and the first terms in the hierarchy, we get

cos(τ) = cos(τ), (3.28)

c̈1 + c1 + cos(3τ) + (α1 − 1) cos(τ) = 0. (3.29)

To solve the latter equation, we impose α1 = 1 and obtain c1(τ) = cos(3τ)/8. All

other equations and unknowns are solved using this method. Therefore, this method

allows systematically obtaining this type of solution of Eq. (3.24) [158, 159]. From

these Mathieu functions, the bounded and divergent region of these functions can be

Figure 3.13: Stability chart for frequency modulation in the parameter space Ω and q obtaining used

Mathieu function [159].
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determined. Figure 3.13 illustrates these divergent regions by hatched areas. These

regions are usually called Arnold’s tongues.

Effective-parametric resonance in a non-oscillating system: self-parametric

resonance

The parametric resonance is an instability of a dissipative oscillatory system where one

or more parameters are modulated in time or space, injecting energy into the system. As

one of the control parameters of the system overcomes a certain threshold, a coherent

oscillatory response develops with an amplitude that depends on the the nonlinear

saturation of the instability. The oscillation frequency is given by a resonance condition

relating injection and dissipation of energy with the mismatch between forcing and

natural frequencies. It must be noticed that the idea of energy storing and transferring

due to resonances can be even generalized to fluctuating systems [99].

We present a phenomenon arising from parametric amplification with compromising

potential applications: the generation of self-parametric resonance which induces oscil-

lations in a non-oscillating system, that is, a system that without parametric forcing

cannot present permanent oscillations. As we have mention, the parametric instabili-

ties have been explained by the introduction of Mathieu functions. However, from such

complex analysis no intuition can be drawn nor new insights can be given on how to

extend it in other physical contexts. We study the self-parametric resonance in a simple

prototype model that allows us to build a description based on a forced system with an

effective potential and apply these results to a parametrically amplified over-damped

pendulum. In this simple system, we show theoretically, numerically, and experimen-

tally the appearance of sustained oscillations with a given frequency and amplitude,

controlled externally by the parametric forcing.

To characterize the self-parametric resonance phenomenon, let us consider the fol-

lowing simple prototypical dynamical system

ẍ = −γ sin(ωt)x− µẋ− αx3, (3.30)
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where x(t) is a variable that describes the state of system, the ẋ its time derivative,

µ is a viscous damping parameter accounting for energy dissipation, α characterizes

the nonlinear response of the system, and γ and ω are, respectively, the intensity and

frequency of the external parametric forcing. Other models can be chosen to describe the

emergence of permanent oscillations by self-parametric resonance, however Eq. (3.30)

possesses the main ingredients necessary to describe this phenomenon.

To study the phenomenology of self-parametric resonance, we have performed nu-

merical simulations of model Eq.(3.30) using a fourth order Runge-Kutta algorithm

with time step ∆t = 0.02 for several values of the control parameters. In the non-

dissipative limit (µ = 0) for α > 0, model (3.30) exhibits chaotic behavior near the

origin and quasi-periodic behavior away from it when ω is of order 1, as illustrated in

Figure 3.14a. However, as ω increases sufficiently, the former scenario changes and the

phase portrait described before is changed to the equivalent phase portrait of a simple

oscillator, i.e. chaotic behavior is transformed into a harmonic behavior (cf. Fig. 3.14b).

In the dissipative regime (µ > 0), the dynamics of the system is characterized by the

appearance of a chaotic attractor [114], as depicted in Fig. 3.14c. As ω increases suffi-

ciently, the phase portrait displays the equivalent of a damped oscillator, as illustrated

in Fig. 3.14d. Even, the effect of large ω can even stabilize a non-oscillating system with

divergent trajectories (α < 0) with or without dissipation. Fig. 3.14e shows the phase

portrait of Model (1) for small ω displaying divergent trajectories. As ω increases, there

is a qualitative change in the trajectories as oscillations develop around the fixed point

x = ẋ = 0 and trajectories do not diverge, as it is shown in Fig. 3.14f. Therefore, for

large ω and γ of order 1, Model (3.30) shows the emergence of oscillations.

Forced systems with explicit temporal dependence, as the one displayed in model

(3.30), are usually studied in terms of first return maps using the time-dependent forcing

period as the iteration period between two successive values of the map [167]. This

approach will be of benefit in the case of low frequency forcing, where the dominant

time scale is the forcing scale. In the case of high frequency forcing, first return maps

describe basically the same dynamics as Model (3.30). Furthermore, first return maps,
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Figure 3.14: (color online) Phase portrait of Model (3.30) for a) α = 1.0, γ = 1.0, µ = 0 and ω = 0.5,

b) α = 1.0, γ = 1.0, µ = 0 and ω = 20.0, c) α = 1.0, γ = 1.0, µ = 0.02 and ω = 0.5, d) α = 1.0,

γ = 0.3, µ = 0.2 and ω = 10.0, e) α = −2.0, γ = 46.5, µ = 0.0 and ω = 1.0, f) α = −2.0, γ = 46.5,

µ = 0.0 and ω = 20.0. Figure obtained from [60].

although useful for calculations of stability of fixed points, and hence limit cycles, do not

give insight to the physical mechanism for the generation of the high frequency dynamics

explained above. Another way to study the high frequency dynamics of Eq. (3.30) that

can present a way to interpret and understand the dynamics is the strategy proposed

by Kapitza [118]: the previous high frequency dynamics can be understood as a result

caused by the separation of time scales between the forcing and the state variable

x(t) itself, which can be explained the appearance of an effective force. Unlike the

linear analysis based on Mathieu functions, this strategy allows a global description

that contains the nonlinear response of the system. Therefore, a generalization of this

type of strategy may allow us to glimpse into non-trivial phenomena arising from the

original forced system. Rigorous methods based on high frequency averaging, which

justify the strategy proposed by Kapitza, was developed by Bogoliubov [28]. Following
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the strategy proposed by Kapitza, the dynamics is decomposed as (ω � µ)

x(t) = z(t) +
γ

ω2
sin(ωt)z(t), (3.31)

where z(t) accounts for the slow dynamics and the second term on the right-hand side

stands for the small and fast dynamics [28, 118]. Introducing the above Ansatz in

Eq. (3.30), we obtain

z̈ = − γ2

2ω2
z − µż − 2γ

ω
cos(ωt)ż − γ

ω2
sin(ωt)z̈

+
γ2

2ω2
cos(2ωt)z − µγ

ω
cos(ωt)z − µγ

ω2
sin(ωt)ż

− αz3
[
1 +

γ

ω2
sin(ωt)

]3

. (3.32)

If one considers the limit, ω � 1 and γ/ω2 � 1 and averaging in a period 2π/ω, we

obtain (high frequency averaging dynamics)

z̈ = −γ2/2ω2z − αz3 − µż.

On the other hand, in the case of small z and considering that γ/ω2 < 1 but not small,

the dominant order of Eq. (3.32) takes the form

z̈ = − γ2

2ω2
z − αz3 − µż − 2γ

ω
cos(ωt)ż, (3.33)

up to leading order resonant terms in γ/ω. In this effective dynamical system z(t) is a

variable that accounts for slow dynamics of x(t). Hence, the slow dynamics corresponds

to an oscillator with an induced natural frequency ωI ≡ γ/
√

2ω. In the limit of high

frequencies (γ � ω2), the last term is neglected as a result of the separation of scales

between z(t) and the forcing, which corresponds to Kapitza analysis [131]. Thus, using

this approach, the first term of the right hand side is an effective force that leads the

dynamics. Independently if at moderate frequencies model Eq. (3.30) has divergent

trajectories (α > 0) or not (α < 0), in the above limit the system can be described as

an oscillator. Model (3.33) allows us to intuitively understand the dynamics exhibited

by model Eq. (3.30) in this limit providing a way to understand the emergence of os-

cillations in non-oscillating systems submitted to high frequency forcing. In brief, the
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Figure 3.15: Phase portrait of prototype model (3.30) for α = 200.0, γ = 48.0, µ = 1.0 and ω = 14.0

(a) and α = −1.0, γ = 47.0, µ = 1.0 and ω = 10.0 (b). Figure obtained from [60]

non-oscillator system subjected to a high frequencies forcing (Eq. 3.30) is equivalent to a

parametrically driven oscillator with a well defined natural frequency (γ2/2ω2). There-

fore, one expects intuitively that changing the value of the induced natural frequency

one can observe the well-known characteristics of parametric resonance.

For large but fixed ω, as we increase γ, the induced natural frequency increases.

Furthermore, the terms neglected in the strategy of Kapitza grow in their amplitudes.

The combination of these effects can generate the phenomenon of effective-parametric

resonance: as ωI approaches ω/2 and the forcing and dissipative terms can be balanced,

the system can resonate by parametrically amplifying itself. Hence, by modifying γ

appropriately, the system can display this phenomenon when γ ∼
√

2ω2/2. Therefore,

x = ẋ = 0 becomes unstable and nonlinearity saturates this instability leading to

attractive periodic solutions. Figs. 3.15a and 3.15b show the stable limit cycle generated

by effective-parametric resonance for both positive and negative α. Thus, for large ω

and γ which satisfy the above resonance condition, Model (3.30) induces simultaneously

a natural frequency of oscillation and a parametric forcing, giving rise to effective-

parametric resonance at half the forcing frequency even for large dissipation. From

these simulations, we can infer that in the case of positive (negative) α, the observed

limit cycle is dominated by the first dominant mode (first two dominant modes). This

explains the different limit cycles in the x− ẋ phase portrait displayed in Fig. 3.15.
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Figure 3.16: Effective-parametric resonance curve in γ − ω space for µ = 0.1 and α = −1.0. Above

the dotted line, the system shows effective-parametric resonance. Pentagon symbols are obtained by

numerical simulation of Model (3.30). The solid line in a) and b) are, respectively, deduced from Model

(3.33) and (3.32). Left insets: Limit cycle. Right insets: Damped oscillations towards x = 0.

Performing a modal expansion–Galerkin expansion [113]–for Eq.(3.33) and, keeping

the dominant terms of modal expansion up to order γ/ω, one finds the curve

(γ/2ω)2 = (µ/2)2 + (ω/2− γ/ω
√

2)2 (3.34)

for the stability of x = 0. To corroborate this prediction we have performed numerical

simulations of model (3.30) in the ω − γ space, showing good agreement with the pre-

dicted curve. Figure 3.16a shows both theoretical and numerical results. On the other

hand, using the same modal expansion in Eq. (3.32) allow us compute an amended

instability curve, which improves the accuracy to within 3 % from the previous expres-

sion as it is shown in Fig. 3.16b, although the qualitative shape of the curve is remains

the same. Thus, our first order approximation agrees consistently with numerical sim-

ulations of the instability curve. Above the curve a stable limit cycle in the x − ẋ

phase portrait develops (Fig. 3.16, left inset) whereas outside of it damped oscillations

towards x = ẋ = 0 appear (Fig. 3.16, right inset). In the case of α < 0, for small

(large) µ compared with ω, effective-parametric resonance develops as a super(sub)-

critical instability, that is, when one increases γ the system shows the appearance of a

infinitesimal (finite) limit cycle. In the other case (α > 0), one observes the opposite
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behavior.

Effective parametric resonance in an upside-down vertically driven pendu-

lum

As we have noted before, effective parametric resonance results from the effect the

parametric amplification of a system by a large amplitude and high frequency forcing.

A simple mechanical system that shows this effect is a vertically driven pendulum.

The upside-down state becomes stable at high frequencies even for small displacement

amplitudes of the support point, as a result of the emergence of an oscillator where

the upside-down position is a stable fixed point [131]. This counter-intuitive fact was

first predicted analytically in the pioneering work of Stephenson [191] which spanned a

large ammount of theoretical [131] and experimental discussions [96, 116, 160, 188] of

the phenomenon. As the displacement amplitude is increased, it was observed numeri-

cally [26] and experimentally [188] the appearance of a nonlinearly saturated oscillation

around the upside-down position. This is a limit cycle in the φ − φ̇ phase portrait,

where φ is the angle of the pendulum with respect to the vertical axis and φ̇ is the

angular velocity. This phenomenon was associated with a Hopf bifurcation [26], which

is related to a time-independent linear operator. This statement is inadequate for the

upside-down position because the linear stability analysis of this state is related to a

periodic time-dependent linear operator which requires the use of Floquet theory [108].

On the other hand, this behavior can be inferred as a consequence of the linear analysis

based on Mathieu functions. Alternatively, using a weakly nonlinear analysis, one finds

that the dynamics around the upside-down state is similar to Model (3.30) with nega-

tive α. Therefore, the appearance of permanent oscillations with respect to the vertical

state is the result of effective parametric resonance. It is important to note that in the

study of the Faraday instability for strong viscous fluid a similar resonant condition is

established in Ref. [40].

Experimental observation of the self-parametric resonance: a parametrically

excited pendulum is built to explore effective parametric resonance. A stainless steel
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Figure 3.17: Lisajous figure of the nonlinear oscillations around the inverted pendulum position is

obtained experimentally (a) and numerically (b). Limit cycle oscillating around the inverted position

of a physical pendulum is found experimentally (c) and numerically (d). (e) Schematic representation

and snapshot of the physical pendulum under consideration.

cylindrical roller bearing (internal diameter 8 mm, external diameter 15 mm) is mounted

vertically into a plexiglass plate (10× 15× 4 mm3), see Fig. 3.17. A plexiglass cylinder

is fixed solidary to a cylindrical roller bearing, which enables it to rotate smoothly in a

plane. A massive bronze bar (length 60 mm, diameter 3 mm) is eccentrically positioned

2 mm from the center of the cylinder (cf. Fig. 3.17), displacing the center of mass from

the center of the plexiglass cylinder. This asymmetry generates a physical pendulum

with a natural frequency f0 ≈10 Hz (ω0 ≈ 30 rad/s) and oscillating radius l ≈ 2 mm.

The whole system is then mounted over an electromechanical shaker driven sinusoidally

by a frequency generator via a power amplifier. The modulation of the acceleration

of gravity aexω
2
ex cos (ωext) with ωex = 2πfex is measured directly by a piezoelectric

accelerometer and a charge amplifier. The control parameters are then ωex and aex

(γex = aexω
2
ex/l). The motion of the pendulum is acquired with a high-speed camera at

500 fps in a 800×600 pixel window.

We explore the large frequency limit ωex/ω0 � 1 in the particular case of aex/l ∼ 1,

which corresponds γex ∼ ω2
ex. For a given ωex, increasing the amplitude of modulation

aex the inverted pendulum is stabilized. As aex continues to increase, new equilibria

appear, namely a limit cycle, which oscillates at fex/2 around the inverted position



72 CHAPTER 3. DISSIPATIVE SOLITONS IN PARAMETRIC SYSTEMS

Figure 3.18: A blow-up of a soliton solution of the nonlinear Schrödinger equation in two-dimensions

(3.35) with γ = µ = 0. Snapshots of the real part of the amplitude for an evolution time sequence,

t1 < t2 < t3 < t4 < t4 < t5 < t6.

φ = π. This type of limit cycle also appears oscillating around φ = 0. These oscillations

cannot occur in the unforced system, due to its highly dissipative nature. Figure 3.17a

shows a typical trajectory of the center of mass of the pendulum found experimentally

for ωex/ω0 ≈ 5 and aex/l ≈ 2, and in Fig. 3.17b the numerically computed trajectory.

They display Lissajous figures on the phase portrait with two frequencies, one being

fex and the other one being fex/2. We also show in Fig. 3.17c and 3.17d the phase

portrait. Notice that the limit cycle is surrounding the inverted position φ = π.

3.3.1 Dissipative solitons in two dimensions

In integrable conservative systems such as Korteweg de Vries, the nonlinear Schrödinger,

and the Boussinesq equation, solitons are observed in one-dimensional systems (see

Chapter 2). In two dimensions, these localized solutions are unstable, presenting a
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Figure 3.19: Dissipative structure of obtain from numerical simulation of parametrically drive nonlinear

Schrödinger equation in two-dimensions (3.35).

singularity in finite time or blow-up [150]. Figure 3.18 shows the typical phase singu-

larity obtained in the nonlinear Schrödinger equation in two dimensions. The injection

and dissipation of energy can stabilize the explosion of localized structures. In driven

systems, we experimentally observe stable localized structures (see Figs. 1.3 and 3.3).

Lat us consider the parametrically driven damped nonlinear Schrödinger equation in

two-dimensions

∂tψ = −iνψ − i|ψ|2ψ − i∇2
⊥ψ − µψ + γψ̄. (3.35)

It is well-known that Eq.(3.35) exhibits stable non propagative dissipative solitons

in two spatial dimensions [20]. Figure 3.19 The localized states have the form ψ =

±Rs(r = |~r|)eiθ0 , where cos(2θ0) = µ/γ, and Rs satisfies

∂rrRs + ∂rRs/r − λRs +R3
s = 0, (3.36)

where λ ≡ −ν+
√
γ2 − µ2 > 0. To our knowledge, it does not exist analytical solution of

the localized state. However the asymptotic behaviors of this solution are well defined,

for instance R(r → ∞) → e−
√
λr/
√
r. Furthermore, using the variational method, one

can also obtain a good approximation by [4]
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Rs(r) = A0

√
λsech

(
B0

√
λ

2
r

)
, (3.37)

where A0 = 2.166 and B0 = 1.32. From the approximated localized state (3.37), one

can infer that for negative detuning, this solution appears by a saddle-node bifurcation

when dissipation and energy injection are equal (γ = µ and ν < 0). Furthermore, this

solution is unstable when the uniform state ψ = 0–which supports this localized state–

becomes unstable at the Arnold’s tongue (γ2 = ν2 + µ2, by ν < 0). The characteristic

size and amplitude of the localized precession states respectively are 1/
√
λ and

√
λ.

3.4 Interaction of parametric solitons

As we have already shown, dissipative solitons are solutions that have an identity in

their shape (cf. expression 3.12) and are characterized by a position which corresponds

to the maximum of their amplitude (see figures 3.8 and 3.10). Furthermore, as we have

already mentioned, there are two types of solitons in phases and out of phase. Therefore,

the natural question that arises if these types of solutions can interact and if they

interact, what is the law of interaction. Qualitative studies of the interaction between

non-propagative hydrodynamic solitons have been reported in the literature [203, 204].

