An Augmented State SLAM formulation for Multiple Line-of-Sight Features with Millimetre Wave RADAR

Ebi Jose
School of Electrical and Electronic Engineering
Nanyang Technological University
Nanyang Avenue 639798, Singapore.
Email:ebi@pmail.ntu.edu.sg

Martin D. Adams
School of Electrical and Electronic Engineering
Nanyang Technological University
Nanyang Avenue 639798, Singapore.
Email:eadams@ntu.edu.sg

Abstract—Millimetre wave RADAR can penetrate certain non-metallic objects, meaning that multiple line-of-sight objects can sometimes be detected, a property which can be exploited in mobile robot navigation in outdoor unstructured environments. This paper describes a new approach in predicting RADAR range bins which is essential for simultaneous localisation and map building (SLAM) with millimetre wave RADAR.

The first contribution of this paper is a SLAM formulation using an augmented state vector which includes the normalised RADAR cross sections (RCS) and absorption cross sections of features as well as the usual feature Cartesian coordinates. The term “Normalised” is used as the actual RCS is incorporated into a reflectivity parameter. Normalisation results as it is assumed that the sum of this reflectivity parameter and the absorption and transmittance parameters is unity. This is carried out to provide feature rich representations of the environment to significantly aid the data association process in SLAM.

The second contribution is a predictive model of the power-range spectra (often referred to as range bins), from differing vehicle locations, for multiple line-of-sight targets. This forms a predicted power-range observation, based on estimates of the augmented SLAM state.

The formulation of power returns from multiple objects down-range is derived and predicted RADAR range spectra are compared with real spectra, recorded outdoors. This prediction of power-range spectra is a step towards a full, RADAR based SLAM framework.

Index Terms—Millimetre Wave RADAR, RADAR cross section, absorption cross section, SLAM formulation, Power-range spectra prediction, multiple line-of-sight targets.

I. INTRODUCTION

MMW RADAR can provide power-range measurements for the environmental imaging required to perform SLAM [1] in dusty, foggy and poorly illuminated environments. Millimetre wave RADAR signals have the ability to penetrate certain non-metallic objects and can provide information on distributed targets that appear in a single observation [2]. Figure 1 shows the received power attenuation of various materials at different RADAR frequencies. This work is conducted with a 77 GHz Frequency Modulated Continuous Wave (FMCW) RADAR which operates in the millimetre wave region of the electro-magnetic spectrum. The 77 GHz frequency is marked in figure 1, where it can be seen that millimeter waves can penetrate various non-metallic materials. For validating the target penetration capability of the RADAR, tests were carried out with two different objects. In the section of the RADAR scan, shown in figure 2(a), a RADAR reflector of RCS 177 m$^2$ and a sheet of wood of thickness 0.8cm were placed at ranges of 14m and 8.5m respectively, to visually occlude the reflector from the RADAR. This ensured that no part of the RADAR reflector fell directly within the beam width of the RADAR, so that if it was detected, it must be due to the radio waves penetrating the wood. Figure 2(a) shows the detection of the two features down-range even though, visually, one occludes the other. The experiment was also repeated for a perspex sheet of thickness 0.5 cm (figure 2(b)). The results of object penetration by RADAR waves motivates further development of power spectra prediction with multiple line-of-sight features which is one of the contributions of this paper. For feature based SLAM, it is necessary to predict the target/feature locations reliably, given a prediction of the vehicle/RADAR location. As RADAR can penetrate certain non-metallic objects it can give multiple range information. A method for accurately predicting the power-range spectra (or
III. RADAR RANGE SPECTRA PREDICTION

For SLAM, the measurements taken from the RADAR used here are the range, $R$, bearing, $\theta$ and the received power, $P_R$ from the target at range $R$. One of the contributions of this paper is to predict range bins from new robot positions given an estimate of the vehicle and target states. A new augmented state vector is introduced here which, along with the usual feature coordinates $x$ and $y$, contains that feature’s normalised RCS, $\Upsilon_R$ and absorption RCS, $\Upsilon_a$ and the RADAR losses, $L$.

