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Mixed-Integer Linear Program (MILP)

Mixed-Integer Linear Program:

max cT x
s.t. Ax = b

xi ∈ Z for i ∈ I
xi ≥ 0 for i ∈ [n]

• Linear Relaxation: Consider all variables as continuous
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Linear Relaxation: Optimal Simplex Tableau

max cT x

s.t. Ax = b

xi ≥ 0 for i ∈ [n]

• A: m × n with m linearly independent rows

• Basis B: m ×m invertible submatrix of A
• B, N partition of A
• xB , xN : variables corresp. to B and N

Optimal tableau for basis B:

xB = B−1b − B−1N xN

= f +
∑
j∈N

r jxj

Solution: x̄ = (xB , xN)

xB = B−1b xN = 0
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Gomory Mixed-Integer Cuts (GMI)

Row of the optimal tableau with basic variable xi for i ∈ I :

xi +
∑
j∈I−i

āijxj +
∑
j∈Ī

āijxj = āi0

Define
fj = āij − bāijc ∀j

If f0 > 0: Gomory Mixed-Integer Cut (GMI) [Gomory 60 [168]]:

∑
j∈I :fj≤f0

fjxj +
∑

j∈I :fj>f0

f0(1− fj)

1− f0
xj +

∑
j∈Ī :āij>0

āijxj −
∑

j∈Ī :āij<0

f0
1− f0

āijxj ≥ f0
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Split set

(π, π0) such that

• π ∈ Zn, π0 ∈ Z
• πj = 0 for all j ∈ Ī

• gcd(π1, . . . , πn) = 1

All points x ∈ ZI × RĪ statisfy split (π, π0):

πx ≤ π0 or πx ≥ π0 + 1

Boundary hyperplanes of (π, π0):

• H1 = {x ∈ Rn | πx = π0}
• H2 = {x ∈ Rn | πx = π0 + 1}

Both H1 and H2 contain integer points
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• gcd(π1, . . . , πn) = 1
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Split Cut

Q ⊆ ZI × RĪ : polyhedron

(π, π0): split with boundary hyperplanes H1 and H2

Q
≤

= Q ∩ {x ∈ Rn | πx ≤ π0} Q
≥

= Q ∩ {x ∈ Rn | πx ≥ π0 + 1}
Q(π, π0) = conv(Q

≤ ∪ Q
≥

)

Facets of Q(π, π0) that are not valid for Q are split cuts generated
by (π, π0)

[Cook, Kannan, Schrijver 1990 [88]]
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Corner Polyhedron

[Gomory, Johnson 1972 [172]]

For a basis B, relax constraints xi ≥ 0 for all i ∈ B:
corner(B):

max cT x
s.t. Ax = b

xi ∈ Z for i ∈ I
xi ≥ 0 for i ∈ N

Relax xi ∈ Z for all i ∈ I ∩ N:
• lin. relax is a cone with a single vertex (f , 0) ∈ RB × RN

relaxed-corner(B) (RCP(B)):

• xi ∈ Z for all i ∈ B

• xi ∈ R+ for all i ∈ N

[Andersen, Louveaux, Weismantel, Wolsey 2007 [13]]
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Intersection cuts for corner(B)

S : closed convex set S with x̄ ∈ int(S) and no point of ZI × RĪ in
int(S)

• r : direction

• h: half-line f + λr for λ > 0
• λ∗: value such that f + λ∗r is on the boundary of S (or +∞)
• ψ(r) = 1

λ∗

L

r
f

Inequality for rays {r j | j ∈ N}:∑
j∈N

ψ(r j) xj ≥ 1 (1)
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Example: I = {1, 2} = B and N = {3, 4}

r

r

f

3

4

Feasible set contained in

{(x1, x2)T = f + r3x3 + r4x4 | x3 ≥ 0, x4 ≥ 0}
Want

{(x3, x4) ≥ (0, 0) | f + r3x3 + r4x4 integer}



Example: I = {1, 2} = B and N = {3, 4} (cont.)

r

f

S

r3

4

Any convex set S ∈ R2 with f ∈ int(S) with no point of Z2 in
int(S)

[Balas 1971 [22]]



Example: I = {1, 2} = B and N = {3, 4} (cont.)

r

r

f

S

3

4

Compute intersection of the rays with the boundary of S
Cut defined by these points is valid: a3x3 + a4x4 ≥ 1

[Balas 1971 [22]]



Using a Different Convex Set

r

r

f

S

3

4

Octahedron S in R2

f̄ ∈ int(S) with no point of Z2 in int(S)



Using a Different Convex Set

r

r

f
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3

4

Compute intersection of the rays with the boundary of S



Split Cuts

f

r

r
4

3

• Strip S in R2

• f ∈ int(S) with no point of Z2 in int(S)



Split Cuts

f

r

r

3

4

Compute intersection of the rays with the boundary of S



Intersection cuts for corner(B)

I = {1, 2} Ī = {3}

f

x

x

x

1

2

3

S ′: closed convex set with (f , 0) ∈ int(S ′)

Observe:

• S ′ ⊆ S ′′

• int(S ′′) ∩ (ZI × RĪ ) = ∅
In pictures, will assume that sets are of the form S ′′