Motivated by the previous question, we have recently carried out a systematic and

quantitative experimental study of the interaction of non-propagative hydrodynamic

solitons in a narrow channel with water [54, 181]. Figure 3.20 shows a pair of solitons

interacting in phase and in out of phase. To grasp the dynamics exhibited by this

system, we will consider the interaction of a couple of dissipative solitons.

3.4.1 Interaction of a pair of solitons

To account for the interaction, we will consider the polar representation of the

parametrically forced nonlinear Schrodinger equation, equations (3.6) and (3.7), we

will introduce the following ansatz that describes two solitons interacting respectively
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Figure 3.20: Interaction of non-propagative hydrodynamic solitons a), b) in-phase and c), d) in out-

of-phase. Complex field profile ψ and snapshots obtained from a vertically vibrated channel [54].

in the positions ∆/2 and −∆/2

R(x, t) = R+

(
x+

∆(t)

2

)
+ χR+

(
x− ∆(t)

2

)
+ρ(x,∆), (3.38)

θ(x, t) = θ0 + ϕ(x,∆), (3.39)

where R+ accounts for the modulus of the stable soliton which is defined in expression

(3.12) and ∆(t) accounts for the distance between solitons. To adequately account for

the interaction, the position of the solitons has been promoted to a function of time.

As a consequence of the equations being nonlinear, when the solitons are sufficiently

separated (∆ � 1), the modulus and phase are corrected by small functions ρ(x,∆)

y ϕ(x,∆) (ρ, ϕ � 1). The parameter χ shows whether the solitons are in phase (χ =

1) or in out-of-phase (χ = −1). In the limit that the solitons are quite far apart

(dilute solitons), one exponentially affects the other by means of its tail that decays

asymptotically to zero. Then, one expects ∆(t) to be in this limit a slowly temporary



76 CHAPTER 3. DISSIPATIVE SOLITONS IN PARAMETRIC SYSTEMS

variable, that is, ∆̈� ∆̇� 1.

For the sake of simplicity, we introduce the notation

R+,+(z+) = R+(z+ ≡ x+ ∆/2), (3.40)

R+,−(z−) = R+(z− ≡ x−∆/2), (3.41)

W = (R+,+ + χR+,−) , (3.42)

where z+ and z− are the coordinates in the respective mobile systems. Introducing the

ansatz of a pair of solitons [equations (3.38) and (3.39)] in equation (3.6) and linearizing

in ρ and ϕ, we obtain after some straightforward calculations

∆̇

2

(
∂z+R+,+ − χ∂z−R+,−

)
= W∂xxϕ+ 2∂xW∂xϕ− 2

√
γ2 − µ2Wϕ.

This equation does not depend on ρ, furthermore, this equation can be integrated

by means of the integration factor W and integrating twice one obtains the following

recursive relationship

ϕ =

x∫
−∞

dx′
√
γ2 − µ2

W 2

x′∫
−∞

dyW 2ϕ (y, t) +

x∫
−∞

dx′∆̇

2W 2

x′∫
−∞

dyW
(
∂z+R+,+ − χ∂z−R+,−

)
.

(3.43)

To solve the previous equation we will consider the limit of the saddle-node bifurcation

where the solitons (γ−µ� 1) are born, that is, the first term on the right side is small.

Then in this limit, we can use the Born approximation, and then we obtain

ϕ = ∆̇Θ(x,∆) +O(
√
γ − µ), (3.44)

with

Θ(x,∆) ≡
x∫

−∞

dx′

2W 2

x′∫
−∞

dyW
(
∂z+R+,+ − χ∂z−R+,−

)
,

and O(
√
γ − µ) accounts for corrections. Therefore, the phase corrections to the dom-

inant order at this limit are of the order of the temporal variations of the distance

between solitons. Then we have managed to obtain a suitable approximation of the

phase.
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For the module, analogously, we can introduce Ansatz (3.38) in equation (3.7) and

linearizing for ρ and ϕ, we obtain

W∂tϕ = Lρ− 2µWϕ− 3χR2
+,+R+,− − 3R+,−R

2
+,+ (3.45)

with

L ≡ −ν +
√
γ2 − µ2 − 3 (R+,+ + χR+,−)2 − ∂xx. (3.46)

Using the approximation for phase (3.44) and neglected the high derivative in ∆, the

above equation takes the form

Lρ = −2µW (x)Θ(x)∆̇− 3χR2
+,+(x)R+,−(x)

−3R+,−(x)R2
+,+(x). (3.47)

Since this is a linear equation, to impose that there is a solution, we introduce the

following scalar product in the Hilbert functional space

〈f |g〉 =

∞∫
−∞

f(x)g (x) dx,

The linear operator L is self-adjoint (L = L†). The kernel of this operator—set of

functions {v} that satisfies Lv = 0—is of dimension 2. Since L∂xR+,± ≈ 0 is expo-

nentially small (e−δ
1/2
+ ∆), the R+,± functions are pseudo eigenvectors of the kernel of L.

Therefore, the field ρ has a solution if it is fulfilled (solubility condition)

〈∂z+R+,+ | 2µWΘ〉 ∆̇ +
〈
∂z+R+,+ | 3χR2

+,+R+,−
〉

+
〈
∂z+R+,+ | 3R+,+R

2
+,−
〉

= 0.

An equivalent result we get if we use the other kernel element ∂z+R+,−, for ∂z+R+,+.

Since ∂z+R+,+ is a function of order one near the position of the soliton R+,+ and that

it decays exponentially near the position of the soliton R+,−, then the last term in the

above equation is negligible compared to the second, that is,

∆̇ = −
3χ
〈
∂z+R+,+ | R2

+,+R+,−
〉

2µ 〈∂z+R+,+ | WΘ〉
, (3.48)
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where

〈∂z+R+,+ | WΘ〉 =

∫ ∞
−∞

dz∂zR+,+W (z)

x∫
−∞

dx′

2W 2(x′)

x′∫
−∞

dyW (y)Λ(y), (3.49)

is a positive number by symmetry arguments, Λ(y) ≡ ∂z+R+,+(y)− χ∂z−R+,−(y), and

〈
∂z+R+,+ | R2

+,+R+,−
〉

=

∫ ∞
−∞

dz∂zR+,+(z)R2
+,+ (z)R+,− (z + ∆) . (3.50)

To estimate the previous integral, we evaluate it near the position of the soliton R+,+,

where R+,− (z + ∆) ≈
√

2δ+e
−δ+(z+∆) and then

〈
∂z+R+,+ | R2

+,+R+,−
〉
≈
√

2δ+e
−δ+∆

∫ ∞
−∞

dz∂zR+,+(z)R2
+,+ (z) e−δ+z. (3.51)

Finally, we obtain the law of interaction of a pair of solitons

∆̇ ≈ −Rχe−δ+∆, (3.52)

where

R =
3
√

2δ+

∫∞
−∞ dz∂zR+,+(z)R2

+,+ (z) e−δ+z

µ
∫∞
−∞ dz∂zR+,+W (z)

x∫
−∞

dx′

2W 2(x′)

x′∫
−∞

dyW (y)Λ(y)

,

is a positive constant. Therefore, the interaction between two dissipative solitons for

a parametrically forced medium is characterized by an exponential interaction as a

function of the distance between solitons. This interaction is attractive (repulsive)

when the solitons are in phase (anti-phase), that is, for χ = 1 (χ = −1).

Given the simplicity of the dynamics that describe the interaction between solitons,

if one considers an arbitrary initial condition, we can integrate the above equation and

find

∆ (t) = δ−1
+ ln [−χδ+R (t− t0)] , (3.53)

Where t0 is determined by the initial condition

t0 = χ
eδ+∆(t=0)

δ+R
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Figure 3.21: Interaction of dissipative solitons in the parametrically forced non-linear Schrödinger

equation (3.4). a) Space-time diagram of the module R(x, t). b) Temporal evolution of the distance

between the solitons ∆(t).

Therefore, two dissipative solitons that are in phase (anti-phase) are characterized by

a logarithmic decrease (increase) in the soliton separation distance. Figure 3.21 shows

the temporal evolution of the distance between solitons for two dissipative solitons

in phase. The red points show the position of the solitons obtained numerically and

the continuous curve is obtained from formula (refE-Delta). It is important to note

that this expression shows an adequate agreement, even for small distances where the

calculation loses validity. In the case (χ = 1) the previous expression is only valid

t ≤ τ ≡ −1/δ+R + t0, where τ accounts for the collapse time, that is, the instant

in which both solitons merge. Numerically, one observes after the collapse between

the solitons only one soliton survives. Furthermore, this fusion process is accompanied

by radiation in both directions, see figure 3.21. A similar process is observed in the

function of two solitons in Hamiltonian non-integral systems [85]. In this context,

the self-similar soliton fusion process has been developed based on a statistical theory

based on entropic arguments [179]. It is important to note that the described interaction

process only takes into account when the solitons are distant and then the fusion process

is not described. In the case that the solitons are in anti-phase (χ = −1), the law of

interaction of a pair of solitons is valid for t > t0, where the parameter t0 is related to
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Figure 3.22: Interaction of non-propagative hydrodynamic solitons in a vertically forced water channel.

Instant image of solitons in phase {a), b)} and in anti-phase {c), d)}, c) evolution of the distance of

the solitons as a function of time. The blue circles are values ??obtained experimentally and the red

curve is through the use of formula (3.66).

the initial condition.

In Reference [54], we have experimentally verified the law of interaction pairwise,

equation (3.52), in the case of considering two solitons in phase or masks. The results

show an adequate agreement, which emphasizes that one dissipative soliton exponen-

tially affects the other.

3.5 Interaction pair law of localized states in two-

dimensions

As we showed in section 3.4.1, there are localized structures in two-dimensions. In this

section, we will characterize the interactions of these localized structures. We consider

two localized states sufficiently separated, i.e. the distance between them is greater

than the characteristic size of localized states. Hence, we can introduce the following

Ansatz ψ(r, t) = R(r, t)eiθ(r,t),
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Figure 3.23: Interaction of localized states in the parametrically driven damped nonlinear Schrödinger

equation. a) Spatiotemporal diagram of interaction of a pair of localized states obtained from model

Eq. (3.35). The circles represent the core of the localized states, i.e. the isolines of the full width

at half maximum of the localized state, counterplot chart. ∆(τ) accounts for the distance between

localized states at given time τ . Temporal evolution of the separation distance ∆(τ).

R = R+
s

(
r +

∆(t)

2
r̂

)
+ χR−s

(
r − ∆

2
r̂

)
+ ρ (~r,∆) ,

θ = θ0 + ϕ (~r,∆) , (3.54)

where R±s are non propagative dissipative solitons, ∆(t) stand for the distance between

the localized states (∆ �
√
λ), r̂ is the unit vector in the direction between localized

states, χ = ±1 is a sign that accounts if the solutions are in- or out of phase, ρ (~r,∆) and

ϕ (~r,∆) are respectively the corrections functions. he coordinate system is chosen at

the centroid between the two located structures. Defining W ≡ R+
s +χR−s , considering

the parameter region where the dissipation and injection of energy are similar (0 <

γ − µ � 1), introducing the above Ansatz into Eq. (3.4) and linearizing in correction

functions we obtain

W∂tW = ~∇⊥
(
W 2~∇⊥ϕ

)
, (3.55)

W∂tϕ = Lρ− 2µϕ− 3χR+
s R
−
sW, (3.56)

To solve the above equations we need to derive ϕ. However finding a global solution
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of ϕ remains a difficult task. Nevertheless, if localized states are diluted we can find

ϕ around the center of each dissipative soliton. In order to get ϕ, we changed our

reference system by ~r′ = ~r + r̂∆/2, and in consequence, approximating the functions

W (r′ = |~r′|) ≈ R+
s (r′) and ∂tW ≈ ∆̇∂r′R

+
s /2. Next, using the approximation (3.37)

and integrating Eq.(3.55), after straightforward calculations we find out

ϕ(r′) = −∆̇

4

(
r′ − 1

2B
Shi (2Br′)

)
≡ ∆̇Θ(r′), (3.57)

where Shi(2Br′) is the hyperbolic sine integral.

Replacing expression (3.57) into Eq. (3.56), we find a linear equation in ρ. To solve

this linear equation we use the Fredholm alternative [95]. Therefore we introduce the

following inner product 〈f |g〉 =
∫∫

fg dxdy, where L is self-adjoint and its kernel is

characterized by {∂r′R±s }. To determine the interaction it is essential to know the

asymptomatic behavior of the localized solution. Rs satisfied the equation

∂rrRs + ∂rRs/r − λRs +R3
s = 0, (3.58)

where λ ≡ −ν+
√
γ2 − µ2 > 0. To our knowledge, it does not exist analytical solution of

the localized state. However the asymptotic behaviors of this solution are well defined,

for instance

R(r →∞)→ e−
√
λr/
√
r. (3.59)

Then applying this product to Eq. (3.56), we find the following solvability condition

(pair interaction law)

∆̇ = −χ 3

aµ

∫ r′

0

∂r′R
−
s (R−s )2R+

s (r̂′ −∆x̂) r′dr′dθ

≈ −χ b

aµ

e−
√
λ∆

√
∆

, (3.60)

where a = 〈∂r′R−s |Θ〉 and b ≡ 3A
∫ r′

0
∂r′R

−
s (R−s )2 − e−

√
λr cos θdr′. The pair interaction

law is derived using the asymptotic behavior of the localized state. Hence, the localized

precession states experience a exponential force of attraction (χ = 1) or repulsion

(χ = −1) if they are in- or out of phase. In the limit of diluted localized states the
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prefactor 1/
√

∆ is a correction of the dominant term which is exponential. However,

when these states are located closer to this prefactor becomes more relevant.

Hence the interaction of precession localized states is like over-damped two-dimensional

particles with two types of charges where the interaction is only radial. Figure 3.23 com-

pares the evolution of the distance between the localized states obtained using the pair

interaction law and compared to those obtained from the numerical simulations of the

parametrically driven damped nonlinear Schrödinger equation. We find a remarkable

agreement.

In the case of reversible two-dimensional systems, using Lagrangian methods one can

derive a similar interaction law, however the radial dynamics can be enhanced by the

appearance of tangential forces [190, 107].

3.5.1 Interaction far from the appearance of localized struc-

tures.

To characterize the interaction between localized structures, we have considered the

approximation that the forcing strength is of the order of dissipation, γ−µ� 1. Then

in this so-called Born approximation, the phase is proportional to the rate of temporal

variation of the phase. ϕ ∼ ∆̇Θ(x,∆) (cf. formula 3.43). Corrections can strongly

modify the interaction. Experimentally it is observed that for forcing strength small but

greater than dissipation, dissipative solitons in phase attract and annihilate, resulting in

a new soliton [54, 204]. The interaction law—formula (3.52)—describes the attraction

process; however, it does not represent the collision of dissipative localized structures.

Experimentally it is observed when increasing the value of the intensity of the forcing

different regimes. The terms considered in the temporal variation of the phase must

be included O(∆̈, ∆̇2). Note that in this regime, In particular, a bouncing movement is

observed between the localized structures. Further when increasing the intensity of the

forcing the bounced state is replaced by a bounded state. Figure 3.24 summarizes the

type of dynamics observed experimentally and numerically. The amplitude equation
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Figure 3.24: Interaction of localized structures far from the appearance of localized states. The left

panel account for the experimental results obtained in Ref. [204]. The panel on the right accounts for

the numerical results simulated by the parametrically driven nonlinear Schrödinger equation.

does not wholly describe the complete description of the observed dynamics but rather

qualitatively describes the observed dynamics.

3.5.2 Self-similar dynamics of a soliton gas

In the parameter space inside Arnold’s language, one observes periodic solutions.

From these solutions, if one moves to the region of solitons then these solutions are

transformed into a gas of solitons that begin to interact. The time evolution of a soliton

gas is illustrated in Figure 3.25. Due to the interaction, the solitons merge in pairs,

therefore, as time evolves, the remaining solitons separate from each other each time

(see figure 3.25). Then, if the system were infinite, the evolution of the system would

be static, since we would permanently be in the state of a gas of interacting solitons

that move away, where the only sensation would be that the temporal evolution would

be slower and slower. Due to the process described above, the interaction of distant
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Figure 3.25: Dinámica de interacción de gas de solitones. a) Siulación numérica de la ecuación de

Schrodinger no-lineal forzada parametricaménte. b) Representación esquemática de la interacción de

solitones disipativos.

solitons is negligible, since these are exponentially suppressed by neighboring solitons.

Then the interaction of n-solitons is given by

żi =
∑
j=1

(−1)Re−δ(zi−zi−j) +Re−δ(zi+j−zi), (3.61)

where zi is the position of the i-th soliton. Then the interaction with first neighbors is

given by

żi = −Re−δ(zi−zi−1) +Re−δ(zi+1−zi). (3.62)

This equation is self-similar if we consider the following transformation of dilation in

the coordinates and in time

zi+1 − zi−1 → zi+1 − zi−1 + 〈∆〉0, (3.63)

t → te3δ〈∆〉0/2. (3.64)

Namely, if we separate the dissipative solitons, the dynamics displayed will simulate

that given by the dissipative solitons without separating, but the time scale will be

exponentially smaller. The factor will depend on the separation distance. Then one
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Figure 3.26: Ley de la distancia promedio entre solitones o dinámica de dominios para a) la ecuación

paramétrica de Schrodinger no-lineal, b) cadenas de péndulos forzado verticalmente, c) modelo magén-

tico forzado.

hopes to find laws that characterize the dynamics of the time evolution of the average

distance between solitons. The characteristic distance between s solitons is given by

〈∆(t)〉 =

∑
i=0

(zi+1 − zi)

N
, (3.65)
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with N the number of dissipative solitons. The dynamics of this function must be

given by the interaction between solitons, equation (3.62). Therefore this must also be

invariant by the law of self-similarity, that is,

∆(t) → ∆(t) + 〈∆〉0, (3.66)

t → te3δ〈∆〉0/2, (3.67)

Therefore the only function that respects this type of symmetry is

〈∆〉 = 〈∆〉0 +
2

3δ
ln t, (3.68)

Then the average distance as time evolves increases with a logarithmic law. Figure 3.26

shows the time evolution of the distance of parametrically forced dissipative solitons for

various systems. In which a close agreement is found between theory and simulations

[57]. Experimentally, it is complex to be able to create a soliton gas to verify the above

law. In the vertically forced water channel, at least the order of up to four solitons is

observed [57].

