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Theory of non-propagating surface-wave solitons 
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An incompressible inviscid fluid contained in a channel in a gravitational field admits 
soliton-like disturbances where the velocity potential depends upon all three 
coordinates as well as time, yet its centre of mass can be at rest. These solitons were 
recently discovered by Wu, Keolian & Rudnick. The calculations are carried out with 
the multiple-scales approach. Consequences of mass conservation and radiation are 
discussed. 

1. Introduction 
The problem of weakly nonlinear surface waves has been considered extensively 

(see Ablowitz & Segur 1979; Yuen & Lake 1980; and references therein). There the 
approximation of phase and group velocities making a small acute angle is considered, 
and the stability problem as well as the permanent envelope solutions are examined. 

The approximation for which phase and group velocities form a nearly 90' angle 
has not been fully investigated. Recent observations by Wu, Keolian & Rudnick 
(1984) have shown the existence of a localized stationary soliton-like disturbance in 
a channel of finite width b and uniform finite depth. While a finite-amplitude standing 
surface wave exists across the width of the channel, the amplitude of this wave is 
modulated along its length, suggesting then the use of this approximation. 

The qualitative aspects of the problem have been already presented by Larraza 
& Putterman (1984) in terms of the phenomenological dispersive wave equation for 
sound at finite amplitude. Aranha, Yue & Mei (1982), in related work, have considered 
the nonlinear response of cross-waves trapped in front of a wavemaker, as an 
initial-boundary-value problem. They obtained numerical solutions for different 
inputs of the drive, and showed that the asymptotic state is governed by a nonlinear 
Schrodinger equation (NLS). 

In this paper we consider the free oscillations of the surface displacement of a fluid 
of uniform finite depth d in a waveguide of constant cross-section and of infinite 
extent. A standing wave across the width of the channel is modulated along the length 
of the channel. The frequency of standing-wave motion is slightly below cutoff, with 
one velocity antinode. In $2 we formulate the problem, and solve it by using a 
multiple-scales technique. In $3  we find, up to third order in the perturbation 
expansion, that the equation satisfied by the modulation is a NLS equation. For 
nd/b > 1.022 a soliton solution is possible. We then discuss a physical interpretation 
of these standing-wave solitons. Section 4 deals with a discussion of mass conservation. 
Some final remarks are discussed in $5.  Finally, we present in the Appendix an 
alternative derivation of equation (15). 
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2. Formulation of the problem 
Consider the irrotational motion of an incompressible inviscid fluid in a gravitational 

field. The fluid at rest fills a horizontal rectangular waveguide to  a depth d with 
-d  < z < 0, width b with width coordinate y and of infinite extent labelled by length 
coordinate x. Surface-tension effects are neglected. The velocity potential satisfies 
Laplace's equation 

V2$ = 0 for -d < z < <(x,y, t ) ,  (1) 

with boundary conditions 
rj5z = 0, a t  z = - d ,  

&, = 0 a t  y = 0 , b .  (3) 
The free-surface z = C(x, y, t )  kinematic and dynamic boundary conditions are 

If one eliminates the surface displacement 5 in favour of the velocity potential 4, 
one obtains the following equation for 4 valid up to  terms that are cubic in derivatives 
of 4 (Whitham 1976) : 

+O(e4) a t  z = 0. (6) 

Up to terms that are quadratic in gradients of 4, we find from (5)  

1 1  
(7) SY = -4t+z{G(4t):-(v4)q a t  z = 0. 

In  Whitham's paper there are some misprints, which we have corrected in 
writing (6). 

We are investigating the weakly nonlinear problem of a disturbance with a high 
frequency of motion o in the y-direction modulated by an envelope <,(x,t) in the 
x-direction. Accordingly the parameter of smallness 6 is introduced so that 

gmax = € 4 1, @a) 

and we seek solutions where the variations of the physical quantities are determined 
bv 

where 
7t 

w: = gkT,  T = tanh kd,  k = -, b (9) 

Condition ( 8 b )  implies that  the phase and group velocities make a nearly 90" angle. 
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A multiple-scales solution of Laplace's equation satisfying the boundary conditions 
( 2 )  and (3) and the requirements (8) is given by 

cosh k(z  + d )  
= { $ l ( x j  t ,  cash kd cos ky eiWt + C.C. 

cosh 2k(z + d )  
cosh 2kd 

+ ( $ e ) ( x ,  t )  eZiwt + c.c.) + 

+ ---___ elWt [ z  sinh k(z  + d )  - d  e-&(r+d)] + c.c.} { 2k ax2 Gosh kd 

cos 2ky(($,(x,  t )  eZiwt + c.c.) + q5p)(x, t ) ]  

1 a y l  cosky . 

