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Definitions and factorization theorem

Polytope P = {x | Ajx < by,..., Apx < by} = conv{vy,...,v,}

EF of P is system Ex + Fy =g, y > 0 “defining” P
Extension of Pis Q@ = {(z,y) | FEx+ Fy =g, y > 0}
Size = # inequalities (or # facets)
Extension complexity of P:  xc(P) = min. size of an EF of P
Slack matrix S € RT*" of P: S5 :=b; — Ajv;
Rank-r nonnegative factorization of S:

S=TU where T eR[ andU e R*"

Nonnegative rank of S:
rky(S) := min{r | 3 rank-r nneg. factorization of S}

Factorization theorem [Yannakakis'91]: xc(P) = rk4(.5)
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Even polytope:

EVEN(n) = conv {:v € {0,1}" | zn:xl =0 (mod 2)}
i=1

EVEN(n) = {z € R" | 3y s—t flow of value 1 : z; = y,, + yy, Vi}

Exercise. What are the facet-definining inequalities of EVEN(n)?

Exercise. Generalize this to all regular languages (that is,
languages decided by a deterministic finite automaton).
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Stable set polytope

Stable set polytope of graph G = (V| E):
STAB(G) := conv{x” € {0,1}V | S stable set of G}

We have STAB(G) C QSTAB(G)  where
QSTAB(G) :={z € RV | 2 >0, 2(K) <1V clique K of G}

Theorem (Chvatal'75)
STAB(G) = QSTAB(G ) /f and only if G is perfect, that is,
X(H) =w(H) for all H C G (x = chromatic #; w = clique #)
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Stable set polytope

..of a comparability graph

P = (V,<p) partially ordered set (poset)
G = G(P) comparability graph of P (always perfect)
{(Yo-, Yo+ ) bvev is consistent with P if

e Yv e V: (y,—,y,+) open interval C (0,1)

® USSP W Yyt < Yy

= bk

P U

STAB(G(P)) = {x € RY [3{(y,— Yo+ ) }oev consistent with P
St. Ty =Yyt —Yp— YUE V}

Exercise. Prove this.
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Union of polyhedra

Theorem (Balas'98, 85)

Consider k polyhedra P’ := {x € R? | Alx < b'}. For each i:
o rec(P') :={x | A'w < 0} = cone{ri,...,r.}
o P'= conv{vi,...,v, } + cone{ry,...,ry } (for P' # O)

Then o .
Azt < D Y4
Z 2 =x
ieEK )
d =1
€K
=0 Vi
is an EF of

P := conv (Uizpﬁég{v’i, ... ’”;u}) + cone (UZ{TZP .. ,réi})
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Union of polyhedra

...an application to vertex interdiction

Theorem (Union of polyhedra, restated)
If P, ..., Py are polyhedra in R? such that dim(P;) > 1 for all i,
and P := conv(P, U ---U Py):

xc(P) < xc(P1) + -+ - + xc(Py,)

Exercise. Prove this directly from the factorization theorem.

Theorem (Ahmed, Angulo, Dey & Kaibel'13)
Let V C {0,1}¢ and P = conv(V') be a 0/1-polytope. For a point
veV,let P—wv:=conv(V\{v}). Then:
xc(P —v) < dxc(P)
and more generally for vy, ..., v, € V:
xc(P — vy — vy — -+ —vy) < poly(xc(P), k)
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Deterministic communication protocols

f:Ax B — {0,1} Boolean function (= binary matrix)
Two players:

° knows ¢ € A
@ Bob knows b € B

want to compute f(a,b) by exchanging bits

Goal: Minimize complexity := #bits exchanged



Deterministic communication protocols

Example
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0O 0 0 1 0 fana)
0O 0 0 O
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be {by, by bs) be (b} b€ {by, by by}

° Alice @

ae WU}

1 0
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Deterministic communication protocols

Example

bi by b3 by
0 0 01 -
0 0 01 a € {ana}
0[O0 0 O
0 1 1 1
be {by. by, bs) be (b} be {bn, by, by}

° Alice @

ae mﬁ

1 0

Observation
3 complexity ¢ protocol for computing f = rky(f) < 2¢
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Deterministic communication protocols

The clique vs stable set problem

G graph with n vertices
A ={a€{0,1}" | a encodes a clique in G}
B = {be {0,1}" | b encodes a stable set in G}

Flab) = 1 ?f a,b .are disjoint 1 —aTh=(1—aTh)?
0 if a,b intersect

Theorem (Yannakakis'91)
3 O(log? n)-complexity protocol for f = f(G)

Corollary (Yannakakis'91)
V perfect graphs G:  xc(STAB(G)) = 20(os”n) — O(logn)
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Computing a function in expectation

The main differences:

° and Bob can use (private) random bits to make choices
1
pi(a) 1 —pi(a)
o f:AXxB—R,, and Bob can output any value € R