3.6 Solitons in an inhomogeneous medium

As we have seen in the previous sections, dissipative solitons exhibit properties similar

to particles. A question of interest that naturally emerges is the possibility of being

able to manipulate or control the positions of dissipative solitons. An intuitive way of

causing solitons to propagate is by breaking the invariance of spatial translation, that

is, the medium that supports the solitons is inhomogeneous. The above can be achieved

considering that the parameters are inhomogeneous

µ → µ0 + µ1(x),

γ → γ0 + γ1(x),

ν → ν0 + ν1(x). (3.69)

For the sake of simplicity, we will only consider that a single parameter is inhomo-

geneous, but the results obtained are similar if we consider the other inhomogeneous
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Figure 3.27: Spatiotemporal diagram of dissipative solitons in inhomogeneous media obtained through

numerical simulations of the parametrically forced non-linear Schrödinger equation [103].

parameters.

µ = µ0 + µ1(x),

and the rest are homogeneous. For example, in the case of a vertically driven channel, a

small angle of inclination of the channel could induce a small inhomogeneous dissipation

(µ1(x)� 1). Then equations (3.6) and (3.7) take the form

∂tR = 2∂xR∂xθ +R∂xxθ − µR + γR cos(2θ)− µ1(x)R,

R∂tθ = νR−R3 − ∂xxR +R(∂xθ)
2 − γR sin(2θ). (3.70)

One expects that for small angles, dissipative solitons are persistent. However, the

lack of homogeneity generates two effects: (i) localized states are modified by the dis-

turbance, they become asymmetric solutions, and (ii) the dissipative solitons’ spatial

translation mode—the Goldstone mode—acquires a dynamics as a result of the break-

ing of translational symmetry. Figure 3.27shows the typical behavior of a dissipative

soliton when one considers inhomogeneous dissipation that increases quadratically with

the position. Therefore the dissipative solitons move towards the region of least dissipa-

tion. numerically, it was observed that the amplitude of the dissipative soliton increases

when penetrating the regions of less dissipation.
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To take these effects into account, the following ansatz is considered

R(x, t) = R+(x− x0(t)) + r(x, x0),

θ(x, t) = θ0 + ϕ(x, x0),

where r(x, x0) and ϕ(x, x0) are corrective functions, respectively. In addition, we we

will consider that the variable x0(t) is a slow temporary variable, that is, ẍ0 � ẋ0 � 1,

where ẋ0(t) is of the order of the disturbance. Introducing the above expressions into

the set of equations (3.70) and linearizing in the disturbances after direct calculations,

one finds

2∂xϕ∂xR+ + ∂xxϕR+ = 2γϕ sin(2θ0)R+ + µ1(x)R+

−∂zR+ẋ0, (3.71)

R+∂tϕ =
[
ν − γ sin(2θ0)− 3R2

+ − ∂xx
]
r +

−2γR+ cos(2θ0)ϕ, (3.72)

where z ≡ x − x0(t) is the coordinate in the co-movable reference frame. Multiplying

equation (3.71) by the integration factor R+ and after simple calculations one obtains

ϕ(x) =

∫ x dx′

R2
+(x′)

∫ x′

dx′′µ1(x′′)R2
+(x′)−

∫ x

ẋ0dx
′

+

∫ x 2γ sin(2θ0)dx′

R2
+(x′)

∫ x′

dx′′ϕ(x′′)R+(x′), (3.73)

which is a Fredholm integral for the field ϕ(x) [10]. To solve the previous integral

equation, we will consider the limit γ sin(2θ0) =
√
γ2 − µ2 � 1, which is equivalent

to considering an injection and dissipation of similar energy (γ ∼ µ). Based on this

assumption, we can use the approximation

ϕ ≈
∫ x dx′

R2
+(x′)

∫ x′

dx′′µ1(x′′)R2
+(x′)−

∫ x

ẋ0dx
′. (3.74)

It is important to note that the corrections to the previous approximation can be calcu-

lated iteratively in a series of powers in the small parameter
√
γ2 − µ2 [10]. Introducing

the linear operator

L ≡ ν − γ sin(2θ0)− 3R2
+ − ∂xx,



90 CHAPTER 3. DISSIPATIVE SOLITONS IN PARAMETRIC SYSTEMS

equation (3.72) can be rewritten as

Lr = R+∂tϕ+ 2γR+ cos(2θ0)ϕ. (3.75)

To solve this linear equation, the Fredholm alternative is used. Consequently, the

following inner product is introduced

〈f |g〉 =

∞∫
−∞

f(x)g (x) dx.

The linear operator L is self-adjoint
(
L = L†

)
. The kernel of this linear operator is

of dimension 1. As a result of the spatial translation invariance, one has L∂xR+ = 0,

where ∂xR+ is the Goldstone mode associated with the spatial translation invariance.

Then the field r has a solution if it is satisfied

0 = 〈∂xR+ | R+∂tϕ〉+ 〈∂xR+ | 2γR+ cos(2θ0)ϕ〉 . (3.76)

Using the approximation (3.74), considering the dominant terms and after direct cal-

culations one obtains Usando la aproximación (3.74), considerando los términos domi-

nantes y después de cálculos directos uno obtiene

ẋ0 =

∫∞
−∞ dz∂zR+

∫ z dx′
R2

+

∫ x′
dx′′µ1(x′′ + x0)R+(x′′)∫∞

−∞ dzR+z∂zR+

. (3.77)

This equation accounts for the dynamics of the soliton as a consequence of inhomo-

geneity. It is trivial for parity arguments to see that, if µ1(x) is an even function, then

there are no corrections. Motivated by the experiment of the channel with water we

can consider in the case of a small angle [103]

µ1(x) = αx.

Then the formula (3.77) can be rewritten as

ẋ0 = α

∫∞
−∞ dz∂zR+

∫ z dx′
R+

∫ x′
dx′′x′′R+(x′′)∫∞

−∞ dzR+z∂zR+

+αx0

∫∞
−∞ dz∂zR+

∫ z dx′
R2

+

∫ x′
dx′′R+(x′′)∫∞

−∞ dzR+z∂zR+

. (3.78)
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Figure 3.28: Hydrodynamic soliton evolution in a chute. a) snapshot image and b) space-time dia-

gram [103].

Using expression (3.38) and parity arguments

ẋ0 ≈ α

∫∞
−∞ dz∂zR+

∫ z dx′
R+

∫ x′
dx′′x′′R+(x′′)∫∞

−∞ dzR+z∂zR+

. (3.79)

The previous integral can be estimated numerically, then we obtain [103]

ẋ0 ≈ −
1.65327

δ3/2
α.

In the limit under consideration, the soliton propagates with constant speed. Therefore,

if one considers a branch which can be changed α(t), then one can position the soliton

wherever one wants. However, as the soliton propagates it changes its shape and this

can generate new corrections for velocity.

Experimentally, it is observed that detuning is quadratic (see reference [103]), this

is because the edges of the channel induce an effective force that forces the soliton to

propagate to the center of the container. This type of inhomogeneity plus the inclination

make the hydrodynamic soliton tend to carry out relaxation paths at equilibrium. This

type of trajectory is illustrated in Figure 3.28.

3.7 Phase Shielding Dissipative solitons

Recently, numerical observations of dissipative solitons of the parametrically forced

nonlinear Schrödinger equation show that the phase has a complex structure [58, 63],
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called phase shielding dissipative solitons. Figure 3.29a illustrates the dissipative soliton

studied in the previous sections, that is, a soliton characterized by a bell shape in the

amplitude module and homogeneous phase described by formulas 3.12. Figure 3.29b

illustrates a phase shielding dissipative soliton. These solutions are characterized by a

similar bell structure for the module and a structure with different phase jumps. These

solutions were discovered by simply disturbing the dissipative soliton and observing the

evolution of its respective phase. It is important to mention that the phase presents

a slower dynamic than the module. Initially, the phase exhibits complex transients.

Later, two counterpropagating fronts emerge that connect two homogeneous states

that propagate with a relatively constant speed, away from the heart or position of

the soliton (which is given by the position of the maximum in the soliton module).

Finally, this front stops giving rise to the stationary solution that is dissipative solitons

with armor. Figure 3.30 shows the temporal evolution of the counterpropagating phase

fronts, where the speed as the counterpropagating phase fronts propagate is shown.

Figure 3.29: Dissipative solitons of the parametrically forced non-linear Schrödinger equation. a)

homogeneous phase solitons, b) dissipative solitons with armature.
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3.7.1 Analytical description

To understand the origin of these solitons, for the sake of simplicity, we will consider a

coordinate system such that the position of the soliton is at the origin, and we will only

consider the positive spatial coordinates. We will only consider a single-phase front for

understanding the dynamics of dissipative phase shielding solitons. Naturally, the other

half will be understood by a trivial extension of the above discussion. In figure 3.31a,

the type of coordinate system under consideration is sketched. In this representation

system, we observe that the front emerges away from the soliton’s position (see 3.31a).

Therefore for the dynamics of the phase front, the modulus can be approximated in

this region to

R(x� ∆, x0) = 2
√

2δ+e
−f(x,x0), (3.80)

and

ϕ(x) = ϕF (x− xf ), (3.81)

Figure 3.30: Spatiotemporal diagram of the phase fronts observed in the parametrically forced non-

linear Schrödinger equation (3.35).
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Figure 3.31: Phase front of a phase shielding dissipative soliton. a) profile of the phase front (continuous

blue line) and modulus (dashed red curve), b) spatiotemporal diagram of the phase front.

Where xf accounts for the position of the phase front. In the dominant order we

can consider f(x, x0) ≈
√
δ+(x − x0). In this approximation, R(x, x0) coincides with

the exponential decay of the stable dissipative soliton solution with a homogeneous

phase. Substituting the previous ansatz in the equations of the modulus and phase,

equations (3.6) and (3.7), we obtain two different equations. The first allows us to

obtain the dominant profile of the phase front analytically. The second describes the

dynamic behavior versus phase; that is, it describes the equation for the phase front.

Consequently, the phase profile is characterized by the equation

∂xxϕF = 2
√
δ+∂xϕF + µ− γ cos(2ϕF ). (3.82)

Introducing the following effective potential U(ϕF ) ≡ −µϕF + γ/2 sin(2ϕF ), equation

(3.82) can be written as a Newton-type equation, which describes a particle at a periodic

potential with a constant force, with an energy injection term proportional to speed

(∂xϕF ), that is,

∂xxϕF = − ∂U

∂ϕF
+ 2
√
δ+∂xϕF . (3.83)

Then, the solutions of the previous equation correspond to stationary solutions. In

particular, the phase fronts correspond to heteroclinic solutions. The uniform equilibria

in equation (3.82) coincide with the phase equilibria, that is, cos(2ϕs) = µ/γ in the

range of interest −π to π. Therefore, the phase fronts represent homoclinic solutions in
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Figure 3.32: Phase shielding soliton, an illustration of phase fronts as heteroclinic curves.

the space {ϕ, ϕx}, which correspond to orbits that connect one equilibrium of Newton’s

equation with another state (3.83) (see Fig. 3.32).

Introducing the following change of variable x = 2
√
δ+x

′ in Eq. (3.83), one can

consider the following asymptotic series

ϕF (x) = ϕ0 + Γϕ1(x) + Γ2ϕ2(x) + · · · ,

with Γ ≡ 1/4δ � 1, which to the dominant order has the following analytic form

ϕF (x, xf ) ≈ ϕ0 =


fsol − π,

[
−π,−π

2

)
fsol,

[
−π

2
, π

2

)
fsol + π,

[
π
2
, π
)

where

fsol = arctan

[√
γ ± µ
γ ∓ µ

tanh

√
γ2 − µ2(x− xf )

2
√
δ+

]
. (3.84)

It is important to note that the phase fronts are parameterized by the xf parameter.

Figure 3.31a shows the phase front calculated numerically, which has a difference of

1 % with respect to the previous analytical expression. If one considers the corrections

ϕF ≈ ϕ0 + ∂xϕ0/4
√
δ the difference is reduced to 0.8 %.
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Figure 3.33: Phase shielding soliton family. The segmented curves account for the amplitude, and the

continuous curves account for the different phase structures.

Considering the complete domain of the soliton, we obtain the eight possible configu-

rations of armored solitons that we have previously observed in numerical simulations.

The family of different armored solitons is illustrated in Figure 3.33.

A more careful analysis of numerical simulations reveals that phase shielding soli-

tons are made up of two qualitatively different regions: the inner and outer regions.

The inner and outer regions are highlighted by the central and asymptotic part of the

phase shielding soliton. Note that the asymptotic phase of armored solitons in the

inner and outer regions coincides with the phase of stable and unstable homogeneous

phase solitons, respectively (see Figure 3.34). Therefore, phase shielding solitons can be

understood as a soliton built by the stable (inner zone) and the unstable (outer zone)

of solutions with homogeneous phases.

To illustrate this statement, Fig. 3.34 shows the logarithm of the modulus of phase

shielding solitons as a function of space. Clearly, there is an intermediate region between

the two exponential decay rates of solitons with a homogeneous phase that is charac-

terized by a transition point. This point describes the transition between the inner and

outer regions and corresponds to the center position versus phase xf . Therefore, the

exponential decay rate f(x, x0) of the armored solitons must be modified by

f(x, x0) ≈
√
δ+(x− x0) +B(x, xf ) (3.85)
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Figure 3.34: Structure of the phase shielding soliton. The upper image accounts for the phase structure,

and the lower image accounts for the logarithm of the amplitude, which allows revealing the soliton’s

structure. The dotted curves account for the two asymptotic behaviors of the solitons with a uniform

phase.

with

B(x, xf ) ≡
[√

δ− −
√
δ+

]
Θ(x− xf )(x− xf ) (3.86)

where Θ(x − xf ) accounts for the step function. It is important to note that the

function f(x, x0) is a smooth function. However, approximation (3.85) is continuous

but not differentiable at x = xf .

Using the corrected ansatz 3.85, in equations (3.82-3.83), one can re-obtain the

previous results in the inner and outer region. In the interior region, Eqs. (3.82-3.83)

remain unchanged. On the other hand, these equations are modified by replacing δ+

por δ− in the outer region. Following the procedure shown above, one finds after direct
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calculations the following expression for the phase front,

ϕ0(x) = arctan

[√
γ ± µ
γ ∓ µ

tanh

√
γ2 − µ2(x− xf )

2δ(x, xf )

]
(3.87)

with

δ(x, xf ) ≡
[√

δ+ + (
√
δ− −

√
δ+)Θ(x− xf )

]
. (3.88)

In this approximation, the phase fronts are continuous but not differentiable at x = xf .

Emphasizing that the phase shielding solitons are constituted by the stable and unstable

soliton of the homogeneous phase.

Note that ansatz (3.80) considers a uniform exponential decay rate of the modulus.

This assumption, to the dominant order, to obtain solutions versus phase (formula

3.84). Higher-order corrections allow us to obtain an improved description of the phase

armored soliton in which the module also presents a shielding structure in the amplitude

(see figure 3.34). However, this structure is suppressed exponentially compared to the

soliton height
√

2δ+, by several orders of magnitude in the numerical simulations, at

least 50 orders of magnitude are observed. In contrast, the phase structure is of order

one. Therefore, a possible experimental characterization of phase shielding solitons

must be achieved by means of phase measurements.

3.7.2 Phase dynamics

As discussed in the previous section, the transient behavior before forming the phase

front is governed by the dynamics of the phase fronts. Here we propose an analytical

study of the dynamic evolution of these fronts. To do this, we will consider the typical

evolution of a soliton in a semi-infinite system, as shown in figure 3.31b. As can be

seen from this figure, the front shows a dynamic behavior that is characterized by a

non-trivial movement. For the sake of simplicity, consider the ansatz (3.80)-(3.81) to

the dominant order that f(x, x0) ≈
√
δ(x − x0) and δ ≡ δ+. Replacing in equation

(3.7), the equation of the front position is obtained,

− ẋf∂xϕF = −(ν + δ)− 8δe−2
√
δx + (∂xϕF )2 − γ sin(2ϕF ). (3.89)
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To derive the dynamics of the phase front xf (t), one allows the position of the phase

front to be promoted to a time function. The time derivative of xf is given by ẋf . One

assumes that this variable xf is a slow variable.

Multiplying the above equation by ∂zϕF (z) with z ≡ x−xf , and introducing the fol-

lowing inner product 〈f |g〉 ≡
∫
fgdz, we obtain, after simple calculations, an ordinary

differential equation for the position of the front phase,

ẋf = A+Be−2
√
δxf , (3.90)

where

A ≡
〈
(ν + δ + γ sin(2ϕF )− (∂zϕF )2)|∂zϕF

〉
〈∂zϕF |∂zϕF 〉

,

and

B ≡ 8δ

〈
e−2
√
δz|∂zϕF

〉
〈∂zϕF |∂zϕF 〉

.

{A,B} are real numbers, which can be positive or negative depending on the shape of

the phase front.

For example, when considering a phase front that increases monotonically with the

spatial coordinate, A (B) has a constant negative (positive) value. The term propor-

tional to A in the kinematic equation for the position of the front (Eq. 3.90) represents

the constant speed at which the phase with the highest value invades the smallest, giv-

ing rise to a phase front that propagates towards the position of the soliton x0. This

speed can be understood as a consequence of the difference in effective potential energy

(U(ϕF )) between both equilibria. In contrast, the term proportional to B accounts for

the effect of the spatial variation of the tail of the soliton in the amplitude or modulus,

which induces a force that leads the phase fronts to move away from the position of

the soliton. Consequently, the superposition of these two antagonistic forces generates

a stable equilibrium of the position of the phase front, which is consistent with the

dynamic behavior illustrated by the spatiotemporal diagram of Figure 3.31b. Solving

equation (3.90), an analytical solution for the typical trajectory is obtained,
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xf (t) =
log
(
B
A

)
2
√
δ

+
log
(
e−2
√
δA(t−t0) − 1

)
2
√
δ

− A(t− t0). (3.91)

The dashed curve shown in figure 3.31b is obtained using the above formula where A and

B are used as fit parameters. It is important to note that the constant log (B/A) /2
√
δ

describes the equilibrium position of the front, which corresponds to the characteris-

tic size of the shell structure in phase. For higher-order phase corrections, a similar

expression is obtained for the phase front dynamics.