+ $Jx + i(z + d ) ,  t )  + $o(x - i( z + d ) ,  t )  + O(e4), (10) 
where C.C. denotes complex conjugate. 

of the same cos (mky) exp (niwt) dependence. 
The method of solution is to  substitute (10) into ( 6 )  and equate to zero coefficients 

3. Solution 

the dispersion relation o: = kgT. 

Thus at the linear level the system is at cutoff and the group velocity is identically 
zero. This result justifies our selection for the time-scale ( 8 d ) .  

To the next order, equating second harmonics with the proper y-dependence, one 

To the lowest order the frequency is uniquely determined by the value of k through 

( 1 1 )  

finds 

or 
(w2(2k) -4407 42 = $iok2q5:( 1 - T2) 

$y = 0. (14) 
where w2(2k) = 2kg tanh 2kd. 
Equation (12 )  shows that the dispersion of the medium is O( 1). If the dispersion was 
O ( E )  a resonant excitation of the second harmonic would have appeared, thus 
invalidating the expansion (10) (Larraza & Putterman 1984). I n  (12b)  we have made 
use of the results of linear theory. 

I n  a similar way, the third order gives the secular condition for the first harmonics: 

where 

c2 = - P [ T + k d ( l - P ) ] ,  2k ( 1 6 a )  

A = gk4(6T4-5T2+ 16-9T-'). (16b)  
If A > 0, which means kd > 1.022, (15) possesses a soliton solution of the form 
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FIGURE 1. Perspective view of the solitary-wave solution (17) substituted in 
the equation (19) for the surface displacement. 

valid in the static limit. The solution (17) has been restricted by the requirements 
that  the frequency of motion in the small-amplitude region be given by o. In this 
way we fix the phase of the standing wave across the channel. The solution (17)  as 
i t  stands has the interesting feature that the amplitude and width of the modulation 
are determined by the depth of still water and the frequency of oscillation of the 
excitation. The upper limit of the latter is given by ol, and the lower limit is given 
by the depressed amplitude-dependent cutoff (for A > 0) or 

W t - A  1g112 < w2 < (3,". (18) 

This amplitude-dependent cutoff is the mechanism responsible for the self-trapping 
of the soliton. Irrespective of the character of A ,  either being positive or negative, 
there is a depression of the height in the region where the sideband perturbation exists. 
To see this consider the expression for the surface elevation given by (7). Up to second 
order, we obtain 

g g =  (-iw$,eiwtcosky+c.c.) 

The third term in (19) is the y-, t-independent shift in the surface height. According 
to (19), it  is always negative and vanishes in the limit of infinite depth. That the 
mean height is less a t  the region where the soliton sits is not sufficient to explain 
its existence. Instead, we can understand this phenomenon in terms of the amplitude- 
dependent cutoff. 
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4$,, d ,  6) = b1-A l$l12. (20) 

From (15) we see that the nonlinearities modify the cutoff frequency according to 

For A < 0 the ‘restoring force ’ will always be greater in magnitude than for the linear 
case, and the natural frequency of vibration is therefore increased above its linear 
value. For this value a soliton solution does not exist, and a modulation stability will 
be achieved. On the other hand, for A > 0 stiffness is reduced and i t  is possible to 
have a finite disturbance which in the high-amplitude region is above the effective 
cutoff, while in the low-amplitude region it is below cutoff. In  this case the disturbance 
will decay exponentially in the small-amplitude region, thus trapping the energy and 
forming the soliton. In  figure 1 we show a 3-dimensional profile of the soliton by using 
(19) with 4, given by (17) .  

4. Mass conservation 

Tadjbakhsh & Keller (1960) and Miles (1976), i.e. 
There is an apparent disagreement between our value for A and the one given by 

A,  = $4(2T4+3T2+12-9T-2). (21) 
Miles (1984) points out that those calculations were carried out for a closed 

geometry, for which local mass conservation is required. I n  contrast, the soliton can 
form at the expense of removing mass out to  infinity. 