⇒ can draw pictures in RI



Intersection cuts for corner(B)

I = {1, 2} Ī = {3}
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Intersection cuts for corner(B)

I = {1, 2} Ī = {3}
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S : projection of S ′ onto RI

Note: int(S) = proj(int(S ′)) [289]
int(S) ∩ ZI = ∅

Observe:

• S ′ ⊆ S ′′

• int(S ′′) ∩ (ZI × RĪ ) = ∅
In pictures, will assume that sets are of the form S ′′

⇒ can draw pictures in RI
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f

x

x

x

1

2

3

S ′′ = S × RĪ
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f

x

x

x

1

2

3

S ′′ = S × RĪ

Observe:

• S ′ ⊆ S ′′

• int(S ′′) ∩ (ZI × RĪ ) = ∅
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Intersection cut: validity

Theorem 6.5: Let C be a closed convex set whose interior
contains the point x̄ but no point of ZI × RĪ . The intersection cut
(1) is a valid inequality for corner(B).

Comparison on linear relaxation of corner(B)

• GMI cuts are split cuts (Example 6.10)

• split cuts are intersection cuts
(general case: [Andersen, Cornuéjols, Li 2005 [12]])

• Some intersection cuts are not split cuts

For corner(B), intersection cuts are strongest
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(1) is a valid inequality for corner(B).

Comparison on linear relaxation of corner(B)

• GMI cuts are split cuts (Example 6.10)

• split cuts are intersection cuts
(general case: [Andersen, Cornuéjols, Li 2005 [12]])
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Intersection cut for corner(B)

Remark 6.6: Let C1,C2 be two closed convex sets whose interiors
contain x̄ but no point of ZI × RĪ . If C1 ⊆ C2, then the
intersection cut (1) relative to C2 dominates the intersection cut
(1) relative to C1.

Theorem 6.12: Every nontrivial facet of corner(B) is an
intersection cut.



Maximal ZI × RĪ -free sets

Lemma 6.17: Let C be a full-dimensional maximal ZI × RĪ -free
convex set and let K be its projection onto RI . Then K is a
maximal ZI -free convex set and C = K × RĪ .

Theorem 6.18: Let K ⊆ RI be a full-dimensional set. Then K is
a maximal ZI -free convex set if and only if K is a polyhedron that
does not contain any point of ZI in its interior but there is a point
of ZI in the interior of each of its facets.

Theorem 6.19: Any full-dimensional maximal ZI -free convex set
K is a polyhedron with at most 2|I | facets.



“Proof” of Theorem 6.18

Assume that K is bounded (general proof is more technical)

• Show that K is a polytope

• Show that all facets of K contain an integer point in their
interior:
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Gauge function

Let L be a lattice-free convex set in Rn contaning (f , 0) in its
interior.

The function ψ used in (1) to generate the coefficient of the
intersection cut generated by L is the gauge function of L.

Theorem [Borozan, Cornuéjols 2009 [BC]]
Let ψ be the gauge function of a maximal lattice-free set
containing f in its interior. Then ψ is nonnegative, positively
homogeneous, piecewise linear and convex
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Intersection cuts from two rows of the tableau

Optimal tableau for basis B:

xB = B−1b − B−1N xN = f +
∑
j∈N

r jxj

xj ≥ 0 for all j ∈ B ∪ N

• Relax xi ≥ 0 for all i ∈ B ⇒ corner(B)

• Select indices of two basic variables i1, i2 ∈ B ∩ I
• Erase from system all equalities except those defining
xi1 and xi2 ⇒ relaxation: :

xi1 = fi1 +
∑
j∈N

r ji1xj

xi2 = fi2 +
∑
j∈N

r ji2xj

xj ≥ 0 for all j ∈ N

xi1 , xi2 ∈ Z
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Maximal lattice-free sets in R2 × RN

Select maximal Z2 × RN -free convex set C ∈ R2 × RN :

• Lemma 6.17: C = K × RĪ with K full dim. Z2-free set

• Theorem 6.19: K is a polyhedron with 2, 3, or 4 facets

Split

Quadrilateral
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Maximal Lattice-free triangles

• Type 1:
• Three integral vertices
• Exactly one integral point in the interior of each edge

• Type 2:
• At least one fractional vertex v
• Exactly one integ. point in interior of both edges adjacent to v
• At least two integral points on the third edge

• Type 3:
• Exactly one integ. point in the interior of each edge, no others

Type 1
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Facet defining sets in R2 × RN

The facets are

• split inequalities with infinite direction r j for some j ∈ N or
when a ray condition holds

• triangle inequalities with corners on half-lines f + λr j for some
j ∈ N, λ > 0, or satisfying another ray condition,

• quadrilateral inequalities with corners on half-lines f + λr j for
some j ∈ N, λ > 0 and satisfying a ratio condition



Separation of 2-dimensional intersection cuts

Ignoring “ray conditions”:

• Splits

• Type 1 triangles with corner rays

• Type 2 triangles with corner rays

• Type 3 triangle with corner rays

• Quadrilaterals with corner rays

Questions:

• Should we try?

• Theoretical justification (Friday)

• Empirical evidence (Saturday)
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