3.7.3 Soliton stability with homogeneous phase

As we have already shown, solitons, with uniform phase and phase structure, are

solutions of the parametrically forced non-linear Schrodinger equation (3.4). Therefore,

a natural question that arises is: what are the fork scenarios of these solutions? In

order to examine this question, one can perform a numerical linear stability analysis

similar to that performed in Ref. [17]. Given the complexity of the linear operator, an

analytical stability analysis is not affordable. We consider that a small disturbance ρ

and Ω around the solution of Rs(x) and ϕ0, respectively, that is,

R = Rs(x) + ρ(x, t) and ϕ = ϕ0 + Ω(x, t), (3.92)

where ρ,Ω� 1. Introducing in (3.6), (3.7) and linearizing, one obtain

∂tρ = 2∂xRs∂xΩ +Rs∂xxΩ + 2
√
γ2 − µ2ΩRs, (3.93)

and

Rs∂tΩ = δρ− 3R2
sρ− ∂xxρ− 2µRsΩ, (3.94)

respectively. The above equation can be rewritten as follows

˙ ρ

Ω

 = M

 ρ

Ω

 (3.95)
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where

M ≡

 0 2∂xRs(x)∂x −Rs(x)∂xx − 2Rs(x)
√
γ2 − µ2

1
Rs(x)

(δ − 3Rs(x)2 − ∂xx) −2µ

 .(3.96)

Analytical solutions of equation (3.95) is a complex task [17]. Therefore, one must use

numerical analysis as a study strategy, that is, by means of numerical methods, one

must determine the set of eigenvalues (spectrum). Then to calculate this spectrum, one

proceeds to discretize the space, x → j∆x, F (x, t) → F (j∆x, t) ≡ Fj(t) with jj =

1, · · · , N where N is the number of points considered in the system and j = 1, · · · , N .

Therefore, the differential operator M becomes a matrix of rank N2. Furthermore, one

can consider µ = µ0 and x0 = L/2 for different values of {γ, ν} in the region of existence

of solitons, that is, γ2 ≤ ν2 + µ2 and ν < 0.

The L parameter controls the size of the system and accounts for spatial effects. By

changing N with ∆x fixed, we can easily modify this parameter. In many studies, this

parameter has not been considered as a relevant system parameter, being generally a

small constant number. We will see that the parameter L plays a major role in the

stability properties of localized dissipative states.

Therefore, we are going to consider L as a control parameter of the system and set the

parameters {µ, ν, γ}. When L is small enough the spectrum is characterized by being

centered on an axis parallel to the imaginary one, where each eigenvalue has a negative

real part. This type of eigenvalue behavior is typical of quasi-reversible systems [45].

By increasing L, the set of eigenvalues begin to collide and give rise to the creation of

a continuous set. Up to a critical value of Lc, where some of them cross the imaginary

axis at a non-zero frequency, showing an Andronov-Hopf bifurcation [194, 108]. Figure

3.35 describes the spectrum before, during, and after the bifurcation, respectively. This

figure illustrates the real part of the highest max auto value max [Re(λ)] (red points)

and the eigenvalue related to the Goldstone mode (blue triangles) as a function of the

size of the L system. As a consequence of the translation invariance, the eigenvalue

related to the Goldstone mode is at the origin of the complex plane [172]. For γ = 0.105,

µ = 0, 1, and ν = −0, 05, it is observed that (see Fig. 3.35 box A) below the critical
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value Lc = 304, the largest eigenvalue corresponds to the Goldstone mode. Near the

bifurcation, the eigenvalue with the greatest real part and its respective conjugate

cross the real axis, giving rise to the destabilization of the uniform phase solution (see

Fig. 3.35).

Analysis of the numerical stability of solitons with uniform phase reveals a strong

dependence on the size of the system. This result is in agreement with the inner and

outer crossover region. The inner region has a length defined by the given set of system

parameters {µ, ν, γ}. If the size of the system is small enough (L less than the size of

the inner region), the crossover does not occur. So the soliton with phase structure does

emerge, and the soliton with uniform phase is the only stable solution. For L greater

than the size of the inner region, the soliton with uniform phase is destabilized by an

oscillatory bifurcation, generating the emergence of solitons with phase structure.

Since the exponential decay of stable uniform phase solitons, and therefore the length

Figure 3.35: The real part of the largest eigenvalue Max(Re(λ)) (red dots) and Goldstone-related

eigenvalues (blue triangles) as a function of system size. The inserted figures A, B and C are the

spectrum of the soliton with homogeneous phase before (L = 284), during (L = 304), and after

(L = 324) of the bifurcation, respectively, for γ = 0.105, µ = 0.1, and ν = −0.05.
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Figure 3.36: PSS bifurcation diagram in the γ − ν space obtained from solving 3.95 numerically for

µ = 0.050 and L = 400.

of the interior region, is a function of the parameters of the system {µ, ν, γ} , it is

natural to infer that the variation of these parameters with L fixed, they can generate

the destabilization of solitons with a uniform phase. Indeed, as a result of the previous

strategy, we carry out an analysis of the numerical stability of these solutions varying

γ for L fixed with µ = 0, 1 and ν = −0.05. We choose the same parameter region

{νγ} with L = 280 (before the bifurcation generated by the change of the system size,

see Fig. ??) to ensure that the soliton with uniform phase is stable. Figure ?? shows

the eigenvalue evolution as a function of γ. As before, up to a certain critical value

of γc, the system exhibits an Andronov-Hopf bifurcation, leading to the appearance of

solitons with phase structure. The branching scenario is similar to that observed by

resizing the system.

In summary, the mechanism of the above instability is a robust phenomenon.

Figure 3.36 shows the stability of uniform phase solitons over a region of parameter

{ν, γ}with µ = 0, 05 and L = 400 fixed. For a system of size smaller than the critical

one, it is observed that for the parameters 0 < γµ� 1, the soliton with constant phase

is stable. However, increasing the amplitude of the forcing γ for the detuning parameter

ν, the soliton is again destabilized by an Andronov-Hopf bifurcation.
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Figure 3.37: Front and back view of a stationary phase shielding soliton observed in two-dimensions for

the parametrically driven nonlinear Schorödinger equation with γ = 0.140, ν = −0.068 and µ = 0.125.

Phase and amplitude field are represented simultaneously. Colored shadow renders the phase shell-like

structure (ϕ(x, y)) that surrounds the amplitude soliton localized at the center (R(x, y)).

In the case that the size of the system is large enough, the uniform phase soliton

exhibits an Andronov-Hopf bifurcation leading to an armored soliton. Increasing still

more the system parameters {ν, γ} a secondary bifurcation leads to a periodic behavior

like those observed in [29]. In contrast, for small Ls the Andronov-Hopf bifurcation

leads directly to localized periodic solitons without a secondary bifurcation.

3.7.4 Phase shielding solitons in two-dimensions

To study the robustness of the phase dynamics around the soliton, we consider the

two-dimensional spatial extension of Eq. (3.4), that is, ∂xx operator is replaced by a

two-dimensional Laplacian operator ∇2 = ∂xx + ∂yy (cf. Eq. 3.35). As we have show

(see Sec. 3.3.1), this equation has soliton type solutions with constant phase [20], which

are the natural extension of one-dimensional case. However an analytical expression for

these solutions is unknown. Considering a similar parameter region of phase shielding

solitons in one-dimension, we observe a rich phase fronts dynamics in two-dimensions. If

one slightly perturbs the soliton, after some complex transient in the phase dynamics we

observe the appearance of a circular phase front that spreads slowly. For later times, the

front becomes asymmetric, giving rise to another front. Finally, the two fronts become

stationary, creating a shield-like structure around the soliton. Figure 3.37 shows the
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stationary phase structure observed numerically in a two-dimensional system. It is

important to note that we only see phase shielding structure as a state of equilibrium for

dissipative soliton in a large system size. The two-dimensional solution is characterized

by being composed by all the solutions found in one-dimension. Indeed, if one performs

different cuts containing the center (soliton position), one can recognize the observed

solutions in one-dimension. A surprising property of the shell-like structure observed

is that if one calculates the phase change in a closed path (
∮

Γ
~∇ϕd~s) within the region

close to the position of the soliton one finds that this is zero. Nevertheless, if one takes

a closed path in the exterior region of the soliton position, one finds
∮

Γ′
~∇ϕd~s = ±π.

Therefore phase shielding solitons have a complementary property to the topological

defects, which are characterized by having a phase change in the neighborhood of the

defect equal to πn with n an integer number.

In brief, localized structures in parametrically forced systems have a rich and unex-

pected phase dynamics, creating novel types of localized states. We expect that phase

shielding solitons could be observed experimentally in simple coupled forced oscillators,

such as a vertically driven fluid layers in narrow cells, optical parametrical oscillators,

driven magnetic media, and chain of coupled oscillators. Shell-like phase structure must

play a significant role in soliton interaction, since bound states of two solitons show a

complex phase structure. Experimental observations show an intricate temporal dy-

namics of dissipative solitons which cannot be explained from constant phase solitons.
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Chapter 4

Dissipative solitons in forcing systems

Main characteristic of an oscillator is to possess an intrinsic natural frequency.

Forcing at this particular frequency is the natural way to excite an oscillator in an

efficient way. When forcing an oscillator close to its natural frequency, the oscillator

exhibits a large oscillation amplitude, which can be understood from a balance between

the injection (forcing) and the dissipation of energy (dissipation). This is a resonance

phenomenon [131]. The resonance phenomenon has been known since the dawn of mod-

ern science by Galileo [98], who was interested in the understanding of the pendulum

dynamics. Depending on the intensity and the frequency of the forcing this oscillator

begins to manifest its nonlinear nature, with an asymmetric amplitude response with

respect to the forcing frequency [131]. Likewise, by sufficiently large forcing intensity

the oscillator can exhibit bistability between two equilibria oscillations [131]. When in-

creasing the forcing amplitude, the system may exhibit complex chaotic type behaviors

(see the textbook [16] and reference therein). The previous scenario changes drasti-

cally when one considers a spatial extension of the nonlinear oscillator. In the latter

case one expects the emergence of nonlinear phenomena such as patterns, localized

solutions, fronts, nonlinear waves, chaos, chimera states, phase turbulence, spatiotem-

poral chaos, weak turbulence, among others. Due to the complexity of the nonlinear

partial differential equations, only particular models close to conservative limits have

107
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Figure 4.1: Driven damped nonlinear oscillators. (a) Schematic representation of a driven dissipative

chain of pendula. θ is the angle formed by a pendulum and the vertical axis; f = γ sin(ωt) accounts for

an temporal modulating torque with an amplitude and frequency γ and ω, respectively. (b) Schematic

representation of an extended Josephson junction, which is composed of two superconductors separated

by an insulating strip. (c) Spatiotemporal evolution of a driven damped sine-Gordon Eq. (4.13), by

ω0 = 1, µ = 0.05, κ = 1, γ = 5.9, ω = 2.7, dt = 0.05 and dx = 0.65 [91].

been studied analytically in detail (cf. Rev. [125] and references therein). A systematic

study a chain of forced oscillators through amplitude equations [28, 152]. This type

of approach is valid for small amplitude that has allowed a unified understanding of

several phenomena such as pattern formation, localized structures, phase turbulence,

defect turbulence, spatiotemporal chaos, weak turbulence, among others. In optics a

natural nonlinear extended oscillators are cavities [146]. Therefore, by means of exter-

nal electromagnetic waves with a frequency near to the cavity frequency, one expects

to be able to resonate this optical cavity with the injection.
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4.0.1 Josephson junctions an exceptional oscillator

The dissipative sine-Gordon equation (2.51) can be applied to another relevant phys-

ical system, namely an extended Josephson [76, 138]. Figure 4.2 displays a Josephson

junction. To model these quantum elements, one can consider a quantum system con-

sisting of two superconductors described by two wave functions ψ1 and ψ2 which is

separated by an insulating film (see Fig. 4.2). When one applies a voltage difference,

classically one does not expect to observe electrical conduction as result of the insulator,

however, quantitatively one observe a current through the device, even without voltage

(Josephson effect [115]). To describe this phenomenon, one can consider a two-state

quantum system described by

ih̄∂tψ1 = E1ψ1 + kψ2, (4.1)

ih̄∂tψ2 = E2ψ2 + kψ1, (4.2)

where h̄ is the Planck constant, E1 and E2 account for the energy of the superconductor,

E2 − E1 = −qV , where V is the voltage between superconductors and q the electrical

charge, and k accounts for the coupling between superconductors (Evanescent coupling

via wave-function tail overlap), which is determined by the properties and geometry

of the insulating material. Introducing polar representation ψl(t) ≡
√
ρl(t)e

iφl(t) (l =

y

x

z

W

h

(a) (b)Superconductor

Superconductor

Isolator

ψ
1

ψ
2

Figure 4.2: Josephson junctions. (a) Schematic representation of the Josephson junctions. ψ1 and

ψ2 account for the amplitud probability of the superconductor state of the respective superconductor.

(b) Snapshots of the Josephson junction
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{1, 2}), where ρl(t) accounts for the density of cooper pair, the set of equations read

∂tρ1 =
k
√
ρ2ρ1

h̄
sin(φ2 − φ1), (4.3)

∂tρ2 = −
k
√
ρ2ρ1

h̄
sin(φ2 − φ1), (4.4)

∂tφ1 = −E1

h̄
− k

h̄

√
ρ2

ρ1

cos(φ2 − φ1), (4.5)

∂tφ2 = −E2

h̄
− k

h̄

√
ρ1

ρ2

cos(φ2 − φ1). (4.6)

the current between superconductors is given by

Js ≡ ∂tρ1 = −∂tρ1 =
k
√
ρ2ρ1

h̄
sin(φ2 − φ1). (4.7)

Hence, if there is a phase difference φ ≡ φ2 − φ1 between the superconductors, there is

a current. This phase difference satisfies

∂tφ =
qV

h̄
− k

h̄
cos(φ)

[√
ρ2

ρ1

−
√
ρ1

ρ2

]
. (4.8)

Considering that both states have the same density ρ0 ≡ ρ1 = ρ2, one finds Josephson’s

relationships

Js =
kρ0

h̄
sin(φ), (4.9)

∂tφ =
qV

h̄
. (4.10)

Note that even without voltage (V = 0), but with a phase difference, one can see a

quantum current (Josephson effect [115]). On the other hand, the current and the

voltage are connected by means of Maxwell equations, particularly by(
∂tt
c2
−∇2

)
~E = µ0∂t ~J, (4.11)

where ~E and ~J are the electric field and current between the superconductor, respec-

tively. If the insulator is a thin film then ~E ≈ −V/d ŷ with d the thickness of the

insulator, and the current is composed of a normal and a superconductor current,
~J = (Js + Jn)ŷ. The normal current satisfies the Ohm law Jn = −V/ηd with η is the
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resistivity. Using the Maxwell equation, Josephson relations, the previous approxima-

tion and assuming that phase difference depend of the transversal coordinate φ(x, t),

one gets

∂ttφ = −c
2kρ0dµ0

h̄2q
sinφ− c2µ0

η
∂tφ+ c2∂xx. (4.12)

Hence, the Josephson junctions is describe by the dissipative sine-Gordon equation,

where the natural frequency depends of the density of cooper pairs, electric charge,

constant of coupled between the superconductor, and the thickness of the insulator.

4.0.2 From driven damped sine-Gordon model to driven damped

nonlinear Schrödinger equation (Lugiato-Lefever equation)

Let us consider a driven damped chain of pendula (cf. Fig. 4.1a), which is described, in

the continuum limit, by a following forced dissipative sine-Gordon equation [18, 91, 177]

θ̈(z, t) = −ω2
o sin θ − µθ̇ + k∂zzθ + γ sin(ωt), (4.13)

where θ (z, t) is the angle formed by a pendulum and the vertical axis in the z-position

at time t; ωo is the natural frequency of the pendulum; µ, k, γ, and ω are the damping,

elastic coupling, amplitude and frequency of the forcing, respectively. For the sake of

simplicity, we have chosen a harmonic external forcing. The model Eq. (4.13) takes into

account of the dynamics of a chain of coupled pendula to first neighbors by restitution

springs [76], which are mounted on the horizontal bar that oscillates in a harmonic way

with respect to its azimuthal axis (cf. Fig. 4.1a). Hence, the elastic bar induces an

oscillatory torque on each pendulum.

The model Eq. (4.13) can be applied to another physical system, namely an extended

Josephson junstions [76, 21]. The schematic of this system is depicted in Fig. 4.1b. In

the following we provide the meaning of the variable and the parameters of the extended

Josephson Junction. The variable θ(z, t) in Eq. (4.13) accounts for the phase difference

between the wave function of each superconductors. The parameter ω2
o stands for the

superconductor current in the junction and its value is determined by the particular
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characteristics of the junction. The parameter µ accounts for the normal current, and

the parameter k is proportional to the square of light speed. The term proportional to

γ in Eq. (4.13) takes into account of the alternating current across the junction. Indeed,

modifications of the sine-Gordon equation allows to describe different physical systems

such as charge density waves [106], dislocations in crystal [35], magnetization of driven

ferromagnetic wires [25], gravity and high-energy [76].

For zero forcing and damping, γ = µ = 0, the above model describes a Hamiltonian

system, that present time reversal invariance, which is well-know as the sine-Gordon

model. Figure 4.1 illustrates a schematic representation of a driven dissipative chain of

pendula. When the dissipation is included, the vertical state θ(z, t) = 0 becomes the

only stable equilibrium. The forcing induces oscillations of the vertical state with the

forcing frequency. The amplitude of this oscillation strongly depends of the detuning

between the forcing and natural frequency, ν ≡ ω − ω0. Figure 4.1c shows a complex

spatiotemporal evolution of the driven damped sine-Gordon equation.