To illustrate this, figure 3 shows a 360° RADAR scan obtained from an outdoor field. Objects in the environment consist of lamp-posts, trees, fences, and concrete steps. The RADAR penetrates some of the non-metallic objects, and can observe multiple targets down line. This is shown in figure 4, which is the received power versus range for the particular bearing of 231° marked in figure 3. Multiple targets down range can occur due to either the beam width of the transmitted wave intersecting two or more objects at differing ranges or due to penetration of the waves through certain objects. The RADAR used here is a pencil beam device, with a beam width of 1.8°. This means that multiple returns within the range spectra occur mostly due to penetration.

IV. RELATED WORK

Clark [5] presented a method for fusing RADAR readings from different vehicle locations into a two-dimensional representation. This method takes only one range reading per bin which is nearer to the RADAR, discarding all others. In [5] Clark shows a millimetre wave RADAR based navigation system which utilises artificial beacons for localisation and an extended Kalman filter for fusing multiple observations. Manual intervention is required for adjusting the received power threshold as the returned signal power depends on all objects’ RCSs. Foessel shows the usefulness of evidence grids for integrating uncertain and noisy sensor information [6]. In [6], Foessel et al. show the development of a RADAR sensor model for certainty grids [7] and also demonstrates the integration of RADAR observations for building three-dimensional outdoor maps. The proposed three-dimensional model by Foessel et al. has shortcomings such as the necessity of rigorous probabilistic formulation and difficulties in representing dependencies due to occlusion. In [3], Jose et al. shows a method of feature detection from MMW RADAR noisy data.
containing trees, non-metallic poles, fences and concrete walls. The
model for predicting entire range spectra, based on target
locations. The variables, Υ, L, v, Υ, R, Υ, a and L are assumed to be
a particular feature/RADAR. Hence, this SLAM formulation
makes the (very) simplified assumption that all features are
stationary and that the changes in the normalised values of
RCS and absorption cross sections of features when sensed
from different angles, can be modeled using Gaussian random
variables v_T. This is a reasonable assumption only for small
circular cross sectioned objects such as trees, lamp posts
and pillars, however, as will be shown the method produces good
results in semi structured environments even for the targets
which do not conform to these assumptions. The SLAM
formulation here can handle multiple line-of-sight targets.

A. Process Model

A simple vehicle predictive state model is assumed with
stationary features surrounding it. The vehicle state, x_i(k), is
given by x_i(k) = [x(k), y(k), θ_R(k)]^T where x(k), y(k) and
θ_R(k) are the local position and orientation of the vehicle at
time k. The vehicle state, x_i(k), is propagated to time (k + 1)
through a simple steering process model [8].

The model, with control inputs, u(k) predicts the vehicle
state at time (k + 1) together with the uncertainty in vehicle
location represented in the covariance matrix P(k + 1) [9].

\[ x_i(k + 1) = f(x_i(k), u(k)) + v(k) \] (1)

\[ u(k) = [v(k), α(k)] \], v(k) is the velocity of the vehicle at time
k and α(k) is the steering angle. In full, the predicted state at
time, (k + 1) becomes

\[
\begin{bmatrix}
\hat{x}(k + 1 | k) \\
\hat{y}(k + 1 | k) \\
\hat{θ}_R(k + 1 | k) \\
\hat{v}_R(k + 1 | k) \\
\hat{v}_a(k + 1 | k) \\
L(k + 1 | k)
\end{bmatrix} =
\begin{bmatrix}
\hat{x}(k | k) \\
\hat{y}(k | k) \\
\hat{θ}_R(k | k) \\
\hat{v}_R(k | k) \\
\hat{v}_a(k | k) \\
L(k | k)
\end{bmatrix} +
\begin{bmatrix}
\Delta x(k) \\
\Delta y(k) \\
\Delta θ_R(k) \\
\Delta v_R(k) \\
\Delta v_a(k) \\
0
\end{bmatrix}
\] (2)