Consider a situation where the channel length L is finite and there exists a localized 
disturbance in a region comparable to  L but sufficiently far from the endwalls so that 
the fluid on either side is a t  rest owing to the quick exponential decay, which drops 
the disturbance to zero. The height of the fluid sufficiently far from the disturbance 
d, now is no longer the static height d but, by mass conservation, 

1 f L  

where 

is the t -  and y-independent shift in height as given by the third term in (19). Thus 
we must interpret ui in the NLS equation (15) as 

w;(d,) = gk tanh kd,  
l L  

2L -L 
= w:(d) + $k4( 1 - T2)2 - 1 I$,l2 dx. (24) 

Substituting (24) int,o (15) yields a NLS equation with A ,  (given by (21)) instead of 
A (16b) in the limit where the static (d,) region is small compared with L provided 
that 1 $ 1 1 2  is sufficiently slowly varying. 

The dynamics whereby certain disturbances are propagated to infinity is higher 
order (O(e4)) and will be described by an equation for q50, the mean flow, which to 
the fourth order has the form 

a 2  a 
a t 2  ax -{$,(x+id. t )  +$,(x-id, t ) }  + ig-{$,(x+id, t )  -$,(x-id, t ) )  = O($t). (25) 

We note that for shallow water, but for kd of order unity, 
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5. Conclusion 
Although the water-wave theory (10) requires use of three spatial coordinates, two 

of which yield fast variation, all of the qualitative results are the same as for the 
acoustic solitons (Larraza & Putterman 1984), which could be described with two 
spatial coordinates. The surface-wave as well as the acoustic models have Korteweg-de 
Vries as well as envelope solitons, which respectively have the forms 

5 = 5(-ut), (27) 

5 = ~(z-u t )exp( i~z- iwt) ,  (28) 

where for the sound field one would replace 5 by the compression. For these solitons 
(27), (28) the group velocity u is given to  lowest order by dw/dK, where w = W(K) 

is the linear dispersion law for the medium in question. For the non-propagating 
solitons, however, the strong crosswise motion involving the y-coordinate leads to 
an effective decoupling of the x-component of the soliton’s group velocity (Larraza 
& Putterman 1984). Thus there exist solutions to (15) of the form 

where u can now be regarded as an additional free parameter. For KdV u is fixed 
by the medium and the amplitude, for the envelope soliton u is fixed by the medium 
and K,  and for the non-propagating solitons u can be regarded as independent of w 
and n/b for a given medium. The lower bound for JuJ is zero. By a given medium 
we mean the depth of fluid in the case of surface waves. 

Finally we remark that a real system has friction, and thus a drive will be required 
in order to  maintain the localized oscillatory state. This is the only purpose of the 
drive. I n  the absence of friction a soliton once created will persist without a drive 
being required. Fluid motions that satisfy the above criteria are elementary 
excitations in the sense proposed by Landau (1947). Thus we conclude that in a fluid 
in an appropriate geometry a t  T = 0 K these solitons are elementary excitations of 
the system. 

We acknowledge valuable discussions with R. Keolian, J. Miles, I .  Rudnick and 
J. Wu. We are grateful to Scott Hannahs for supplying the computer plot of figure 1. 
The work was supported in part by ONR. One of us (A.L.) also acknowledges 
support from CONACYT (Mexico). 

Appendix. Expansion of the displacement 
I n  this Appendix we calculate the nonlinear Schrodinger equation for water waves 

with strong crosswise motion by using the expansion,for both 5 and $. The expansion 
for $ is, as before, given by (10). We remark that there are many possible expansions 
for $ consistent with (1)-(3), and the coefficient of the term in a2$/ax2 in (10) was 
uniquely determined by the requirement that  

a$ lim - < 00. 
h+m 
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The expansion for 5, including the sum and difference frequencies that are generated 
by the nonlinearities, is 

(A 1) 

where 5, is the t -  and y-independent shift in height, which is down by a factor 
of e with respect to 5,. Substituting (A 1) and (10) into (4) and ( 5 )  yields to lowest 
order 

5 = (yl(s, t )  eiWt + c.c.) cos ky + Q ( x ,  t )  + [Q(x,  t )  eziWt + c.c. + ($*)(x, t ) ]  cos 2ky, 

At the next order one finds for the mean and second harmonics 

g@) +$k2 I$J2 (T2 - 1) +$ik T($, X:- 5, $:) = 0, 

2iw5, - k2$, 6, = 2k(tanh 2kh) $2, 

2iw$2+g52+3k$151 T+4k2$:(T2-1) = 0, 

which are clearly consistent with (12)-(14) and (19). 

equation are 
To the next order the terms contributing to the cubic nonlinearity of the NLS 

The term in 5, is a measure of the mass redistribution that can occur for a localized 
disturbance in an infinite fluid. It accounts exactly for the difference between A and 
A,. The NLS equation for 5, is 
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