To figure out the dynamics observed in the driven damped sine-Gordon equation, we

consider the quasi-reversal limit, that is, the time reversal limit perturbed with small

injections and small dissipations of energy [45]. In this limit, model (4.13) corresponds

to a perturbed sine-Gordon equation with ν ∼ µ ∼ ε, γ ∼ ε3/2, and ε is an arbitrary

small scaling parameter, ε� 1. Considering the following ansatz

θ =

√
2ε

3ωo
A(x, τ)eiωt +

(
ε

6ω0

)3/2

A3ei3ωt + c.c.+ h.o.t, (4.14)

where A(x, τ) is the slowly varying envelope of the vertical state, τ ≡ εt and x ≡√
2εω0/kz are slow variables, c.c. and h.o.t. denote the complex conjugate and the high

order terms in amplitude A, respectively. Introducing the above ansatz in Eq. (4.13),

and matching different orders in ε. After straightforward calculations, at the dominant

order in ε, the envelope A obeys the driven damped nonlinear Schrödinger equation

∂τA = −(µ̃+ iν)A− i |A|2A− i∂2
xA− γ̃, (4.15)

where µ̃ ≡ µ/2, and γ̃ ≡ γ/4
√

2ω/3. Notice that the terms of above equation are of

order ε3/2 and the higher order terms are at least of order ε5/2.
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The above amplitude equation is the paradigmatic one-dimensional Lugiato-Lefever

equation [145] or the driven damped nonlinear Schrödinger equation [119, 153, 165].

The correspondence between the sine-Gordon model and the Lugiato-Lefever equation

was established in Ref. [18].

Although the amplitude equation (4.15) was proposed for the first time in plasma [165]

and coupled nonlinear oscillators [119, 153], its main use is in the context of nonlinear

optics, where this model is known as the Lugiato-Lefever equation [145]. In their

seminal paper, Lugiato and Lefever introduce for the first time the mean field approach

to derive a simple model to describe the spatiotemporal evolution of the intracavity field

envelope. An early report on transverse patterns, which describes numerical simulations

of self-focusing and filamentation of light beams in bistable nonlinear media [135]. Later

on Lugiato and Lefever, have shown that the existence of transverse patterns does not

require a bistable homogeneous steady state [145]. They show that the symmetry

breaking instability leading to the spontaneous formation of stationary spatial patterns

can occur in the monostable regime far from any second-order critical point. More

importantly, they have established the link between the well known symmetry-breaking

instability in chemical reaction diffusion systems [149] and the transverse pattern in

nonlinear optics [145].

The Lugiato-Lefever equation (4.15) have broad applicability than passive optical

cavities and it is a well-known paradigm in the study of spatial periodic or localized

patterns in optics. It has been considered for that purpose in diffractive systems such

as liquid crystals, left-handed materials [129], and photonics coupled waveguides [170,

66]. It has been also derived for dispersive systems such as nonlinear fiber resonator

[112] and whispering-gallery-mode microresonators leading to optical frequency comb

generation [44, 109, 68]. The sign of the second derivative with respect the x coordinate

is negative and the nonlinearity is of the focussing type. Depending of the context in

which the Lugiato-Lefever equation is derived, the sign of nonlinearity and dispersion

or diffraction can be positive or negative see classification in table 4.0.2. In optics the

LLE model was derived considering the mean field limit of driven Kerr cavities with



114 CHAPTER 4. DISSIPATIVE SOLITONS IN FORCING SYSTEMS

1. 2

0. 8

0. 4

0 0 0.15 γ2

||Α||
Localized structures

Spatiotemporal Chaos

2.0

0.0
3000.0

5.0

0.0

Space Space

Ti
m

e

Ti
m

e

||Α|| Re(A)

2.0

0.0

||Α||

3.0

-2.0

Re(A)

(a)

(b) (c)
~

Figure 4.3: The driven damped nonlinear Schrödinger equation , Eq. (4.15). (a) Representative bi-

furcation diagram of the driven damped nonlinear Schrödinger equation Eq. (4.15) versus the forcing

intensity for positive detuning in the bistable regime. The solid and the dashed curve account for

the stable and the unstable uniform state. The colored bars account, respectively, for the parameter

region where localized structures and spatiotemporal chaos are observed. (b) Instantaneous profile and

spatiotemporal evolution of the amplitude ||A|| for a localized structures. (c) Instantaneous profile and

spatiotemporal evolution of Re(A) in the spatiotemporal chaotic regime.

a high Fresnel number—assuming that the cavity is much shorter than the diffraction

and the nonlinearity spatial scales.
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Diffraction Dispersion Nonlinearity

Passive cavity + ±

LHM ± ±

Nonlinear Fiber ± +

WGM + ±

Chain of pendula - -

Josepson Junctions - -

Sign of diffraction, dispersion and nonlinearity. Passive cavity, diffraction

is always positive while nonlinearity can be either positive or negative.

Cavity filled with Left-handed materials (LHM), diffraction and

nonlinearity can be either positive or negative. Whispering-gallery-mode

microresonators (WGM) leading to optical frequency comb generation. In

the case of the chain of pendula both nonlinearity and dispersion are

negative.

Figure 4.3 shows the typical bifurcation diagram of the Lugiato-Lefever equation with

positive detuning in the bistable regime. The solid and the dashed curve account for

the stable and the unstable uniform state, respectively. In addition, it is characterized

the parameter region where localized structures and spatiotemporal chaos are observed

numerically [139].

4.1 Localized structures

From the envelope Eq. (4.15), it is easy to characterize analytically the uniform

equilibria. The uniform steady state response A of Eq. (4.15) satisfies γ2 = [µ2 +

(ν − |A|2)]|A|2. For ν <
√

3µ, the steady, uniform state is a single valued function.

For ν >
√

3µ the system exhibits a bistable behavior with an S-shaped curve (see

Fig. 4.3a). In contrast, in the driven damped sine-Gordon equation, the analytical
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Figure 4.4: Dynamics of the driven dissipative chain of pendula model Eq. (4.13). (a) Bifurcation

diagram: amplitude of the oscillation versus the forcing intensity γ. The solid and dashed curves

account, respectively, for the stable and unstable uniform oscillation around the vertical state θ(x, t) =

0. Triangular symbols corresponds to numerical observations of Eq. (4.13) with ω0 = 1, µ = 0.15, κ = 1,

ω = 2.7, dt = 0.05 and dx = 0.5. Hexagonal and square symbols account for the maximum amplitude

of localized structures and amplitude of the patterns, respectively. The painted area accounts for the

coexistence region. Spatiotemporal evolution and schematic representation of an uniform oscillation

γ = 0.207 (b), a standing wave γ = 0.45 (c), and a localized waves γ = 0.3 (d).

characterization of uniform oscillations far from the quasi-reversible limit is a complex

endeavor. Numerically, we have calculated the amplitude of an uniform oscillation as

function of forcing γ and have compared this oscillation amplitude with the oscillation

amplitude that one obtains considering a single pendulum, avoiding spatial instabilities

of the chain of pendula. Figure 4.4a summarizes the comparison between oscillation

amplitude of a single pendulum (solid and dashed curve) and the numerical values of

the amplitude of an uniform oscillation (triangular symbols). The uniform oscillation

experience a modulation instability. This bifurcation leads to the formation of standing

waves solutions (cf. Fig. 4.5).

The upper branch of this curve accounts for an uniform oscillation with large ampli-



4.1. LOCALIZED STRUCTURES 117

Space0             375

100 

0 

T
im
e

-1.0

 1.0

θ

Figure 4.5: Spatiotemporal evolution of modulational instability of a driven damped sine-Gordon

Eq. (4.13) with ω0 = 1.0, µ = 0.09, κ = 1.0, γ = 0.8, ω = 2.7,dt = 0.076 and dx = 0.75.

tude. Similar bifurcation diagram has been obtained theoretically and experimentally

in a driven damped array of coupled pendula [168, 209]. Notwithstanding, this uni-

form oscillation is unstable as result of the Turing instability. Figure 4.4b displays the

spatiotemporal evolution and a schematic representation of a uniform oscillation of the

driven damped sine-Gordon model. Hence, the system exhibits a coexistence between a

stable uniform oscillation and an unstable standing wave (cf. painted area of Fig. 4.4a).

In the coexistence area, one expects to observe localized structures [82, 175], which

correspond to localized waves [61]. In the context of Lugiato-Lefever Eq. (4.15d), local-

ized structures have been examined in one and in two dimensional LLE [186, 18, 19].

Figure 4.4d shows the spatiotemporal evolution and a schematic representation of a

localized waves in a driven dissipative chain of pendula. Experimentally, this type of

structure has been observed in a forced damped array of coupled pendula [168, 75].

From the uniform oscillation it is easy to obtain this localized state by considering a

local perturbation. This particle type solutions are the dissipative counterpart of soli-

ton solutions of the sine-Gordon equation. The localized wave is characterized by a
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central peak accompanied laterally by two depressions in the amplitude (cf. Fig. 4.3b).

The maximum of the amplitude of localized wave as function of the forcing intensity

γ is represented by hexagonal symbols in Fig. 4.3a. For small strength of the forcing

γ, these solutions appear by a saddle-node bifurcation. When increasing the forcing

intensity these solutions becomes unstable by a radiation of complex spatiotemporal

state [137, 139]. Indeed, the localized waves obtained with the driven damped sine-

Gordon equation and the Lugiato-Lefever model are quite similar.

Outside the coexistence region and large strength of the forcing γ, one can observe sta-

ble standing waves, which correspond to the counterpart of the pattern state observed

in the Lugiato-Lefever equation. Figure 4.4c depicts the spatiotemporal evolution and

a schematic representation of a standing wave. These solutions come out from the

unstable uniform oscillation—upper branch in Fig. 4.4a—as result of the modulational

instability. Namely, from an initial homogeneous oscillation appears a small spatial

modulation that increases systematically to a finite amplitude. However, this standing

wave is unstable. It broke its spatial periodicity by several localized phase singularities,

which allows the system to reach the adequate wavelength of the stable standing wave.

Figure 4.5 illustrates the modulation instability process of an uniform oscillation. The

phase singularities are recognizable by means of the dislocations observed in the spa-

tiotemporal diagram [64]. In Fig. 4.4a the square symbols stand for the amplitude of

the stable standing waves.

4.1.1 System without dissipation

Let us consider the non-dissipative driven nonlinear Schrödinger equation,

∂τA = −iνA− i |A|2A− i∂2
xA− γ. (4.16)

Note that we have neglected the dissipation (µ = 0). In this limit the system corre-

sponds to a Hamiltonian system with a forcing, that is,

∂τA = −i∂H
∂Ā

, (4.17)
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Figure 4.6: Analytical dissipative soliton using formula (4.20) for non-dissipative driven nonlinear

Schrödinger equation (4.16) [18].

with

H =

∫
dx

(
ν|A|2 +

|A|4

2
+ |∂xA|2 + γA+ γĀ

)
. (4.18)

Note that the Poisson bracket has the form

{f, g} =
∂f

∂A

∂g

∂Ā
− ∂g

∂A

∂f

∂Ā
. (4.19)

At this limit Barashenkov shows that the non dissipative driven nonlinear Schrödinger

equation, has the following analytical solution [18]

A± =
1√

2(1 + 2 cosh2 α)

(
1 +

2 sinh2 α

1± cosh2 α cosh2(Ax)

)
. (4.20)

Here α and A are defined by

γ =

√
2 cosh2 α

(1 + 2 cosh2 α)3/2
, (4.21)

A =
sinhα√

1 + 2 cosh2 α
. (4.22)

Figure 4.6 shows a chart of the analytical expressions (4.20).

For the dissipative driven nonlinear Schrödinger equation (4.15), µ 6= 0, no exact

solutions for dissipative solitons are available. The reason for the inaccessibility of

analytical solutions is due to the fact that the associated spatial system [A = A(x)]
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is not integrable. Therefore, the only accessible strategy is through numerical analy-

sis. Figure 4.3b, a localized structure of the driven dissipative nonlinear Schrödinger

equation (4.16) is shown, and oscillations around the central peak characterize this so-

lution. From the point of view of homoclinic curves, it corresponds to homoclinic of

the Shilnikov type [189, 50], which is typical of chaotic systems.

4.1.2 Quasi-reversal limit

For the sake of simplicity, we will consider the limit of the perturbative nonlinear

Schrödinger equation (2.57). As we studied in section 2.3.3, this equation has a family of

localized solutions, solitons, parameterized by the soliton’s height, frequency, speed, and

position [see formula (2.65)]. When considering dissipation, these solutions disappear;

then, to stabilize this solution, one must consider energy injection through forcing. To

characterize the localized solutions, let us write the perturbed equation (4.15) in polar

representation

∂tR = 2∂xR∂xθ +R∂xxθ + γ cos(θ)− µR,

R∂tθ = −νR−R3 − ∂xxR +R(∂xθ)
2 − γ sin(θ). (4.23)

Let us consider the following ansatz [119, 153]

A = 2ηsech
[
η2(x− x0)

2

]
ei((η

2/2−ν)t+σ) = ηR0(x)ei((η
2/2−ν)t+σ), (4.24)

where η(t) and σ(t) is promoted a temporal function. Introducing the previous ansatz

in the set of equations (4.28)

η̇(R0 + η2∂xR0) = γ cos((η2/2− ν)t+ σ)− µR,

R0σ̇ = −(η2/2− ν)R− γ sin((η2/2− ν)t+ σ). (4.25)

To obtain ordinary equations, we multiply both equations by R0 and integrate them
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Figure 4.7: (a) Schematic representation of a fiber cavity. Experimental observation of cavity soliton.

into all space.

η̇
(
〈R2

0〉+ η〈R0∂xR0〉
)

= γ cos((η2/2− ν)t+ σ)〈R0〉 − µη〈R2
0〉,

〈R2
0〉σ̇ = −(η2/2− ν)〈R2

0〉 − γ〈R0〉 sin((η2/2− ν)t+ σ). (4.26)

After straightforward calculations, one gets

〈R0〉 =
4π

η2
,

〈R2
0〉 =

16

η2
,

〈R0∂xR0〉 = 0. (4.27)

Hence, we obtain

η̇ =
γπ cos((η2/2− ν)t+ σ)

4
− µη,

σ̇ = −(η2/2− ν)− γπ sin((η2/2− ν)t+ σ)

4
. (4.28)

Assuming σ = (η2/2 − ν)t. Namely, we consider that the solution is not oscillatory.

Therefore, the correct ansatz should be

A = 2ηsech
[
η2(x− x0)

2

]
, (4.29)

where η = γπ/4µ. The localized solution to the same as the parametric case is a balance

between the injection and dissipation of energy.
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Similar equations but that give a more adequate account of the dynamics are obtained

through the use of the inverse scattering technique [119, 125, 153].

Driven Kerr cavities with a high Fresnel number—assuming that the cavity is much

shorter than the diffraction and the nonlinearity spatial scales—is described in the mean

field limit by the the driven damped nonlinear Schrödinger equation (4.15) [145]. This

equation has been extended to model both fiber cavities [112] and optical frequency

comb generation [44], in which the diffraction is replaced by dispersion. Temporal

cavity solitons in one-dimensional Kerr media in was observed [136, 137]. Figure 4.7

shows a fiber cavity soliton.



Chapter 5

Structures located between

homogeneous states

In the previous chapter we have found the existence of localized structure in the

case of parametric and forced systems. Where the mechanism of appearance of these

solutions is saddle-node and the mechanism of disappearance is the loss of the state

that supports this solution. In order to establish the generic mechanisms of structures

located in systems out of equilibrium, in this chapter we will establish the ingredients

and mechanisms of localized structures in dissipative systems.

5.1 Bistable model

Intuitively one hopes to find localized solutions in systems that exhibit bistability

or coexistence, that is, systems that exhibit coexistence of two stable states. In this

section we will present various bistable physical systems with homogeneous states.

123
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Figure 5.1: Nagumo Model a) representation of dynamics and equilibria. b) Energy as a function of

the adversity parameter.

5.1.1 Population dynamics

A simple example that presents bistability is the Nagumo model [166], which has the

form

∂tu = u(u− 1)(α− u) + ∂xxu, (5.1)

The scalar field u(x, t) accounts for the density of a given population in a position x

and time t. This population is characterized by the fact that the non-population state,

u = 0, is a stable equilibrium that must overcome a nucleation barrier to generate the

population equilibrium. That is, the previous model Eq. (5.1) takes as input the twin

features of interaction at a distance and the Allee effect [5, 6, 169]. The latter means

that the reaction term or nonlinearity in our system is such that the population suffers

extinction if it starts out at sufficiently low levels of population density, that its growth

overwhelms this tendency to extinction if the density exceeds certain levels, and that at

sufficiently high levels a saturation effect sets in counteracting a Malthusian explosion

(exponencial growth). Note that 0 ≤ α ≤ 1 accounts for adversity. Namely, it controls

the relative stability of the different equilibria u = 1 and u = 0, while α is closer to a

state, it is then less stable. The two states are equally stable at α ≡ αM = 1/2, which

corresponds to Maxwell’s point [102]. The previous model can be rewritten as follows

∂tu = −∂U
∂u

+ ∂xxu, (5.2)
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where

U(u) =
u4

4
− (1 + α)u3

3
+
αu2

2
.

Figure 5.1 shows the potential as a function of the adversity parameter. It is important

to note that the dynamics of model (5.1) is variational, that is,

∂tu = −∂F
∂u

(5.3)

where

F =

∫ [
U(u) +

(∂xu)2

2

]
dx. (5.4)

Then the dynamics of the Nagumo equation (5.1) is characterized by minimizing F ,

since
dF
dt

=

∫
dx
∂F
∂u

∂u

∂t
= −

∫
dx

(
∂F
∂u

)2

. (5.5)

Then the minima of F account for the equilibria.

5.1.2 Nematic-isotropic transition

The nematic-isotropic transition is a classic problem of the theory of liquid crystals, in

which the nematic phase is characterized by the rod like molecules are oriented locally

a)          b)                                                        c)

Figure 5.2: Liquid Crystals state of matter. a) Typical molecule of liquid crystal with rod like struc-

tures. b) Schematic representation of different phases of rod like molecules as function of temperature.

c) Bifurcation diagram of a liquid crystal transition.
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in one direction (orientational order), unlike the isotropic liquid phase which is charac-

terized by the molecules are locally disordered [202, 43, 80]. Figure 5.2 shows a typical

structure of liquid crystal molecules containing several coupled cycles benzenes. The

interaction between molecules (electric and magnetic) and temperature allow the for-

mation of different matter phases, such as: crystalline solid, liquid crystal and isotropic

liquid. Figure 5.2b schematically illustrates these phases. Therefore, as a function of

temperature T one expects to observe this transition, that is, there is a critical tempera-

ture Tc at which one observes the emergence of a phase on the other. Tc typically ranges

from a few to hundreds celsius. Due to the molecules have a preferred direction but

not a sense, this transition is characterized by a second rank tensor [202, 43, 80]. This

tensor is a symmetric matrix with zero trace, characterized by a single scalar parameter

S(~r, t) =
3

2
〈cos2(θ)〉 − 1

2
, (5.6)

which is an order parameter1 that accounts for the alignment of the molecules and θ

is an angle with respect to a direction must be oriented the molecules (cf. Fig. 5.2).

