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Definitions and factorization theorem

Polytope P = {x | A1x 6 b1, . . . , Amx 6 bm} = conv{v1, . . . , vn}

EF of P is system Ex+ Fy = g, y > 0 “defining” P

Extension of P is Q = {(x, y) | Ex+ Fy = g, y > 0}
Size = # inequalities (or # facets)

Extension complexity of P : xc(P ) = min. size of an EF of P

Slack matrix S ∈ Rm×n
+ of P : Sij := bi −Aivj

Rank-r nonnegative factorization of S:
S = TU where T ∈ Rm×r

+ and U ∈ Rr×n
+

Nonnegative rank of S:
rk+(S) := min{r | ∃ rank-r nneg. factorization of S}

Factorization theorem [Yannakakis’91]: xc(P ) = rk+(S)



Definitions and factorization theorem

Polytope P = {x | A1x 6 b1, . . . , Amx 6 bm} = conv{v1, . . . , vn}

EF of P is system Ex+ Fy = g, y > 0 “defining” P

Extension of P is Q = {(x, y) | Ex+ Fy = g, y > 0}
Size = # inequalities (or # facets)

Extension complexity of P : xc(P ) = min. size of an EF of P

Slack matrix S ∈ Rm×n
+ of P : Sij := bi −Aivj

Rank-r nonnegative factorization of S:
S = TU where T ∈ Rm×r

+ and U ∈ Rr×n
+

Nonnegative rank of S:
rk+(S) := min{r | ∃ rank-r nneg. factorization of S}

Factorization theorem [Yannakakis’91]: xc(P ) = rk+(S)



Definitions and factorization theorem

Polytope P = {x | A1x 6 b1, . . . , Amx 6 bm} = conv{v1, . . . , vn}

EF of P is system Ex+ Fy = g, y > 0 “defining” P

Extension of P is Q = {(x, y) | Ex+ Fy = g, y > 0}

Size = # inequalities (or # facets)

Extension complexity of P : xc(P ) = min. size of an EF of P

Slack matrix S ∈ Rm×n
+ of P : Sij := bi −Aivj

Rank-r nonnegative factorization of S:
S = TU where T ∈ Rm×r

+ and U ∈ Rr×n
+

Nonnegative rank of S:
rk+(S) := min{r | ∃ rank-r nneg. factorization of S}

Factorization theorem [Yannakakis’91]: xc(P ) = rk+(S)



Definitions and factorization theorem

Polytope P = {x | A1x 6 b1, . . . , Amx 6 bm} = conv{v1, . . . , vn}

EF of P is system Ex+ Fy = g, y > 0 “defining” P

Extension of P is Q = {(x, y) | Ex+ Fy = g, y > 0}
Size = # inequalities (or # facets)

Extension complexity of P : xc(P ) = min. size of an EF of P

Slack matrix S ∈ Rm×n
+ of P : Sij := bi −Aivj

Rank-r nonnegative factorization of S:
S = TU where T ∈ Rm×r

+ and U ∈ Rr×n
+

Nonnegative rank of S:
rk+(S) := min{r | ∃ rank-r nneg. factorization of S}

Factorization theorem [Yannakakis’91]: xc(P ) = rk+(S)



Definitions and factorization theorem

Polytope P = {x | A1x 6 b1, . . . , Amx 6 bm} = conv{v1, . . . , vn}

EF of P is system Ex+ Fy = g, y > 0 “defining” P

Extension of P is Q = {(x, y) | Ex+ Fy = g, y > 0}
Size = # inequalities (or # facets)

Extension complexity of P : xc(P ) = min. size of an EF of P

Slack matrix S ∈ Rm×n
+ of P : Sij := bi −Aivj

Rank-r nonnegative factorization of S:
S = TU where T ∈ Rm×r

+ and U ∈ Rr×n
+

Nonnegative rank of S:
rk+(S) := min{r | ∃ rank-r nneg. factorization of S}

Factorization theorem [Yannakakis’91]: xc(P ) = rk+(S)