Theorem (Faenza, F, Grappe & Tiwary'l1)

If ¢ = c(f) is the minimum complexity of a randomized
communication protocol with nonnegative outputs computing f in
expectation, then

ks (f) = ©(29)
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Computing a function in expectation

Proof of rky (M) = Q(2°)

T € R}™" row-stochastic (w.l.o.g.)
Write M =TU, where UeRX™
T < rk+(M) + 1

Protocol:

° gets row index ¢, Bob gets column index j

° picks random column index k € [r] w.p. Tj, sends it to
Bob

@ Bob outputs value Uy;

T
Expected value on input (i, j): ZTikUkj = M;;
k=1

Complexity: logrk (M) + O(1)
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The threefold way

Three equivalent ways to look at EFs:

Q Alinear system Fx + Fy =g,y > 0 withy € R"
@ A rank-r nonnegative factorization S = T'U of slack matrix S

© A logr-complexity randomized protocol computing S in
expectation
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Rectangle covering bound

Taking supports

S=TU rank-r non-negative factorization
T
= ZT’“Uk sum of 7 nonnegative rank-1 matrices
k=1

= supp(S) = U supp(T*Uy,)
k=1

T
= U supp(T*) x supp(Us) union of r rectangles
k=1

Definition (Rectangle covering number)

rc(S) := min # rectangles whose union is supp(.S)

Theorem (Yannakakis'91)
rky(S) = re(S)
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Rectangle covering bound

...also known as

1

= == O
= = o

0
1o

rc(S) is the same as. ..

@ nondeterministic communication complexity

@ biclique covering bound

Observation
rc(S) is the best lower bound that only depends on supp(M)!



Rectangle covering bound

Summary

Support matrix

> of slack matrix

Polytope > Slack matrix

Extended
formulation

smallest # 1-rectangles
# iegs needed to cover all 1s

v
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Number of faces

Proposition (Goemans'09)
xc(P) = log, (# faces of P)

Proposition (F, Kaibel, Pashkovich, Theis'13):
xc(P) > rc(P) > logy (# faces of P) > dim(P)

Exercise. Use this to give lower bounds on the extension
complexities of n-gons and permutahedra.
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Example
1 o o\ °
0 1 1 e o
1 1 0 e o
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The rectangle graph

Definition
M 0/1-matrix
Gy = rectangle graph:
e V(Gy) := l-entries of M
o (i,j) ~ (V,5') < M, My ;j =0 (rectangle contains a 0)

Example

_ =R O
—_ = = O
= o = O

Lemma (F, Kaibel, Pashkovich, Theis'13)
re(M) = x(Gwm)
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Cliques = “Fooling sets”
In the matrix, clique = fooling set :=
@ set of 1-entries

@ pairwise adjacent in rectangle graph
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Cliqgue number — aka fooling sets

Chromatic number > maximum size of a clique

X(Gum) 2 w(Gu)

Cliques = “Fooling sets”
In the matrix, clique = fooling set :=
@ set of 1-entries

@ pairwise adjacent in rectangle graph

001111
Woo111
1
1
1
1
0

0
)
1
1
1

= e
==
oo
OO MK
C O R K==

Example: n-gon
rectangle covering number ~ logn
max size of fooling set = 4
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Example: Cubes

Proposition (F, Kaibel, Pashkovich, Theis'13)

Every extension of a d-cube has at least 2d facets.

Support of the slack matrix:
o Columns: ¢ € {0,1}¢
@ Rows: d for z; > 0 (upper part) and d for z; < 1 (lower part)

@ Upper part has ;s as entries
lower part has 1 — ¢;'s as entries

W111111 0000000
011111 1000000
001111 1100000
0001111 1110000
0000111 1111000
00000()1 1111100
000000() 1111110
0000000 (M111111
1000000 011111
1100000 001111
1110000 00011 11
1111000 000011
1111100 000001
1111110 00000 0(D



Example: Cubes

Proposition (F, Kaibel, Pashkovich, Theis'13)

Every extension of a d-cube has at least 2d facets.

Support of the slack matrix:
o Columns: ¢ € {0,1}¢
@ Rows: d for z; > 0 (upper part) and d for z; < 1 (lower part)

@ Upper part has ;s as entries
lower part has 1 — ¢;'s as entries

W111111 0000000

011111 1000000

00M1 111 1100000

0000111 1110000

S e®dil 1iiis0s What about log,(#faces)?
00000()1 1111100

000000() 1111110 0#faces~3d
0000000 (M111111

1000000 011111 ;
1100000 OC?@HH @ 7+ facets of an extension
1110000 000111

1111000 00 0@@1 1 > rc > d10g23 (logo 3 =1.585...)
1111100 00000@1

1111110 0000000



Limits of fooling sets

Proposition (F, Kaibel, Pashkovich, Theis'13)
For M support matrix of slack matrix of d-polytope,

w(Gar) < (d+1)?
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