Then, when S is small (order one) accounts for the isotropic liquid (nematic) phase.

The dynamic of the order parameter is characterized by the free energy (Landau-de

Gennes theory) [202, 43, 79, 80]

F [S,∇S] =
A

2
S2 − B

2
S3 +

1

2
S4 +

(∇S)2

2
, (5.7)

where {A,B} are phenomenological positive parameters. It is worthy to note that due

to S accounts for an orientation, the free energy F does not depend linearly in S [79, 80].

Usually A parameter is proportional to difference of the temperature with the critical

one (A ∝ T − Tc) [202, 43, 80], this is the bifurcation parameter.

The temporal evolution of S is characterized by the minimization of the free energy,

that is,
∂S

∂t
= −δF

δS
= −AS +BS2 − S3 +∇2S. (5.8)

1An order parameter is the simplest variable characterizing the dynamics of a bifurcation[134].
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Figure 5.3: Bifurcation diagram of nematic isotropic transition described by model (5.8). The A

parameter accounts for temperature. Tc is the critical temperature from which the system exhibits

coexistence between the nematic (Sm and Sm1) and isotropic liquid phase (SI).

From the standpoint of dynamic system, this model describes an extended transcritical

bifurcation [74]. This model has the steady states S = SI = 0 and S ≡ SM =

(B ±
√
B2 − 4A)/2 that accounts, respectively, for the isotropic liquid and nematic

phase. For large values of the bifurcation parameter (A� 1), the only supported state

is the isotropic liquid phase, SI . When the bifurcation parameter is diminished to zero

(A = 0), the isotropic state becomes unstable by a discontinuous bifurcation (first order

transition or subcritical bifurcation [114, 194]), that is, this bifurcation generates an

abrupt change of equilibria. This bifurcation generates the emergence of nematic phase,

SM . This phase has a region of hysteresis (coexistence) with isotropic state between

A = 0 to A = B2/4. For negative A the stable state are nematic phases (Sm and

Sm1). Moreover, for A < 0 the isotropic liquid phase is unstable. Figure 5.3 shows a

bifurcation diagram of isotropic nematic transition described by model (5.8).

5.1.3 Ferromagnetic transition

Ferromagnetic materials are characterized by exhibiting a permanent magnetic (mag-

nets). Typical materials that exhibit this property are cobalt, iron, and nickel. However,
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when one increases the temperature these materials lose this magnetic property. When

one decreases the temperature becomes another magnetic exactly at the same critical

temperature, which is referred to as the Curie temperature, TC [123]. From a micro-

scopic point of view to sufficiently high temperatures the magnetic spins of the material

are disordered. Figure 5.4 illustrates the ferromagnetic materials as function of tem-

perature. For temperatures lower than the Curie temperature, the magnetic spins are

arranged in one or another direction.

Following the spirit of Landau to describe this transition [196, 134], let us con-

sider as an order parameter the magnetization M(~r, t), which accounts for the density

of magnetic spins or moments. When the magnetization is zero the system does not

exhibit magnetism. Assuming the ferromagnetic transition is smooth and there is mag-

netic exchange with the first neighbors. In the landau approach, the free energy that

characterize the ferromagnetic transition is [134]

F =

∫ (
ε
M2

2
+
M4

4
+ · · ·+ [∂xM ]2

2

)
dx, (5.9)

where ε is the bifurcation parameter that is proportional to T − Tc. The dynamics of

T

Tc

M

Figure 5.4: Schematic representation of ferromagnetic transition. T andM account for the temperature

and magnetization, respectively.
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T

Tc

M H

Figure 5.5: Schematic representation of ferromagnetic transition under the influence of an external

magnetic field H.

magnetization is given by (dissipative φ4-model)

∂tM = − δF
δM

= εM −M3 + ∂xxM. (5.10)

For positive ε there is only one states (M = 0) and for ε negative, the system has three

equilibria one unstable and two stables. Figure 5.4 shows the bifurcation diagram of

this model, where the equilibria are M = {0,±
√
ε}. In presence of external magnetic

field the above scenario changes, the ferromagnetic transition becomes an imperfect

transition as it is illustrated in Fig. 5.5. Indeed, the forced magnetic material is a

magnet even over the curie temperature (cf. Fig. 5.5). The external magnetic field

favors a magnetization on the other. Hence, the external magnetic field broke the

symmetry between both magnetic equilibria. A simple term that broke this symmetry

in the free energy is

F =

∫ (
HM + ε

M2

2
+
M4

4
+ · · ·+ [∂xM ]2

2

)
dx, (5.11)

likewise the dynamics of the magnetization reads

∂tM = H − εM −M3 + ∂xxM. (5.12)
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The bifurcation diagram of this model is depicted in Fig. 5.5. Due to this transition

has coexistence between two stable domain, one expect to observe front propagation

between this two asymmetric states.

5.2 Particle-type solutions between two-uniform states:

wave called Front

All the physical models presented in the previous section are characterized by present-

ing coexistence between uniform solutions. Let us consider a simple one-dimensional

reaction diffusion model of the form

∂tu = −∂V
∂u

+ ∂xxu = −δF
δu
, (5.13)

with a bistable potential and Lyapunov function

F =

∫ (
V (u) +

[∂xu]2

2

)
dx. (5.14)

For the sake of simplicity, we can consider a bistable potential

V (u) = −ηu− εu2/2 + u4/4. (5.15)

In the upper panels of Fig. 5.6 is represented the potential for different value of η and

positive ε. This system have two trivial equilibria represented by {A,B}, that is, in

this region of parameters the system exhibits bistability. For small η, the equilibria has

the form A = −
√
ε+O(η) and B =

√
ε+O(η) .

Thus, the reaction diffusion equation reads

∂tu = η + εu− u3 + ∂xxu. (5.16)

This model correspond to a simplified model of ferromagnetic transition. From the

dynamical point of view this model correspond to an extended pitchfork bifurcation

[74], where ε and η are the bifurcation parameter and parameter that controls the
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relative stability between equilibria. This bifurcation accounts for the nascent of bista-

bility [197]. In the context of catastrophe theory the previous model corresponds to an

extended cusp catastrophe [15, 101].

Numerical simulations of the above model by small η and positive ε show front

propagation between the equilibria. Figure 5.6 shows the profile and spatiotemporal

evolution of front solutions of simple bistable model (5.16). Considering a propagative

solution u(x− vt), we have the following Newton type equation

− v∂zu = −∂V
∂u

+ ∂zzu, (5.17)

V
(u
)

uuu
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Figure 5.6: Front propagation in bistable variational model Eq. (5.16) with positive ε. The upper

panels represent the potential, V (u), for different values of η. The middle and lower panels illustrate

the front profile and their respective spatiotemporal evolution [9].
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where z = x− vt is the co-mobile coordinate. Thus the above equation can rewrite as

∂zzu =
∂V

∂u
− v∂zu = −∂W

∂u
− v∂zu. (5.18)

This equation correspond to a Newton type equation with a potentialW (u) = −V (u),

that is, the potential is inverted. Figura 5.7 depicts the respective potentials V and W .

Hence for this Newton type equation, the front solution corresponds to a heteroclinic

curve between the equilibria. Then, starting from B state, there is an only one damping

coefficient vc, for which the system presented an heteroclinic. For larger speeds (v > vc)

the trajectory from B ends at the unstable equilibrium, which corresponds to a local

minimum of effective potentialW . Figure 5.7 shows this equilibrium that is represented

by C. Contrary to lower speeds (v < vc), the trajectory diverges to infinity. Therefore,

normal fronts only have a single speed of propagation (v = vc). Which it is a completely

different features in compare to fronts propagation into unstable state.

In the case of considering a front connecting A with B, it is important to note that

the state A corresponds to a local minimum, then the speed is negative to generate

this trajectory, i.e., this term is now an injection energy (v < 0). From Newton type

equation, one can infer that when two states have the same energy, the front solution

is motionless. The possibility of parameter space having a motionless front is known

in the literature as Maxwell point [102]. Thus the mechanism of propagation of fronts

between stable states for variational systems is the energy difference between these

V(u)

u
B

A

W(u)

u

B
A C

u

x
Front position

Front core

A

B

u

xA
B

Figure 5.7: Bistable potential. Left and central panel correspond to original and effective potential in

the Newton type equation. Right panels account for the normal front solutions.
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states. Namely, when the front spreads the free energy F decreases.

To determine analytically the front speed, one can multiply Eq. (5.17) by ∂zu and

integrated in the entire domain, one gets

−v
∫
dz(∂zu)2 = −

∫
dz
∂V

∂u
∂zu+

∫
dz∂zzu∂zu,

= −
∫
dz
∂V

∂z
+

∫
dz∂z

(
[∂zu]2

2

)
,

= −∆V +
[∂zu]2

2
|∞−∞, (5.19)

where ∆V = V (z = −∞)− V (z = ∞) = V (A)− V (B). Using the fact that the front

in infinity converges to the steady state, thus ∂zu|±∞ = 0. Finally one obtains the

following expression for the front speed [174]

v =
∆V∫
dz(∂zu)2

. (5.20)

From the above formula, one can conclude that the front speed is proportional to the

energy difference. However, the above expression is not a explicit formula for the front

speed, since the profile of u(z) depends on v. Note that the above result is valid for

any variational system of the form (5.13).

Front propagation close to Maxwell’s point

Let us consider η = 0, Maxwell’s point, the bistable model (5.16) has a motionless front

solution of the form

u(x, t) =
√
ε tanh

(√
ε(x− x0)

2

)
, (5.21)

where x0 stands for the front position. Considered the term proportional to η as a

perturbative one, we can consider the following ansatz

u(x, t) =
√
ε tanh

(√
ε(x− x0(t))

2

)
+ w(x, x0), (5.22)

where the front position is promoted to a temporal function and w is a small correction

function. We assume that the temporal variation of front position and w are the orden
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of perturbation (ẋ0 ∼ w ∼ η). Introducing the above ansatz in Eq. (5.16), linearizing in

w, and after straightforward calculations we obtain the following solvability condition

ẋ0 =
η
∫
dz∂zu∫

dz(∂zu)2
=

3
√

2

2ε
η. (5.23)

Then the front speed is proportional to η.

5.3 Front propagation at the Freedericksz transition

As we have already mentioned in Chapter 5.1.2, the liquid crystals are characterized by

having a locally orientational order. This soft material must be sustained in a container.

The container walls interact with the liquid crystal molecules in the walls inducing

certain orientations. If molecules are oriented parallel or orthogonal to the walls is

referred to as planar or homeotropic anchoring [43, ?]. Figure 5.8 shows a nematic

liquid crystal sample with planar anchoring. As a result of anchoring all molecules

are oriented in the same direction, because anchoring molecules apply a torque over

the other molecules. Through the application of an external field one can induce an

extra torque [43, ?]. In particular, if the molecules have positive dielectric constant,

the application of a voltage orthogonal to the walls can induce a torque such that

molecules like to be parallel to electric field. Competition between the torque induced

by the anchored molecules (elasticity) and the torque induced by the external field can

induce an instability for the molecular orientational order. This instability is well-know

as the Freedericksz transition [43, ?]. Indeed, there is a critical value of the intensity of

the electric field, | ~Ec|, for which the molecules stars to rotate. Figure 5.8 depicts the

the Freedericksz transition.

Experimental observations of Freedericksz transition to nematic liquid crystal samples

show that this instability is supercritical [?]. To describe the dynamics of a nematic

liquid crystal thin film must be introduced as order parameter average angle molecules

θ(r⊥, t) in the thickness direction. In the inset of Fig. 5.8 this angle is illustrated. Based

on the theory of bifurcations close to the Freedericksz transition, we can introduce the
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Figure 5.8: Schematic representation of the Freedericksz transition for a nematic liquid crystal with

planar anchoring.

following model describing this transition

θ̇ = α(| ~E|2 −K3)θ − βθ3 + κ∇2
⊥θ, (5.24)

where {α, β} are adequate dimensional parameters, κ accounts for diffusion length,

and ∇2
⊥ accounts for the Laplacian in transversal coordinates. Below the transition

point (| ~E|2 < K3)), the only stable equilibrium corresponds to the molecules parallel

to the walls, θ = 0. Above the transition point (| ~E|2 ≥ K3), the system exhibits two

homogeneous configurations as equilibrium, θ = ±
√
| ~E|2 −K3 . Energetically these

two configurations are equivalent. That is, this transition corresponds to a spontaneous

breaking of the reflection symmetry. For an arbitrary initial condition this system

exhibits different domains separated by defects. This front solution are denominated

Ising wall because connect symmetric states. Moreover, this solution due to connect

energetically equivalent states are denominated kink solutions [157, 200]. Figure 5.9

shows the interface dynamics close to Fréedericksz transition. To understand the rich

dynamics of Ising walls, in the next section we will study the interaction of walls.



136CHAPTER 5. STRUCTURES LOCATED BETWEEN HOMOGENEOUS STATES

t1 t2

Figure 5.9: Domain walls above the Fréedericksz transition for successive instant (t1 > t2), courtesy

LAFER.

5.4 Kink interaction

To figure out the rich dynamics of interface between Ising nematic wall. Let us

consider the kink dynamics in one-dimension described by

∂tu = εu− u3 + ∂xxu, (5.25)

where u(x, t) ≡
√
βθ(x, t) and x = r⊥/

√
κ are the normalized order parameter and

spatial coordinate. ε ≡ α(| ~E|2−K3) is the bifurcation parameter. As we have mention

this model has kink and anti-kink solutions (cf. formula 5.21). In the next session,

based on the pioneering work of Kawasaki and Ohta [120], we will characterize the

kinks interaction.

5.4.1 Kinematic law of a pair kinks

Let {u−, u+} kink and anti-kink solutions of model Eq. (5.25), respectively. The kink

solutions are characterized by a continuos parameter the kink position2 and fixed pa-

rameter the front width. Note that the translation invariance generates a Lie group
2This position corresponds to the spatial location of the front that presents maximum spatial

variation. In the particular case of kink solutions of Eq. (5.25), this position corresponds to the root

of the kink.
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Figure 5.10: Schematic representation of kink solutions. a) Kink solution obtained from numerical

solutions of Eq. (5.25). x− and l stand for the kink position and width. b) kink and anti-kink

solution, {x−, x+} are the kink positions and ∆ is the distance between kinks.

with respect to the translation parameter [178]. Figure 5.10a displays the front position

and width. Consider a pair of kinks sufficiently separated as shown in Figure 5.10b. To

describe this solution we consider the ansatz

u(x, t) = uk[x− x−(t)] + uAk[x− x+(t)]−
√
ε+ w(x, x−, x+), (5.26)

where {x−, x+} are the kink positions that are promoted temporal function and w is a

small correction function. The third term of the above expression is necessary for that

the kink-antikink solution in infinite tends to −
√
ε. Introducing the above ansatz in

Eq. (5.25), and linearized in w after straightforward calculations we obtain

∂tu = −ẋ−∂zuk(z ≡ x− x−)− ẋ+∂zuAk(z ≡ x− x+)

=
(
ε− (uk + uAk −

√
ε)2 + ∂xx

)
w + ε(uk + uAk −

√
ε)

− (uk + uAk −
√
ε)3 + ∂xxuk + ∂xxuAk, (5.27)

rewriting the above expression using the fact that εuk − u3
k + ∂xxuk = 0 and εuAk −

u3
Ak + ∂xxuAk = 0, one obtains

Lw ≡ −
(
ε− 3(uk + uAk −

√
ε)2 + ∂xx

)
w = ẋ−∂zuk + ẋ+∂zuAk

− 3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε). (5.28)

To solve the above linear equation, we must to introduce the inner product

〈f |g〉 =

∫ ∞
−∞

f(x)g(x)dx, (5.29)
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Figure 5.11: Effective bistable potential of kink interaction. ∆ accounts for the distance between the

minima. Insets account for the fundamental and first excited states.

then L is a self adjoint operator, L† = − (ε− 3(uk + uAk −
√
ε)2 + ∂xx). Notice that

this operator is Hamiltonian type, i.e., L† = −∂xx + V (x), where the associated poten-

tial is defined by V (x) ≡ −ε + 3 [uk(x) + uAk(x)−
√
ε]

2, which corresponds a bistable

potential. Figure 5.11 shows the bistable potential of the kink interaction. This poten-

tial has a fundamental mode related to translations of the kinks. In the case that the

distance between the kinks is large enough (∆�
√
ε), the fundamental mode as results

of translation invariance can be approach by

|χT 〉 = ∂xuk + ∂xuAk +O(e−
√

2ε∆), (5.30)

This mode is an element of kernel of L†, i.e. L†|χT 〉 = 0. Moreover, L† [∂xuk + ∂xuAk] =

O(e−
√

2ε∆). Another important mode is the first excited state |χI〉, which is this related

to the mode of interaction of kinks. This mode can be write

|χI〉 = ∂xuk − ∂xuAk +O(e−
√

2ε∆), (5.31)

Note that

L†|χI〉 = O(e−
√

2ε∆). (5.32)

Therefore, for long separated kinks, ∆�
√
ε, the functions {∂xuk+∂xuAk, ∂xuk−∂xuAk}

are pseudo eigenfunctions of L†, that is, these eigenfunctions have eigenvalues with

exponential small values. In a similar manner of two-body problem, we introduce a
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change of variables to the central position δ(t)3 and the distance between kinks ∆(t).

Introducing the change of variable

δ(t) ≡ x−(t) + x+(t)

2
,

∆(t) ≡ x−(t)− x+(t). (5.33)

Analogously one obtains

x−(t) = δ − ∆

2
,

x+(t) = δ +
∆

2
. (5.34)

Introducing this change of variable in Eq. (5.28), this reads

Lw = δ̇ (∂zuk + ∂zuAk)− ∆̇ (∂zuk − ∂zuAk)

− 3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε). (5.35)

To solve the above linear equation we must to impose the solvability condition, that

is, the right hand side of above equation is orthogonal to the pseudo eigenfunctions

{|χT 〉, |χI〉}. Imposing the solvability conditions with respect to translation mode, we

obtain

δ̇〈χT | (∂zuk + ∂zuAk)〉 = 〈χT |3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉.