Definitions and factorization theorem

Polytope P = {x | A1x 6 b1, . . . , Amx 6 bm} = conv{v1, . . . , vn}

EF of P is system Ex+ Fy = g, y > 0 “defining” P

Extension of P is Q = {(x, y) | Ex+ Fy = g, y > 0}
Size = # inequalities (or # facets)

Extension complexity of P : xc(P ) = min. size of an EF of P

Slack matrix S ∈ Rm×n
+ of P : Sij := bi −Aivj

Rank-r nonnegative factorization of S:
S = TU where T ∈ Rm×r

+ and U ∈ Rr×n
+

Nonnegative rank of S:
rk+(S) := min{r | ∃ rank-r nneg. factorization of S}

Factorization theorem [Yannakakis’91]: xc(P ) = rk+(S)



Definitions and factorization theorem

Polytope P = {x | A1x 6 b1, . . . , Amx 6 bm} = conv{v1, . . . , vn}

EF of P is system Ex+ Fy = g, y > 0 “defining” P

Extension of P is Q = {(x, y) | Ex+ Fy = g, y > 0}
Size = # inequalities (or # facets)

Extension complexity of P : xc(P ) = min. size of an EF of P

Slack matrix S ∈ Rm×n
+ of P : Sij := bi −Aivj

Rank-r nonnegative factorization of S:
S = TU where T ∈ Rm×r

+ and U ∈ Rr×n
+

Nonnegative rank of S:
rk+(S) := min{r | ∃ rank-r nneg. factorization of S}

Factorization theorem [Yannakakis’91]: xc(P ) = rk+(S)



Definitions and factorization theorem

Polytope P = {x | A1x 6 b1, . . . , Amx 6 bm} = conv{v1, . . . , vn}

EF of P is system Ex+ Fy = g, y > 0 “defining” P

Extension of P is Q = {(x, y) | Ex+ Fy = g, y > 0}
Size = # inequalities (or # facets)

Extension complexity of P : xc(P ) = min. size of an EF of P

Slack matrix S ∈ Rm×n
+ of P : Sij := bi −Aivj

Rank-r nonnegative factorization of S:
S = TU where T ∈ Rm×r

+ and U ∈ Rr×n
+

Nonnegative rank of S:
rk+(S) := min{r | ∃ rank-r nneg. factorization of S}

Factorization theorem [Yannakakis’91]: xc(P ) = rk+(S)



Definitions and factorization theorem

Polytope P = {x | A1x 6 b1, . . . , Amx 6 bm} = conv{v1, . . . , vn}

EF of P is system Ex+ Fy = g, y > 0 “defining” P

Extension of P is Q = {(x, y) | Ex+ Fy = g, y > 0}
Size = # inequalities (or # facets)

Extension complexity of P : xc(P ) = min. size of an EF of P

Slack matrix S ∈ Rm×n
+ of P : Sij := bi −Aivj

Rank-r nonnegative factorization of S:
S = TU where T ∈ Rm×r

+ and U ∈ Rr×n
+

Nonnegative rank of S:
rk+(S) := min{r | ∃ rank-r nneg. factorization of S}

Factorization theorem [Yannakakis’91]: xc(P ) = rk+(S)



Today

1 Quick recapitulation

2 More examples and techniques

3 Communication complexity

4 Combinatorial lower bounds



Even polytope

Even polytope:

EVEN(n) = conv

{
x ∈ {0, 1}n |

n∑
i=1

xi ≡ 0 (mod 2)

}

fi
ts

ei

EVEN(n) = {x ∈ Rn | ∃y s–t flow of value 1 : xi = yei + yfi ∀i}

Exercise. What are the facet-definining inequalities of EVEN(n)?