B. Observation (Measurement) Model

Another contribution of this paper is the formulation of the
observation model. The RADAR observation is used to esti-
mate the vehicle’s state once the vehicle’s pose is predicted.
During filter update, the prediction and estimation are fused.
For each of the features in the map, the predicted range,
R_i(k + 1 | k), the RADAR bearing angle, β_i(k + 1 | k) and the
power, P_i(k + 1 | k) are to be predicted from the predicted state
in equation (2). The predicted range and bearing observations
are similar to the ordinary SLAM formulation - i.e.

\[
\hat{R}_i(k + 1 | k) = \sqrt{[\hat{x}_{p_i}(k + 1 | k) - \hat{x}_R(k + 1 | k)]^2 + [\hat{y}_{p_i}(k + 1 | k) - \hat{y}_R(k + 1 | k)]^2}
\] (3)

\[
\hat{β}_i(k + 1 | k) = \hat{θ}_R(k + 1 | k) - \tan^{-1}\left[\frac{\hat{y}_{p_i}(k + 1 | k) - \hat{y}_R(k + 1 | k)}{\hat{x}_{p_i}(k + 1 | k) - \hat{x}_R(k + 1 | k)}\right]
\] (4)
The predicted power for all targets, such as those in figure 4, is the fundamental difference offered in this paper.

1) Predicted Power Observation Formulation: The assumptions made in the predicted power model are as follows.

- The environmental features of interest are assumed to have small circular cross-sections, so that the estimated normalised RADAR cross sections and absorption coefficients are approximately the same in all directions with respect to that feature.
- The measured returned power should be independent of range (due to the built-in range compensation filter). This filter must first be removed or post-filtered to remove its effect, to produce range dependent power returns from all objects [3].
- The beam-width of the RADAR wave does not increase considerably with range.

A target is assumed to affect the incident electro-magnetic radiation in three possible ways:

1) A portion of the incident energy \( \Upsilon_R \), \( 0 \leq \Upsilon_R \leq 1 \), is reflected and scattered.
2) A portion of the incident energy \( \Upsilon_a \), \( 0 \leq \Upsilon_a \leq 1 \), is absorbed by the target.
3) A portion of the incident energy \( 1 - \Upsilon_R - \Upsilon_a \), is further transmitted through the target.

\( \Upsilon_R \) is thus referred to as the “Normalised” RADAR cross section. Figure 5 shows a millimetre wave RADAR in an environment with \( i \)-features down-range at a particular bearing. The following terms are used in formulating the predicted power observation.

- \( P_{INC1} \) = Power incident on the \( i \)th feature.
- \( P_{REF1} \) = Power reflected from the \( i \)th feature.
- \( P_{TRAN1} \) = Power transmitted through the \( i \)th feature.
- \( P_{INC1} \) = Power incident on the first feature which is reflected from the \( i \)th feature.
- \( P_{REF1} \) = Power reflected back towards the \( i \)th feature from the first feature. This component will not reach the RADAR receiver directly and is not considered in this formulation.
- \( P_{TRAN1} \) = Power transmitted through the first feature which is the reflection from the \( i \)th feature.

![Diagram](image)

**Fig. 5.** Power definitions for reflections, absorptions and transmissions for \( i \) multiple line-of-sight features.