(5.36)

The above equations can rewrite

δ̇||χT ||2 = 〈∂zuk|3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉

+ 〈∂zuAk|3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉. (5.37)

By symmetry arguments

3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε) =

3u2
Ak(uk −

√
ε)− 3uAk(uk −

√
ε)2 + 3uk

√
ε(uk −

√
ε). (5.38)

3Which corresponds to the equivalent mass center.



140CHAPTER 5. STRUCTURES LOCATED BETWEEN HOMOGENEOUS STATES

a)                                        b)

Figure 5.12: Kink solution. a) Spatial variation of the kink solution, ∂xuk. b) Asymptotic behavior of

uAk −
√
ε around kink position.

Hence, the dynamic of central position is

δ̇||χT ||2 = 〈∂zuk|3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉

+ 〈∂zuAk|3u2
Ak(uk −

√
ε)− 3uAk(uk −

√
ε)2 + 3uk

√
ε(uk −

√
ε)〉. (5.39)

The spatial variation of the kink solution uk is characterized by being centered in the

kink position, i.e. it is exponentially small almost everywhere except in the region close

to the kink core. Figura 5.12 shows the function ∂xuk. Then the first term on the right

side is an integral to be evaluated around x−. The anti-kink solution around x− minus
√
ε when both kinks are enough separated has the form(

uAk(x→ −∞)−
√
ε
)
−→ −2

√
εe−2
√
ε/2(x−δ−∆/2). (5.40)

This function around the kink position decays exponentially and uAk ≈
√
ε−2e−2

√
ε/2(x−δ−∆/2).

Thus, the first term on the right side can be approximate by

〈∂zuk|u2
k(uAk −

√
ε)− uk(uAk −

√
ε)2 + uAk

√
ε(uAk −

√
ε)〉 ≈ 〈∂zuk|uAk

√
ε(uAk −

√
ε)〉.

(5.41)

This last integral can be approximate

〈∂zuk|uAk
√
ε(uAk−

√
ε)〉 ≈ −2ε

∫ ∞
−∞

dx∂zuk

(
x− δ +

∆

2

)
e−2
√
ε/2(x−δ−∆/2)H

(
−x+ δ +

∆

2

)
,

(5.42)

where H(x) is the Heaviside step function [23]. The introduction of the H function is

to describe adequately the behavior of the function uAk(x)−
√
ε in infinite. Changing
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Figure 5.13: Kink interaction. a) Spatiotemporal evolution of a kinks pair. b) Numerical comparison

of the kink interaction and numerical simulation. Points are obtained numerically by considering

two close kink and anti-kink solution, then numerically the system evolves during a brief moment of

time, and finally the temporal variation of the kink position is calculated, where curves are defined by

f(∆) ≡ 〈χI |3u2k(uAk −
√
ε) + 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉, f1(∆) ≡ 〈χI |3uAk

√
ε(uAk −

√
ε)〉,

f2(∆) ≡ 〈χI |3u2k(uAk −
√
ε)〉, f3(∆) ≡ 〈χI |3uk(uAk −

√
ε)2〉 [69].

the variable of integration z = x− δ + ∆/2, this integral reads

〈∂zuk|uAk
√
ε(uAk −

√
ε)〉 ≈ −a

2
e−2
√
ε/2∆, (5.43)

where a ≡ 4ε
∫
∂zuk(z)e−

√
εzH(−z + ∆). Hence, one obtains

〈∂zuk|u2
k(uAk −

√
ε)− uk(uAk −

√
ε)2 + uAk

√
ε(uAk −

√
ε)〉 ≈ −a

2
e−2
√
ε/2∆. (5.44)

Analogously to previous analysis for the second term on the right side of Eq. (5.39),

one can perform the same type of approach4 and gets

〈∂zuAk|3u2
Ak(uk −

√
ε)− 3uAk(uk −

√
ε)2 + 3uk

√
ε(uk −

√
ε)〉 ≈ a

2
e−2
√
ε/2∆. (5.45)

Therefore, the dynamics of the central positions of the kinks is δ̇ = 0. From this result

we can infer that the kinks dynamics can be characterized by either attract or repel the

kinks symmetrically. The above dynamic one also can be understood as a consequence

of the reflection invariance of Eq. (5.25)

4The difference that the spatial variation of the anti-kink compared with the kink is the opposite

sign
∫
∂zuk(z) = −

∫
∂zuAk(z).



142CHAPTER 5. STRUCTURES LOCATED BETWEEN HOMOGENEOUS STATES

Imposing the solvability conditions with respect to interaction mode |χI〉, after straight-

forward calculation we obtain

∆̇||χI ||2 = 〈∂zuk|3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉

− 〈∂zuAk|3u2
Ak(uk −

√
ε)− 3uAk(uk −

√
ε)2 + 3uk

√
ε(uk −

√
ε)〉. (5.46)

Using the results obtained in formulas (5.44,5.45), the dynamics for the distance be-

tween kinks ∆ satisfies (The kinematic law of kinks) [120]

∆̇ ≈ −be−
√

2ε∆, (5.47)

with b ≡ a/||χI ||2 = 3a/2ε3/2 > 0. Therefore, the kink interaction is characterized

by being attractive and decreased exponentially with the distance between kinks. The

system then seeks to find its overall energy minimum through the kink attract and

reach the homogeneous state. Figure 5.13 shows the spatiotemporal evolution of a kinks

pair and also the comparison of the different terms of the interaction with numerical

simulations. These results show an appropriate agreement even for distances of the

order of the kink core, where the other terms of the interaction have been take into

account [69].

5.4.2 Interaction of a gas of kinks: coarsegraning

Numerical simulations of model Eq. (5.25) with noise before the transition exhibit

fluctuations around the zero equilibrium. Crossing transition, the system presents the

emergence of diverse walls. These domains are separated by several kinks that are

interacting. Figure 5.14 illustrates the previous process. To account for these wall

domains, we consider the following ansatz (multiple kinks solutions)

u(x, t) ≈
∑
n

(−1)nuk(x− xn(t))−
√
ε, (5.48)

where xn stands for the position n-kink. Using the pair interaction law, Eq. (5.47),

between the kinks, we obtains (n-kink interaction law) [120]

ẋn = b
∑
i<n

(−1)ie−2
√
ε/2|xn−xi| − b

∑
i>n

(−1)ie−2
√
ε/2|xi−xn|. (5.49)
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Figure 5.14: Spatiotemporal evolution of emergence of domains walls. Numerical simulation of model

Eq. (5.25) with noise before and after transition. xi accounts for the kink position.

Due to the n-kink interaction decays exponentially, we can approximate it by the in-

teraction of first neighbors, that is,

ẋn ≈ −be−2
√
ε/2(xn+1−xn) + be−2

√
ε/2(xn−xn−1). (5.50)

Then the closest kinks attract the central kink with the aim of annihilating it. It is

important to note that this type of force between kinks is weak and short-range, which

makes it difficult to verify this type of interaction numerically.

An unexpected property of the interaction of a gas of kinks is that it is self-similar,

that is, the interaction is simultaneously invariant to temporal and coordinate trans-

formations [184, 30]. As a result of this type of symmetry one expects to find laws for

the dynamics. A classic example of self-similarity is the Newton interaction that cause

the Kepler’s third law [184, 30]. Considering the transformation

(xn+1 − xn) → (xn+1 − xn + λ),

t → te
√

2ελ, (5.51)

that corresponds to a temporal and spatial dilatation, the kink interaction Eq. (5.50) is

invariant. This means that if one separates the distance between kinks in a λ distance

is equivalent to delay time by a fact e2
√
ε/2λ.
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Figure 5.15: Kink dynamics in inhomogeneous electro-convection experiment. In top left panel is

schematic repersented the setup, in top right panel panel is depicted the interface between two con-

vection rolls, in bottom left panel is illustrated a sequence of temporal snapshot of the interface and

in bottom right panel the temporal evolution of average length between kinks [147].

A macroscopic parameter characterizing the dynamics of kinks is the average distance

between kinks 〈l〉, defined by

〈l(t)〉 ≡
∑
i

xi+1(t)− xi(t)
N(t)

=
L

N(t)
, (5.52)

where N(t) the number of kinks at time t. Indeed, this quantitive characterizes the

number of kink inside the system. Since the kink interaction controls the dynamics of

these defects, the above expression also must be controlled by this interaction. Thus,

this also should be self-similar, i.e.

〈l + λ〉 = 〈l(te
√

2ελ)〉,

〈l + λ〉 = 〈l(t)〉+ λ (5.53)

then

〈l(te
√

2ελ)〉 = 〈l(t)〉+ λ. (5.54)
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The only function that satisfies the above property is

〈l(t)〉 =
1√
2ε

ln(t). (5.55)

Therefore, one can infer that the number of kink decrease logarithmic in time, N(t) =
√

2ε/ ln(t). That is, from interaction laws of defects one can deduce macroscopic laws.

This type of behavior is usually denominated as coarsening dynamics [176]. Figure 5.15

shows a set up of inhomogeneous electro-convection, which has interface between two

convection rolls [147, 148]. This interface due to the anisotropic elastic constant is

unstable generating a complex dynamic of kinks as illustrated in Fig. 5.15. A kink

separates two regions with opposite slope. Experimentally it was studied the average

distance of kinks as a function of time and found that satisfies a logarithmic law [147].

This confirms the results presented above.

5.4.3 Effect of discretization kink interaction

Numerical simulations of model Eq. (5.25) from an initial uniform solution u = 0

with noise and positive ε is characterized by the appearance of several domains (cf. Fig.

5.14). The interaction between nearest walls is characterized by annihilating, kinks

interaction; however for sufficiently large time, the system is frozen. That is, domains

are no longer changed in the course of time. This phenomenon can be understood by

the combination of two factors: firstly the kink interaction which is very weak and on

the other hand the discreteness of the system under simulation. A discrete system can

be described by an effective continuos equation of the [59]

∂tu = εu− u3 + ∂xxu+ Γdx(x)∂xxu+ Γ′dx(x)∂xu, (5.56)

where Γdx(x) is a small spatial periodic function with dx period, Γdx(x+ dx) = Γdx(x),

and Γ′dx accounts for derivative of Γdx. This function accounts for the discreteness of the

system. The presence of periodic forcing modified the front dynamics by a periodic force

(Peierls- Nabarro force). Similarly, the kinematic law of kink Eq. (5.47), is modified by
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Δ
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Figure 5.16: Kink interaction formula (5.57). the inset account for different localized states.

the presence of a periodic force, then this reads

∆̇ ≈ −be−
√

2ε∆ + γdx(∆), (5.57)

where γdx(∆) is a periodic function, γdx(∆ + dx) = γdx(∆). Figure 5.16 depicts the

typical kink force. For large enough distance between kinks (∆�
√
ε), the system has

several equilibrium positions as a result of discreteness, i.e., the interaction is completely

neglected. These positions correspond to the kink takes a symmetrical distribution of

the points that form it. Decreasing the distance between the kinks, the interaction

between kinks becomes more relevant. The system exhibits a family of localized states

with different widths. The localized structures width is of order of multiple of dx.

It is important to note that these localized solutions are not solutions of Eq. (5.25),

but are solutions of corresponding discrete model of Eq. (5.25)5 or effective Eq. (5.56).

Therefore from the discreteness, we have visualized the possibility of localized states.
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Figure 5.17: Schematic representation of heteroclinic curves for a spatial dynamical system of different

dimensions. Top panels show the heteroclinic curves in their respective phase portrait. Bottom panels

display the respective profile of theirs respective heteroclinic curves.

5.5 Localized states as result of kink interaction

During the last years, emerging macroscopic particle-type solutions or localized states

or localized structure in macroscopic extended dissipative systems have been observed

in different fields, such as: domains in magnetic materials, chiral bubbles in liquid

crystals, current filaments in gas discharge, spots in chemical reactions, localized states

in fluid surface waves, oscillons in granular media, isolated states in thermal convection,

solitary waves in nonlinear optics, among others [82, 175, 2]. Hence, one can infer

the universality of the localized states dynamics. Although these states are spatially

extended, they exhibit properties typically associated with particles. Consequently

one can characterized them with a family of continuous parameters such as position,

amplitude and width. This is exactly the type of description used in more fundamental

physical theories like Quantum Mechanics and Particle Physics. However, localized

5which is using for the numerical analysis.
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a)                                            b)                                                c)

Figure 5.18: Kink solutions with damping spatial oscillations. a) fluidized granular media [154, 155],

b) vertically driven chain of pendula [48, 56], and c) forcing magnetic wire with easy plane [52].

states emerging in extended dissipative systems are characterized by being made of a

large number of atoms or molecules (of the order of Avogadro’s number) that behave

coherently.

In this section, we want to respond to the possibility of localized structure as a result

of the kinks interaction. As we have seen in previous sections of kink interaction is

determined by their asymptotic behavior. From the point of view of geometry in phase

space, Kinks correspond to heteroclinic solutions. The heteroclinic curves are trajecto-

ries in phase portrait that connect hyperbolic points. In spatial dynamical systems of

two-dimension, the homoclinic curves do not exhibit spatial oscillations (cf. Fig. 5.17a).

This property is a consequence of that two-dimensional dynamic system stable man-

ifolds are one-dimensional. The above scenario changes when the associated spatial

dynamical systems have high dimensions. The hyperbolic points are characterized to

have complex eigenvalues, then the associated manifolds (attractive/repulsive) are char-

acterized to exhibit oscillatory trajectories around the hyperbolic point range. Indeed,

the heteroclinic curves shows spatial damping oscillations as it tends to equilibrium.

Figure 5.17 shows the typical heteroclinic curves. Kinks with spatial damping oscilla-

tion have been observed in several contexts such as driven granular media [154, 155],

population dynamics [48, 56], vertically driven chain of pendula [52], forcing magnetic

wire [52], to mention a few. Figure 5.18 shows kinks solution with damping oscillation
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in several contexts.

5.5.1 Simple model: Turing-Swift-Hohenberg equation

In the previous sections, we have considered a simple model, Eq. (5.25), that displays

spatially monotonic kinks. A natural generation of this equation, based on pioneering

spirit of the work of Alan Turing [78], is considered higher gradients, that is (Turing-

Swift-Hohenberg model)

∂tu = εu− u3 + ν∂xxu− ∂xxxxu, (5.58)

where u = u(x, y, t) is a real scalar field, x and y are spatial coordinates and t is

time. Depending on the context in which this equation has been derived, the physical

meaning of the field variable u(x, y, t) could be the electric field, deviation of molecular

orientations, phytomass density, amplitude of velocity or temperature modes, or chem-

ical concentration. The control or the bifurcation parameter ε measures the input field

amplitude, the aridity parameter, temperature difference or chemical concentration.

The parameter ν stands for the diffusion coefficient, when this parameter is negative

(ν > 0), it induces an anti diffusion process. Thus the first two terms on the right hand

side of Eq. (5.72) account for homogeneous or local nonlinear dynamics, the third and

fourth term stand for the transport mechanisms or spatial coupling via diffusion and

hyperdiffusion, respectively.

Equation (5.72) is a prototype model which exhibits both localized and extended

patterns. This is an isotropic nonlinear model deduced originally to describe the pattern

formation of Benard convection [192]. Usually this model is denominated as Swift-

Hohenberg. An important property of Eq. (5.72) is that it possess a gradient form,

i.e.
∂u

∂t
= −δF [u, ∂xu, ∂xxu]

δu
, (5.59)

with the functional

F ≡
∫ (
−εu

2

2
+
u4

4
+ ν

(∂xu)2

2
+

(∂xxu)2

2

)
dx. (5.60)
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Note that using the solutions of Eq. (5.72), this functional satisfies

dF

dt
= −

∫
dx (∂tu)2 ≤ 0. (5.61)

Hence, F is a Lyapunov functional that can only decrease in the course of time. This

functional guarantees that time evolution proceeds toward the state for which the func-

tional has the smallest possible value which is compatible with the systems boundary

conditions. Any initial distribution u(x, t) evolves towards a homogeneous or inho-

mogeneous (periodic or localized) stationary state corresponding to a local or global

minimum of F . The analysis of the functional F is provided in Ref. [201]. In the

bistability region (ε > 0), as result of hyperdiffusion the kink solutions exhibit spatial

damping oscillations (cf. Fig. 5.17b).

Kink interaction with damping oscillations

Analogously to section 5.4.1, to study the kink interaction we can consider the following

solutions

u(x, t) = uk[x− x−(t)] + uAk[x− x+(t)]−
√
ε+ w(x, x−, x+), (5.62)

where {x−, x+} are the kink positions that are promoted temporal function and w is a

small correction function. The third term of the above expression is necessary for that

the kink-antikink solution in infinite tends to −
√
ε. The above solution is represented

in Fig. 5.19. The analytical expression of the kink solution is unknown, nevertheless, its

asymptotic behavior is simple to characterize by linear analysis around the equilibria.

Thus,

uk(x→ ±∞)→ ±
√
ε
(
1− 2γe∓αx cos(βx+ δ0)

)
, (5.63)

where {α, β} correspond to the real and imaginary part of eigenvalue that characterize

the manifold around the equilibria ±
√
ε.

Introducing the above ansatz in Eq. (5.72), and linearized in w after straightforward

calculations we obtain
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Figure 5.19: Schematic representation of a pair of kink solutions of model Eq. (??). ∆ is the distance

between kinks.

