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Example

max 4xi + 3o

subject to —x1 +4x9 < 16

r1+22 <9
3$1—x2<15
leO
{L‘2>O

LP in general form:

max Z w;x; = W'
=1
subject to Az < b



Linear programming

A successful tool

Fact
Linear programming is very successful both in practice and theory

3 reasons for this success:

©@ Many problems can be expressed as LPs
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@ Rich theory: LP duality can certify the quality of solutions

max wTx = min bTy
st. Ax <b st. ATy=w
y=0

© There exist powerful algorithms for solving LPs
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to convex?
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Linear programming

Algorithms

Algorithm / method | Poly-time? | In practice? | Generalizes
to convex?
. (simplex) No Very fast No
()
(ellipsoid) Yes Slow Yes
(int. point) Yes Fast Yes

All practical algorithms have sensitivity to size of input LP

= try to minimize size: variables, constraints are resources




Combinatorial optimization

LP formulation of TSP

TSP: Given a graph G = (V, E) and dis-
tances d;; for each ij € E, find tour of
minimum length.



Combinatorial optimization

LP formulation of TSP

TSP: Given a graph G = (V, E) and dis-
tances d;; for each ij € E, find tour of
minimum length.

Z dijx;j

ijeE
st. x € {0,1}"l encodes tour of G

Hox oM

(1,0,1,1,0,1) (1,1,0,0,1,1) (0,1,1,1,1,0)



Combinatorial optimization

LP formulation of TSP

TSP: Given a graph G = (V, E) and dis-
tances d;; for each ij € E, find tour of
minimum length.

Z dijxij

ijEE
s.t. HE
z € TSP(G)

HE M 4

(1,0,1,1,0,1) (1,1,0,0,1,1) (0,1,1,1,1,0)
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min Z dijl‘ij
ijelR
st. x € TSP(G)
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TSP polytope

TSP polytope of G:

TSP(G) := conv{z € {0,1}/F! | # encodes tour of G}
min Z dijl‘ij
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Combinatorial optimization

TSP polytope

TSP polytope of G:

TSP(G) := conv{z € {0,1}/F! | # encodes tour of G}
min Z dijl‘ij
ijEE

s.t. =< FSP&EY

Ax > b

Issue: System Ax > b for TSP(G) is huge, not known
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Extended formulations

Reformulating an LP

In general, we hope to go from this:

d
min E‘wﬁ% f(z)
i=1

st. Az >0 + large, not known, complicated

...to this:

d
min 2%{1’7 fx)
i=1

st. Fx+Fy=g9,y>0 < small, explicit, simple

In such a way that: Ax >b < dy: Ex+Fy=g, y=>0
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Extended formulations

Definitions (1/2)

P = {z € R%| Az > b} polytope in R?

Definition (Extended formulation = EF)
Ex+Fy=g, y>0isanEF of Pif

Ar > b <= Jy: Ex+Fy=g9, y=>0

Definition (Extension)
Polytope @ in R€ is an extension of P if 3 linear m with 7(Q) = P
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Extended formulations

Definitions (2/2)

Definition (Size)
Size of EF := #inequalities in EF
Size of extension := #facets of extension

Definition (Extension complexity)

Extension complexity of P = xc(P) := minimum size of an EF of P

xc(P) <5 < size(P) xc(P) < 6 < size(P)
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If P is a regular n-gon, then xc(P) = O(logn) !!!
Exercise. Prove this using reflections.

P = conv(P, U P)

P, =o0(P)



Extended formulations

Example: Regular polygons

Theorem (Ben-Tal & Nemirovski'01)
If P is a regular n-gon, then xc(P) = O(logn) !!!
Exercise. Prove this using reflections.

P = conv(P, U P)

P, =o0(P)

xc(P) = xc(conv(Py Uo(Py))) < xc(Py) 42
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can be solved via LP with a given amount of resources?



Fundamental question and dictionary

Within the framework of EFs, we ask:

Regarding (variables and) constraints as resources, what problems
can be solved via LP with a given amount of resources?

Dictionary:

Algorithmic | Geometric

Problem | Polytope
Algorithm | EF
Complexity | Size
Hardness result | Lower bound




Course outline

In this course on extended formulations (EFs), we will see:

@ many examples of EFs

@ techniques for constructing EFs

© techniques for proving lower bounds on the size of EFs
© a proof that TSP(K,) has no polynomial-size EF
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(Convex) polytopes

@ A V-polytope is the convex hull of a finite set of points

P = conv{vy,...,vn}
where
(IS R? A2

@ A H-polytope is the intersection of a finite # of halfspaces
(provided this intersection is bounded)

/ P={zeR|h(x) <O0,..., hpn(z) <0}

where

hz(x) = Azx - bi Vi



Fundamental theorem

Theorem
For all P C R%:
P is a V-polytope <= P is a H polytope
Proof (=)
P = conv{vy,...,u,}
n n
= xeRd|3yeR”:x:Zijj,Zyjzl,yj>0Vj

j=1 j=1

= {xERd|3y€R":Ex+Fy:g,y>O}

So P is the projection into x-space of a H-polytope! This is our
2nd example of an EF. (Exercise. What kind of polytope is Q7)

P = proj,(Q) where Q= {(x,y) eERMW" |Ex4+Fy=g, y> 0}



Eliminating one variable (Fourier-Motzkin elimination)

To conclude the proof, it suffices to show that eliminating a single
variable from a system of linear constraints “produces” a new
system of linear constraints (changing notations):