The power incident at the first feature is given by

\[
P_{INC1} = \frac{P_iG \cdot A_i}{4\pi R_1^2} \quad (5)
\]

where \( P_i \) is the power transmitted by the RADAR, \( G \) is the antenna gain and \( R_1 \) is the distance between RADAR and the first feature and \( A_i \) is the area of the object illuminated by the RADAR wave. Let \( \Upsilon_R \) be the normalised RADAR cross section and \( \Upsilon_a \) be the normalised absorption cross section of the first feature. The power received by the RADAR receiver from the first feature is given by

\[
P_{REF1} = P_{REF1}A_e/(4\pi R_1^2) \quad (6)
\]

where \( A_e \) is the antenna aperture. It is shown in the RADAR literature that \( A_e = GA^2/4\pi \) [10]. Substituting for \( A_e \) in equation 6, the power return from the first feature is

\[
P_{REF1} = \frac{P_iG \cdot R_{R1} \cdot A_i}{(4\pi)^2 R_1^4} \quad (7)
\]

The power incident from the second feature, \( P_{INC2} \) is given by

\[
P_{INC21} = \frac{P_iG \cdot A_i}{(4\pi)^2 R_1^4} \left( \frac{R_2 - R_1}{R_2 - R_1} \right)^4 \quad (8)
\]

The power then transmitted back to the first feature from the second feature is given by

\[
P_{INC21} = \frac{P_iG \cdot A_i}{(4\pi)^2 R_1^4} \left( \frac{R_2 - R_1}{R_2 - R_1} \right)^4 \quad (9)
\]

The power, \( P_{INC21} \) then passes through feature 1 and is given by

\[
P_{TRAN21} = P_{INC21}(1 - \Upsilon_R - \Upsilon_a) \quad (10)
\]

The power returned from the second feature is then

\[
P_{TRAN21} = P_{TRAN21}A_e/(4\pi R_1^2) \quad (11)
\]

In general, the predicted observed power from the \( i \)th feature can be written as

\[
P_{TRAN}(k+1) = \frac{K A_i^{(2i+1)} \cdot \Upsilon_R \cdot (k+1)}{(4\pi)^{2i}} \times \frac{\prod_{j=0}^{i-1}|1 - \Upsilon_R (k+1)| \cdot \Upsilon_a (k+1)|^2}{\prod_{j=0}^{i-1}(R_{j+1} - R_j)(k+1)|^4} \quad (12)
\]

where \( K = P_iG \cdot A_e \), \( \Upsilon_a = GA^2/(4\pi) \), \( \Upsilon_R = \Upsilon_a \), \( R_0 = 0 \) and, for the \( i - th \) feature, \( R_i \) is related to the augmented state by equation 3.
Equations 3, 4 and 13 between them comprise the observation. In order to generate realistic predictions of the range bins, knowledge of the power and range noise distributions is necessary. This has been studied extensively in previous work, and can be found in [3].

The range and power noise are experimentally obtained [3]. The noise in range is the phase noise, which is obtained by observing the range bins containing reflections from objects with different RCSs at different locations. The noise statistics in power is obtained during both target presence and absence.

The angular standard deviation is assumed to be 1° as the RADAR wave is a pencil beam. The observation model is then given by

\[ z_i(k+1) = [R_i(k+1), \beta_i(k+1), P_i(k+1)]^T + w_i(k+1) \]

where \( z_i(k+1) \) is the observation, and \( w_i(k+1) \) is the additive observation noise given by

\[ w_i(k+1) = [v_R(k+1)v_\beta(k+1)v_P(k+1)]^T \]

and \( h \) is the non-linear observation function defined by equations 3, 4 and 13.

**V. RESULTS**

To validate the formulation for realistically predicting multiple line-of-site target range bins, tests using a RADAR unit from Navtech Electronics were carried out. Initially the vehicle was positioned at pose \( x_i(k) \) as demonstrated in figure 6. The full 360° RADAR scan obtained from this vehicle location is shown in figure 3. Range bins obtained from the initial vehicle location at two different bearing angles are shown in figures 4 and 7. Figure 4 is obtained at azimuth 231° and is indicated by the black line in figure 3. Features in the environment are marked in the figures. The next predicted vehicle location is calculated using the vehicle model and system inputs (equation 2). This corresponds to the new predicted vehicle pose \( x_i(k+1 \mid k) \) in figure 6. The range spectra in all directions are then predicted from the new predicted vehicle location. For example, in the range bin predicted at angle \( \hat{\beta}(k+1 \mid k) \) in figure 6, the predicted values for the range, bearing and received power of features A and D are calculated according to equations 3, 4 and 13.