Exercise. Generalize this to all regular languages (that is,
languages decided by a deterministic finite automaton).
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Stable set polytope

Stable set polytope of graph G = (V,E):

STAB(G) := conv{χS ∈ {0, 1}V | S stable set of G}

We have STAB(G) ⊆ QSTAB(G) where

QSTAB(G) := {x ∈ RV | x > 0, x(K) 6 1 ∀ clique K of G}

Theorem (Chvátal’75)

STAB(G) = QSTAB(G) if and only if G is perfect, that is,

χ(H) = ω(H) for all H
ind
⊆ G (χ = chromatic #; ω = clique #)
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Stable set polytope
. . . of a comparability graph

P = (V,6P ) partially ordered set (poset)

G = G(P ) comparability graph of P (always perfect)

{(yv− , yv+)}v∈V is consistent with P if

∀v ∈ V : (yv− , yv+) open interval ⊆ (0, 1)

v 6P w =⇒ yv+ ≤ yw−

P 0 1 I

STAB(G(P )) =
{
x ∈ RV |∃{(yv− , yv+)}v∈V consistent with P

s.t. xv = yv+ − yv− ∀v ∈ V
}

Exercise. Prove this.
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Union of polyhedra

Theorem (Balas’98, 85)

Consider k polyhedra P i := {x ∈ Rd | Aix 6 bi}. For each i:
rec(P i) := {x | Aix 6 0} = cone{ri1, . . . , riqi}
P i = conv{vi1, . . . , vipi}+ cone{ri1, . . . , riqi} (for P i 6= ∅)

Then
Aixi 6 δibi ∀i∑

i∈K
xi = x∑

i∈K
δi = 1

δi > 0 ∀i
is an EF of

P := conv
(⋃

i:Pi 6=∅{vi1, . . . , vipi}
)

+ cone
(⋃

i{ri1, . . . , riqi}
)
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Union of polyhedra
. . . an application to vertex interdiction

Theorem (Union of polyhedra, restated)

If P1, . . . , Pk are polyhedra in Rd such that dim(Pi) > 1 for all i,
and P := conv(P1 ∪ · · · ∪ Pk):

xc(P ) 6 xc(P1) + · · ·+ xc(Pk)

Exercise. Prove this directly from the factorization theorem.

Theorem (Ahmed, Angulo, Dey & Kaibel’13)

Let V ⊆ {0, 1}d and P = conv(V ) be a 0/1-polytope. For a point
v ∈ V , let P − v := conv(V \ {v}). Then:

xc(P − v) 6 d xc(P )

and more generally for v1, . . . , vk ∈ V :

xc(P − v1 − v2 − · · · − vk) 6 poly(xc(P ), k)
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(Further) applications of EFs

Disjunctive programming (Balas)

Dynamic programming (Martin et al.)

Lift-and-project (Balas, Ceria, Cornuéjols)

Dantzig-Wolfe decomposition

Sherali-Adams hierarchy

Configuration LPs

. . .
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Deterministic communication protocols

f : A×B → {0, 1} Boolean function (≡ binary matrix)

Two players:

Alice knows a ∈ A
Bob knows b ∈ B

want to compute f(a, b) by exchanging bits

Goal: Minimize complexity := #bits exchanged



Deterministic communication protocols
Example

b1 b2 b3 b4
a1 0 0 0 1
a2 0 0 0 1
a3 0 0 0 0
a4 0 1 1 1

Alice

Alice

Bob Bob

0 1 0

1 0

a ∈ {a1, a2} a ∈ {a3, a4}

b ∈ {b1, b2, b3} b ∈ {b4} b ∈ {b2, b3, b4} b ∈ {b1}

a ∈ {a4} a ∈ {a3}

Observation

∃ complexity c protocol for computing f =⇒ rk+(f) 6 2c
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Deterministic communication protocols
The clique vs stable set problem

G graph with n vertices

A = {a ∈ {0, 1}n | a encodes a clique in G}
B = {b ∈ {0, 1}n | b encodes a stable set in G}

f(a, b) =

{
1 if a, b are disjoint

0 if a, b intersect
= 1− aᵀb = (1− aᵀb)2

Theorem (Yannakakis’91)

∃ O(log2 n)-complexity protocol for f = f(G)

Corollary (Yannakakis’91)

∀ perfect graphs G: xc(STAB(G)) = 2O(log2 n) = nO(logn)
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Computing a function in expectation

The main differences:

Alice and Bob can use (private) random bits to make choices

1− pi(a)pi(a)

i

f : A×B → R+, Alice and Bob can output any value ∈ R+

Theorem (Faenza, F, Grappe & Tiwary’11)

If c = c(f) is the minimum complexity of a randomized
communication protocol with nonnegative outputs computing f in
expectation, then

rk+(f) = Θ(2c)
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Computing a function in expectation
Proof of rk+(M) = Ω(2c)

Write M = TU , where
T ∈ Rm×r

+ row-stochastic (w.l.o.g.)
U ∈ Rr×n

+

r 6 rk+(M) + 1

Protocol:

Alice gets row index i, Bob gets column index j

Alice picks random column index k ∈ [r] w.p. Tik, sends it to
Bob

Bob outputs value Ukj

Expected value on input (i, j):
r∑

k=1

TikUkj = Mij

Complexity: log rk+(M) +O(1)
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Write M = TU , where
T ∈ Rm×r

+ row-stochastic (w.l.o.g.)
U ∈ Rr×n

+

r 6 rk+(M) + 1

Protocol:

Alice gets row index i, Bob gets column index j

Alice picks random column index k ∈ [r] w.p. Tik, sends it to
Bob

Bob outputs value Ukj

Expected value on input (i, j):
r∑

k=1

TikUkj = Mij

Complexity: log rk+(M) +O(1)



The threefold way

Three equivalent ways to look at EFs:

1 A linear system Ex+ Fy = g, y > 0 with y ∈ Rr

2 A rank-r nonnegative factorization S = TU of slack matrix S

3 A log r-complexity randomized protocol computing S in
expectation
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Rectangle covering bound
Taking supports

S=TU rank-r non-negative factorization

=

r∑
k=1

T kUk sum of r nonnegative rank-1 matrices

=⇒ supp(S) =

r⋃
k=1

supp(T kUk)

=

r⋃
k=1

supp(T k)× supp(Uk) union of r rectangles

Definition (Rectangle covering number)

rc(S) := min # rectangles whose union is supp(S)

Theorem (Yannakakis’91)

rk+(S) > rc(S)
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Rectangle covering bound
Summary

≥

Support matrix

smallest # 1-rectangles
needed to cover all 1s

Polytope Slack matrix

Extended
formulation

# ieqs

of slack matrix



Number of faces

Proposition (Goemans’09)

xc(P ) > log2
(
# faces of P

)

Proposition (F, Kaibel, Pashkovich, Theis’13):

xc(P ) > rc(P ) > log2
(
# faces of P

)
> dim(P )

Exercise. Use this to give lower bounds on the extension
complexities of n-gons and permutahedra.
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The rectangle graph

Definition

M 0/1-matrix
GM := rectangle graph:

V (GM ) := 1-entries of M

(i, j) ∼ (i′, j′) ⇐⇒ Mi,j′Mi′,j = 0 (rectangle contains a 0)

Example
1 0 0

0 1 1

1 1 0

1 1 1



Lemma (F, Kaibel, Pashkovich, Theis’13)

rc(M) = χ(GM )
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Clique number — aka fooling sets

Chromatic number > maximum size of a clique

χ(GM ) > ω(GM )

Cliques ≡ “Fooling sets”

In the matrix, clique ≡ fooling set :=

set of 1-entries

pairwise adjacent in rectangle graph

Example: n-gon

rectangle covering number ≈ log n
max size of fooling set = 4
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Example: Cubes

Proposition (F, Kaibel, Pashkovich, Theis’13)

Every extension of a d-cube has at least 2d facets.

Support of the slack matrix:

Columns: ξ ∈ {0, 1}d
Rows: d for xi > 0 (upper part) and d for xi 6 1 (lower part)

Upper part has ξj ’s as entries
lower part has 1− ξj ’s as entries

What about log2(#faces)?

#faces ≈ 3d

# facets of an extension
> rc > d log2 3 (log2 3 =1.585...)
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Limits of fooling sets

Proposition (F, Kaibel, Pashkovich, Theis’13)

For M support matrix of slack matrix of d-polytope,

ω(GM ) 6 (d+ 1)2
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