Lw ≡ −
(
ε− 3(uk + uAk −

√
ε)2 + ν∂xx − ∂xxxx

)
w = ẋ−∂zuk + ẋ+∂zuAk

− 3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε). (5.64)

Considering the canonical inner product

〈f |g〉 =

∫ ∞
−∞

f(x)g(x)dx, (5.65)

then L is a self adjoint operator. Similarly, to what shown in Sec. 5.4.1, the linear

operator L has two pseudo-eigenfunctions related to translation (|χT 〉) and interaction

(|χI〉) mode, which have the form

|χT 〉 = ∂xuk + ∂xuAk +O(e−
√
α∆),

|χI〉 = ∂xuk − ∂xuAk +O(e−
√
α∆). (5.66)

Introducing the central position δ(t) = (x−(t) + x+(t))/2 and the distance between

kinks ∆(t) = x−(t)− x+(t), the linear Eq. (5.64) reads

Lw = δ̇ (∂zuk + ∂zuAk)− ∆̇ (∂zuk − ∂zuAk)

− 3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε). (5.67)

Imposing the solvability condition, one gets

δ̇||χT ||2 = 〈∂zuk|3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉

+ 〈∂zuAk|3u2
Ak(uk −

√
ε)− 3uAk(uk −

√
ε)2 + 3uk

√
ε(uk −

√
ε)〉,

∆̇||χI ||2 = 〈∂zuk|3u2
k(uAk −

√
ε)− 3uk(uAk −

√
ε)2 + 3uAk

√
ε(uAk −

√
ε)〉

− 〈∂zuAk|3u2
Ak(uk −

√
ε)− 3uAk(uk −

√
ε)2 + 3uk

√
ε(uk −

√
ε)〉. (5.68)
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Figure 5.20: Schematic representation of the kink interaction. a) Interaction law, ∆ accounts for the

localized structure width. Lsi stands for the i-localized structure. The insets account for the different

localized structures. b) Potential of the interaction.

Using the asymptotic behaviors of kink and anti-kink solutions, symmetry arguments,

and similar arguments using in Sec. 5.4.1, after straightforward calculations we obtain

δ̇ = 0,

∆̇ = −b1e
−α∆ cos(β∆ + δ1), (5.69)

where {b1, δ1} are parameters determined numerically. The first equation tells us that

the center position is not changed by the displacement of the kinks. The second equation

tells us that the kink interaction alternates between being attractive and positive, and

its intensity decays exponentially with the kink distance. Hence, the system exhibits a

family of localized states with different widths, which are of the order of a multiple of

the wavelength of the kink spatial oscillation [70, 73]. Figure 5.20 shows the profile of

the kink interaction and depicts the smallest localized structures. Notice that the kink

interaction is a variational dynamics, i.e.

∆̇ = −∂U
∂∆

, (5.70)

where the potential

U(∆) = −b1
e−α∆

β2 + α2
(α cos(β∆ + δ1)− β sin(β∆ + δ1)) . (5.71)
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From this potential, we can conclude that the smaller is the localized structure are more

stable. Likewise, the respective basins of attraction are bigger for smaller localized

structures. Hence, in present of noise the smaller states are more stable.

5.5.2 Localized structures as result front interaction

A natural generalization of of Turing-Swift-Hohenberg Eq. (5.72) is consider a constant

term in the dynamics, that is

∂tu = η + εu− u3 + ν∂xxu− ∂xxxxu, (5.72)

where η parameter breaks the reflection symmetry u → −u, thus it accounts for the

asymmetry between homogeneous states. This parameter becomes the pitchfork bifur-

cation in an imperfect one. This model was initially proposed to describe the dynamics

of the envelope electric field inside a nonlinear cavity, which is forced with an exter-

nal electric field at its resonant frequency [197, 142]. As we have shown in Sec. 5.2,

this extra parameter is responsible of front propagation between the asymmetric states.

That is, this term is responsible for a drift dynamic of fronts. In order to analyze how

this term affects the kink dynamics, we consider that this term as perturbative one. It

is a fact of matter that we can perform an analogous analysis to the previous section

incorporated the effect η (cf. Sec. 5.2) the front dynamics reads

δ̇ = 0,

∆̇ = −b1e
−α∆ cos(β∆ + δ1) +

3
√

2

ε
η. (5.73)

Then the last term of the equation of interaction can be interpreted as a constant force

on the dynamics of fronts. The presence of this extra force modified the size of localized

structures.



154CHAPTER 5. STRUCTURES LOCATED BETWEEN HOMOGENEOUS STATES

Figure 5.21: Schematic representation of the front interaction. ∆ accounts for the localized structure

width. Lsi stands for the i-localized structure. The insets account for the different localized structures.

5.5.3 Amplitiude approach to localized patterns and hole state

Let us consider a prototype model that exhibits localized patterns and hole solutions

in one-dimensional extended system, the subcritical Swift-Hohenberg equation [182]:

∂tu = εu+ νu3 − u5 − (∂xx + q2)2u, (5.74)

where u (x, t) is an order parameter, ε− q4 is the bifurcation parameter, q is the wave-

number of periodic spatial solutions, and ν is the control parameter of the type of

bifurcation, supercritical (ν < 0) or subcritical (ν > 0). This model describes the

confluence of a stationary and an spatial subcritical bifurcation, when the parameters

scale as u ∼ ε1/4, ν ∼ ε1/2, q ∼ ε1/4, ∂t ∼ ε and ∂x ∼ ε1/4 (ε � 1). Figure 5.22

shows typical localized patterns, hole solutions, and motionless front solutions obtained

from this model. For small and negative ν, and 9ν2/40 < ε < 0, the system exhibits

coexistence between a stable homogenous state u(x) = 0 and a periodic spatial one

u(x) =
√
ν

(√
2(1 +

√
1 + 40ε/9ν2) cos (qx)

)
+ o(ν5/2). (5.75)
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Figure 5.22: Particle type solutions appear in the subcritical Swift-Hohenberg equation (5.74). The

parameters have been chosen as ε = −0.16, ν = 1.00, and q = 0.70. (a) Localized pattern, (b) shortest

localized pattern, (c) hole solution, and (d) front solution.

In this parameter region, one finds a front between these two stable states (cf. Fig. 5.22).

In order to describe the front, localized patterns and hole solutions, we introduce the

ansatz

u =

√
2ν

10
ε1/4

{
A

(
y =

3
√
|ε|

2
√

10q
x, τ =

9ν2 |ε|
10

t

)
+ w1 (x, y, τ)

}
eiqx + c.c, (5.76)

where A(y, τ) is the envelope of the front solution, w1 (x, y, τ) is a small correction

function of order ε, and {y, τ} are slow variables. Note that in this ansatz we consider

that q is order one, or larger that the other parameters. Introducing the above ansatz

in Eq. (5.74) and linearizing in w1, we find the following solvability condition

∂τA = εA+ |A|2A− |A|4A+ ∂yyA+

(
A3

9ν
− A3 |A|2

2

)
e

2iqy

a
√
|ε| − A5

10
e

4iqy

a
√
|ε| , (5.77)

where ε ≡ 10ε/9ν2, and a ≡ 3ν/2
√

10q . The terms proportional to the exponential are

non-resonant, that is, one can eliminate these terms by an asymptotic change of vari-

ables. Furthermore, they have rapidly varying oscillations in the limit ε → 0. Hence,

one usually neglects these terms (non-resonante terms). Non-resonant terms have been

fundamental to explain the existence of localized patterns [47], pinning phenomena of
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fronts [46, 22], and localized states in bistable pattern forming systems [31]. Note that,

the above envelope equation is a universal model, close to a spatial bifurcation, of a sys-

tem that exhibits coexistence between an homogeneous state and spatially periodic one.

In general, one can use an ansatz similar to (5.76) and noticing that the envelope satis-

fies independently the symmetries
{
x→ −x, A→ Ā

}
, and {x→ x+ xo, A→ Aeiqxo}

one derives equation (5.77).

When one considers only the resonant terms, that is, when all spatial forcing terms

are neglected. It is straightforward to show that the system has a front solution be-

tween two homogeneous states, 0 and
√(

1 +
√

1 + 4ε
)
/2, when −1/4 < ε < 0. This

front propagates from the global stable (global minimum) to the metastable one (local

minimum). At the Maxwell point, where the equilibrium states have the same energy,

the front is motionless. This point is reached at εM = −3/16, where the front solution

has the form

a±(y) =

√
3/4

1 + e±
√

3/4(y−yo)
eiθ,

where yo is the front’s core position, and θ is an arbitrary phase.

To describe a localized pattern exhibited by (5.74) as the interaction of two fronts, we

must then consider the non-resonant terms in the envelope equation (5.77). We consider

all these terms as perturbations because they have rapidly varying oscillations. Close

to the Maxwell point, we use the ansatz

ALP (y, τ) =

[
a−(y − y1(τ)) + a+(y − y2(τ))−

√
3

4
+ ρ (y1, y2, y, τ)

]
eiθ(y1,y2,y,τ),

where {ρ, θ} are small correction functions, which are of order δε ≡ (ε − εM) and

y2 > y1. Introducing the above ansatz in equation (5.77), linearizing in {ρ, θ} and

after straightforward calculations, we obtain the following solvability condition for the

distance between the fronts

d∆

dτ
= f (∆) ≡ −α∆ exp(−

√
3

4
∆) + β cos(2q∆/

√
ε) + 2δε, (5.78)

where ∆ ≡ y2 − y1, α = 27
√

3/64 and β = 64
√

3q2 exp(−q4π/
√
ε)/3ε. Figure 5.21

displays the interaction between two fronts. It is important to notice that in one-
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Figure 5.23: Speed of the front and bifurcation diagram of the localized patterns and hole solutions as

a function of the bifurcation parameter. The thick solid line is the front velocity. cai and cdi (hai and

hdi ) represent the bifurcation points where the localized patterns with (hole solutions without) i-bumps

appears and disappear, respectively.

dimensional extended systems with bistable uniform states, the dependence of the front

interaction on the front distance (∆) is purely exponential. In the present case, the

linear and periodic dependence on ∆ is a consequence of the interaction (contained

in the non-resonant terms) of the large scale with the small scale of the underlying

spatially periodic solution. The system has several equilibria, f(∆∗) = 0, that are

stable if f ′ (∆∗) < 0. Thus, the existence and stability of localized patterns is given

by the oscillatory nature of the front interaction. As it is illustrated in Fig. 5.21, each

region of attractive and repulsive interaction is separated by localized patterns. It is

important to notice also that the larger equilibrium (∆∗) represent localized patterns

with a larger number of bumps.

To understand the bifurcation diagram of localized patterns, we consider the effect of

changing the bifurcation parameter ε. Modifying ε is equivalent to move the abscissa

on the graph of front interaction (cf. Fig. 5.21). First, we consider the case |δε| > β

and δε < 0; the interaction is always attractive, that is, there is no equilibrium. Hence,
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if one takes into account a front that connects the homogenous state with the spatially

periodic state, then the spatially periodic state invades the homogenous one. Increasing

ε, one finds the first equilibrium point ∆ =∞ for δε = δε− ≡ β and δε < 0. Here, the

system has a motionless front between the spatially periodic state and the homogenous

one. This front remains stationary until |δε| ≤ β, therefore this front is motionless in

a parameter range. This phenomenon is well-known as Locking phenomenon and the

interval |δε| ≤ β is denominated pinning range [174]. For δε > β, the front propagates

from the spatially periodic state to the homogenous one. In Figure 5.23, the thick

solid line is the velocity of front propagation as a function of the bifurcation parameter.

Increasing δε from δε−, we observe that the equilibria, that is, localized patterns, appear

by successive saddle-node bifurcations each time with a length smaller than the previous

one, i.e., the localized patterns appear by pairs, one stable and another unstable, and

each time with a smaller number of bumps. This sequence of bifurcations is illustrated

in Fig. 5.23 by the points cai . For δε small, and close to the Maxwell point, the system

has an infinite number of localized patterns with all the possible number of bumps. The

length of the localized patterns are roughly multiple of that of the shortest localized

state (one bumps). Contrarily, for |δε| > β, the localized patterns disappear by saddle

node bifurcations and increasing δε the larger localized patterns disappear one after the

other. Hence, the shortest localized state is the last to disappear. Figure. 5.23 depicts

the sequence of these bifurcation are represented by the points cdi . The bifurcation

diagram presented above was established by Coullet et al. [72] based on arguments

from the properties of invariant manifolds and chaos theory (cf. left panels of Fig. 5.24).

In parallel, studying the localized structures close to a 1: 1 resonance, Champneys

and Wood [208] established the bifurcation diagram of the localized patterns called

the homoclinic snaking bifurcation diagram. Figure 5.24 illustrates the diagram that

characterizes these solutions.
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Figure 5.24: Homoclinic Snaking bifurcation diagram. The left panels account for invariant manifolds’

geometry near a homoclinic bifurcation?the right-hand panels of the bifurcation diagram exhibited by

the different localized solutions in the Swift-Hohenberg model [208].

5.5.4 Snaking bifurcation diagrams

5.6 Liftshitz normal form: non variational generaliza-

tion of Turing-Swift-Hohenberg Equation

In the previous section, we considered a generalization of the Swift-Hohenberg equation

(5.72) that considers a term that breaks the reflection symmetry of the order parame-

ter. However, the relevant question that one must establish is the general model that

describes the formation of the pattern in one-dimensional systems. As result of the

spatial and temporal scales separation of the microscopic variables, the dynamics of

macroscopic systems is described by a small number of variables (coarse-graining pro-

cess), which generally satisfy non-variational or non-gradient equations [149, ?, 74, ?].

Indeed, the evolution of these dynamic systems is not characterized by the minimization

of a free energy [?, ?]. Then, in this type of system, one expects to observe perma-

nent behavior such as oscillations, chaos, temporal space chaos, and turbulence among

others.

In this framework, walls connecting two equivalent vectorial fields through spontaneous

symmetry breaking can spread according to a given chirality of the vector field [?]. This

mechanism, the non-variational Ising–Bloch transition, is well known [?]. The deeper
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understanding of the front propagation in macroscopic systems out of equilibrium will

open the possibilities for applications in non-equilibrium crystal growth, operation of

non-equilibrium magnetic and optical memories, control of non-equilibrium chemical

reactions, to mention a few.

The aim of this rapid comunication is to show that front solutions in scalar field mod-

els generically propagate based on two mechanism: i) the energy difference between

states, and ii) non-variational effects. Considering a simple non–variational bistable

model, we show analytically and numerically that the front propagation is leaded by

non-variational dynamics. A quasi one–dimensional liquid–crystal light valve (LCLV)

experiment with optical feedback allow us to evidence non-variational front propagation

between different molecular orientations. Free diffraction length allows us to control

the variational or non-variational nature of this optical system. A phenomenological

model for small free diffraction length is derived. Numerical simulations of this model

have quite good agreement with experimental observations.

Simple bistable model.- Let us consider a bistable model

∂tu = η + µu− u3 + ∂xxu+ ε
[
c(∂xu)2 + bu∂xxu

]
,

= −δF
δu

+ εFNV , (5.79)

where the scalar field u(x, t) is an order parameter that accounts for an imperfect

pitchfork bifurcation [?], µ is a bifurcation parameter, η stands for the asymmetry

between the equilibria, ε is an small parameter, ε � 1, that controls non-variational

force FNM ≡ c(∂xu)2 +bu∂xxu, {c, b} account for, respectively, nonlinear convective and

diffusive terms, and the functional

F ≡
∫
dx

[
V (u) +

(∂xu)2

2

]
, (5.80)

Figure 5.25: (color online) Front propagation in the bistable variational model Eq. (5.79) with ε = 0.

The upper panels represent the potential, V (u), for different values of η, (a) η = 0.2, (b) η = 0, and

(c) η = −0.2 with µ = 1.0. The middle and lower panels illustrate the front profile and their respective

spatiotemporal evolution for µ = 1.0, η = 0.3 (d, f), and η = −0.3 (e, g).
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Figure 5.26: (color online) Non-variational front propagation model, Eq. (5.79), at Maxwell’s point

(η = 0, ε = 1, and µ = 1). (a) potential V (u). Front profiles at given instant for positive c = 3 (b),

negative c = −3 (c) and b = 0. Middle panels represents spatiotemporal evolution of front solution

with positive and negative parameter c and b = 0. (f) Front speed as function of parameter c. Points

account for the numerical front speed obtained from Eq. (??) with b = 0, η = 0 and ε = 1, solid

straight line is obtained from analytical formula vNV ≈ (2c− b)εµ
√

2/5, and soft line is obtained using

formula (??) with a numerical front profile uF .

where V (u) ≡ −ηu− µu2/2 + u4/4 is a potential. Notice the above model is invariant

under spatial reflection symmetry (x → −x). Moreover, model (5.79) is variational

when b = 2c.

For ε = 0, the above model (5.79) becomes a variational one. This model has two

stable equilibria for η small and positive µ, u = ±√µ + O(η), represented by {A,B}.

Figure 5.25 depicts the potential V (u) for different values of η. A nontrivial solution of

this variational model is front waves, uF (x − vt) ≈ ±√µ tanh(
√
µ/2(x − vt)) + O(η),

that connects these two equilibria [174]. The middle and lower panels of Fig. 5.25 show

the profile of the front solutions and their respective spatiotemporal evolution. Notice

that fronts propagate at a constant speed. The location and the region of the space

where the front has greater variation is known as front position and core, respectively.

In the pioneering work of Pomeau [174], it is shown that front speed v is (η � 1)

v = vV ≡
V (A)− V (B)∫∞
−∞(∂xuF )2dx

≈ 3
√

2

2µ
η. (5.81)

Hence, the front speed is proportional to the energy difference between equilibria and

the front core shape (denominator). Indeed, the most energetically favorable state

Figure 5.27: (color online) Front propagation model Eq. (5.79) with η = 0.3 and µ = 1. (a) the

potential V (u). (b) Front profiles for zero (dashed line) and positive (solid line) c and b = 0. Right

panels (c,d) represent spatiotemporal evolution of front solution with zero and positive parameter c.

(f) Front speed as function of parameter c. Points account for the numerical front speed and continuos

curve v = vV + vNV .



162CHAPTER 5. STRUCTURES LOCATED BETWEEN HOMOGENEOUS STATES

invades the least favorable one (cf. Fig. 5.79). Likewise, when both states have the

same energy, η = 0, the front is motionless, which corresponds to Maxwell’s point.

Therefore, for variational systems the mechanism of front propagation is the energy

difference between the connected equilibria.

5.7 Alee effect in population dynamics: NagumoModel
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Explicar soluciones localizadas solitarias, modelo biologico local y no local.

modelo Swift-Hohenberg, snaking bifurcation, non-variational dynamcis, aplicacion de

monolayer, Interaction law of 2D localized precession states

estructuras localizadas en sistemas forzados

inetraccion no reciprocas

soluciones topologicas y kinks

estructuras localizadas en sistmas conservativos, Bubbles en CH

Vortex localized state

solitones propagandose en estructura periodica, solitones en sistemas forzados
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