A single range prediction obtained from the predicted vehicle location \( x_i(k+1 \mid k) \) is shown in figure 8 having two features down-range.

**Fig. 7.** RADAR Range Spectra (233° azimuth) obtained at the starting robot location. Two features observed down-range are marked.

**Fig. 8.** Predicted RADAR Range Spectra (at 234° bearing) obtained from the predicted vehicle location.

Equation 13 can be used to predict the received power as long as the power bias as a function of range incorporated into the RADAR electronics must be taken into account. This simply requires knowledge of the RADAR’s high pass filter circuitry which in an FMCW RADAR compensates for the fourth power of range loss, expected according to the simple RADAR equation [10], [3].

The actual observation is obtained from the next vehicle location and is shown in figure 9 which shows power peaks in close proximity to those predicted in figure 8. The predicted and actual received powers from the target at A are in close agreement in both figures whereas, the predicted value for the received power (30 dB) of the target at 58 metres (feature D in figure 8) is slightly less than the actual received power (38 dB) in figure 9. The discrepancy for feature D can be due to violation of some of the assumptions made in the formulation - in particular that the normalised reflection and absorption cross sections remain constant, independent of the RADAR to target angle of incidence.

Figure 10 shows the results of a chi-squared test to de-
determine any bias or inconsistency in the power-range bin predictions. The difference between the measured and the predicted range bins is plotted together with 99% confidence interval. The value of 99% bound, $= \pm 16.35 \text{ dB}$, has been found experimentally by recording several noisy power-range bins in target absence (RADAR pointing towards open space) [3]. Close analysis of figure 10 shows that the error has a negative bias. This is due to the approximate assumption of the high pass filter gain. For the RADAR used here, the gain of the high pass filter used in the predicted power-range bins was set to 60 dB/decade$^2$. The result shows that this approximation for the high pass filter gain is acceptable, as a large portion of the error plot lies within the 3$\sigma$ limits.

![Graph showing the difference between predicted and measured range bins](image)

**Fig. 9.** Actual RADAR Range Spectra (at 234° bearing) obtained at the next robot location. Features observed down-range are marked.

This formulation and analysis shows the initial stages necessary in implementing an augmented state, feature rich SLAM formulation with millimetre wave RADAR. Future work will address the ease with which data association can be carried out using the multi-dimensional feature state estimates, and a full SLAM implementation in outdoor environments, will be tested.

**VI. CONCLUSIONS**

This paper describes a new approach in predicting RADAR range bins which is essential for simultaneous localisation and map building (SLAM) with millimetre wave RADAR.

A SLAM formulation using an augmented state vector which includes the normalised RADAR cross sections and absorption cross sections of features, as well as the usual feature Cartesian coordinates, was introduced. This is intended to aid the data association process, so that features need not just be associated based on their Cartesian coordinates, but account can be taken of their estimated normalised reflection and absorption cross sections also.

The second contribution is a predictive model of the form and magnitudes of the power-range spectra from differing vehicle locations, for multiple line-of-sight targets. This forms a predicted power-range observation, based on estimates of the augmented SLAM state.

The formulation of power returns from multiple objects down-range is explained and predicted RADAR range spectra are compared with real spectra, recorded outdoors. This prediction of power-range spectra is a step towards a full, RADAR based SLAM framework.

**VII. ACKNOWLEDGEMENTS**

This work was funded under the second author’s AcRF Grant, RG 10/01, Singapore. We gratefully acknowledge help from SIMTech in the use of their utility vehicle and valuable advice from Graham Brooker (ACFR) and Steve Clark (Navtech Electronics, UK).

**REFERENCES**