Q = {(z,y) e R™ | Az + by < ¢; Vi}
Aiox SEN Vig € Ip
= {(zy) Ry < bl -0 Aie Vipely
Yy = b;}Ci_ — b;lAi_l' Vi el_

where I = {i | b; =0}, I, ={i|b;>0}, I.=1{i|b <0}
Then proj,(Q) is defined by:

Aiol' < Cig Vig € Iy
—1 -1 —1 -1 . .
b, ci_—b A x < bi+ Ciy — bi+ Ajyov Vigelyiel

71—

g



From proof, see that if Q = {(z,y) € R¥* | Az + By < ¢} then
proj,(Q) = {xr € R | uT Az < uTc for finite # of u € C},

where C:={ueR™|uTB=0,u >0} is the projection cone



Farkas' lemma

Lemma (Farkas’ lemma)

If P={z € R"| Az < b} is a H-polyhedron and cTz < § is valid
for P, then either
e P=g or

e cTx < ¢ is positive combination of Az < b for some &' < 6



Farkas' lemma

Lemma (Farkas’ lemma)
If P={z € R"| Az < b} is a H-polyhedron and cTz < § is valid
for P, then either

e P=9g or

e cTx < ¢ is positive combination of Az < b for some &' < 6
that is, either
0:uTA=0, uTb=-1 or
O:uTA=cT, uTb=0"< 6

o Ju >
o Ju >



Polar of a projection is an intersection

To prove other direction of the fundamental theorem, we polarize

If Pis (V- or H-)polytope in R? with 0 € int(P), polar of P is

PA={zeR¥|VzeP:2T2<1}
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Polar of a projection is an intersection

To prove other direction of the fundamental theorem, we polarize

If Pis (V- or H-)polytope in R? with 0 € int(P), polar of P is

PA={zeR¥|VzeP:2T2<1}

Then (two last egs. from Farkas' lemma):

CoNVyVi,...,Un =T € v l,...,v
A R?: 0Tz < 1 T

x < 1}

A
({J;GRd:Alxg 1., Apx < 1}) =conv{A],... AT }
(PPYA =P

Exercise. Prove that the polar of projecting polytope @ into
x-space is intersecting polytope Q® with z-space, and use this to
prove other direction of fundamental theorem.
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Elimination blows up the number of inequalities

If Q is defined by m constraints

Then proj,(Q) is defined by at most %2 inequalities

... after projecting out 1 variable.

Exercise. Verify that this is tight. Find an upper bound when 2
variables are projected out. Is this bound tight?

= when projecting out k variables: exponential blow-up!

EFs try to exploit this phenomenon: by adding few variables,
decrease much the number of inequalities
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Faces of a polytope

Definition (Face)
If Pis a polytope in R? and ¢Tz < § is valid for P, then

F:=Pn{zecR?| Tz =4} is a face of P

Particular cases:
@ O is a face, of dimension —1 (use 0Tz < 1)
@ a face of dimension 0 is a vertex
@ a face of dimension 1 is an edge
@ a face of dimension dim(P) — 1 is a facet
e P is a face of itself, of dimension dim(P) (use 0Tz < 0)

L(P) = (F(P),C) face lattice of P
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Cones

@ A V-cone is the nonnegative hull of a finite set of vectors

C = cone{g1,..., 9k}
@ A H-cone is the intersection of a finite # of linear halfspaces

C={zxecR!| Az >0}

VYO CRY:CisaV-cone < (' is a H-cone



General polyhedra

@ A V-polyhedron is the sum of a polytope and a cone
P = conv{vy,...,vp} + cone{gi,..., gk}
@ A H-polyhedron is the intersection of a finite # of halfspaces

P={recR| Az <
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General polyhedra

@ A V-polyhedron is the sum of a polytope and a cone
P = conv{vy,...,vp} + cone{gi,..., gk}
@ A H-polyhedron is the intersection of a finite # of halfspaces

P={recR| Az <

7¥<\

VP CR?: Pis a V-polyhedron <= P is a H-polyhedron



© Factorization theorem



Slack matrices
... Of polytopes

P:{x]Alxgbl,,Amxgbm}



Slack matrices
... Of polytopes

P={x]| Az <by,....,Apz <bp} P = conv{vy,...,v,}



Slack matrices

... Of polytopes

g =

P={x]| Az <by,....,Apz <bp} P = conv{vy,...,v,}
Definition
Slack matrix S € RT"™™ of polytope P: Sij == b; — Ajv;

/ A =0

i Sij

7



Nonnegative factorizations

Definition
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S=TU where TeRT" and UeR"
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rko(S) := min{r | 3 rank-r nonnegative factorization of S}



Nonnegative factorizations

Definition

A rank-r nonnegative factorization of S € R™*" is

S=TU where TeRT" and UeR"

Definition (nonnegative rank of .S)

rko(S) := min{r | 3 rank-r nonnegative factorization of S}
= min{r | S is sum of r nonnegative rank-1 matrices}



Factorization theorem

Theorem (Yannakakis' factorization theorem)

Let P be a polytope with dim(P) > 1.
For every slack matrix S of P:  xc(P) = rky(95)



Factorization theorem

Example: regular polygon

Halfspaces: ¢, ¢, ...

Folding sequence of vertex v: v(®) = v, v, 0@
Folding sequence of facet F: F(O) = F, F(), F( ), ..

Slack (v w.r.t. F®)) = slack (v(”l) w.r.t. F(’H)) + correction

2),
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