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R(f,T) = convex hull of (RCP)

(LRCP): Linear relaxation of (RCP)
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Six relaxations of R(f,T):

e S(f,') = (LRCP) + all cuts from splits containing f in their
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e Aj(f,I') = (LRCP) + all cuts from triangles of type i
containing f in their interior, for i =1,2,3

e O(f,I) = (LRCP) + all cuts from quadrilaterals containing f
in their interior

We have:

R(f,T)=S(f,I)NA(f,T)NDO(f,T)
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Comparison of split, triangle and quadrilateral cuts

Theoretical comparison:
e Upper and lower bounds on quality of relaxations vs. R(f,I)
e Upper and lower bounds on relaxations between themselves
Empirical comparison:
e Heuristic separation algorithm for some families of cuts
e Compare gap closed in practice
Probabilistic comparison:

e Over all choices of f and I in a set L:
e Probability that L generates an inequality improving on the
split closure
e Prob. that some inequalities dominates others (coefficients or
volume cut off)
e Select f and I uniformly; compare average and worst-case
strength of split closure vs. triangle closure over all possible
optimization directions



Comparing families

( F{f:T0) ) (ﬁ:i{f: 1'})

( S{f;T) ) (ﬂl{.f:[ﬁ})
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Domination between families
L CR" : lattice-free set; e>0
relax(L,e) = {x € R" | ||x — X|| <¢, for some X € L}

Proposition 2.1 [ACGT] Let £, £’ be families of lattice-free
convex sets. Suppose that for every ¢ > 0 and every L € L, there
exists L' € L' such that L C relax(L’,€). Then L'(f,I') C L(f,T).

Do(f,T) © Aq(F,T) O(f, 1) € £8a(f,T)
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Comparing relaxations

C C R’ convex set is monotone when

x € Candy > x = yeC

Example: R(f,T), S(f,T), A(f,T),0(f,T)

C1, Go: monotone convex sets
How much to inflate G to contain Cy:

) 1
p(Cl, C2) = Inf{a ‘ Cl g OCCQ}

L: family of convex lattice-free sets

L(f,I) = (LRCP) + all cuts from sets in £ containing f in their
interior
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Computing an upper bound on p(L1, L5)
We have

1 — J
——— = E r)
p(L1,L2) r feLeLz _ Wi

ch (F)x; >1 for all Cé& Ly containing f
Jjer
xj € Ry for all jeT

If all L € L5 are bounded:
e Can assume that corner rays are all present
e Can assume that rays are scaled such that ¥, (r/) = 1 for all
Jer
e Can assume tha.t no ray rk is a convex combination of two
other raysin {r/ | j €T}

= {r | j €T} is exactly [(L) := set of corner rays for L
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Computing an upper bound on p(L1, L5)

1 _ H .
Aot = D%
JEr(L)
> pe(F) X
JET(L)
xj € Ry
Difficulties:

e Need to check all L € £»

>1

for all C € L; containing f

for all jeTl(L)

e For each L € £, one inequality for each C € £;
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Unimodular transformation
Unimodular transformation: ¢ : R” — R” with

d(x) = v+ Mx

where
vez"

M e Z"" with det(M) = £1

Need to check all L € £5 only up to unimodular transformation
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Computing an upper bound on p(S, A1)

All L € /Ay are identical up to unimodular transformation.
We can just pick one.

T: vertices (0,0), (0,2),(2,0)
T: vertices (1,0),(0,1),(1,1)

3
Z = min E XJ
j=1

3
Zws(rj)xj >1 for all split S containing f
j=1

xj € Ry for all j=1,2,3

Then 1 =p(S,Aq)



Computing an upper bound on p(S, /A1) (cont.)

Replace the infinite number of inequalities in the LP by a small
number:

S5;:split0<x; <1

S: split 0 < xp <1

S3:5plitl < x3+x <2

3
Z= min g Xj
j=1

3

> s (r) x; > 1 for t=1,2,3
j=1
X e Ry for all j=1,2,3

Then 1 > p(S,Aq)



Computing an upper bound on p(S, A1) (cont.)

Assume that f € T,

Z = min X1 +Xx +Xx3
fi+h
Atho1X1 +X2 +x3 >1
2—f
X1 +iAx +x3 >1
2-f >
X1 txe +tipX3 2 1



Computing an upper bound on p(S, /A1) (cont.)

Assume that f € T,

Z = min X1 +Xo +x3
fi+f
ﬁff;21x1 +X0 +x3 >1
X1 +§ gx +x3 >1
x1 tx +EEx3 >1
x>0

Optimal solution:

x _ fh+h-—1 _1-f * 1-f
= 5 = =

*
X2 2 X3 2

N|—=

with value z = x{ + x5 +x3 =



Computing a lower bound on p(S, /A1)

Lemma 6.3 [43]: If f is in the interior of triangle T, then the split
closure is defined by S, S, Ss.



Computing a lower bound on p(S, /A1)

Lemma 6.3 [43]: If f is in the interior of triangle T, then the split
closure is defined by S, S, Ss.

In general, to prove a lower bound on p(L1, £2):
e Select L e Lo, f
e Find a point x in £1(f,T(L))
°zZ= ZjeF(L) Pi(r) X;

o % is a lower bound on p(L1, £>)



Lower, upper bounds on p

Entry (/,/): lower bound, upper bound on p(i, )

| s|a 6o 25 | o | R
S - 2  +o0 +00 +o00 +00
A1 || 400 | — Ho0 400 400 400
A 1 1 — 1.125,15]1.125,15| 1.125, 15
N3 1 1 1 — 1.125, 1.5 | 1.125, 1.5
O 1 1 1 1.125, 1.5 — 1.125, 1.5

[Awate, Cornuéjols, Guenin, Tuncel 2013 [ACGT]]
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Probabilistic comparisons (model (i))
[Del Pia, Wagner, Weismantel 2011 [DPP]]

e Fix a lattice-free convex set L
e Let f vary uniformly in int(L) and use I'(L) as rays.
e For any z > 1, compute PL(z) := Prob(p(S,SU L) < z).

Findings:
o PL(z) tends to 1 when lattice-width of L € A tends to 1
0 fl<z<w
L (z—w)(2zw—w—z2) i < _w_
P (z) > S -1z ifw<z< %
—w ZW—Ww—2Z w— 2 zZ— 2 : w
Eow)Eawowe A B L i e <2 < oo

(similar result for L € A3)



Probabilistic comparisons (model (ii))
[Basu, Cornuéjols, Molinaro 2010 [BCM]]

e Let f and I be selected uniformly

o Compare average (avg) and worst-case (wc) gap between
closures over all possible cost vector.

e For a cost vector ¢ € R_’X
{minc x | x € i}

- {minc x | x € G}

gap(Cy, Gy, c)

with value +oo if C; =0 or {minc x | x € G} = 0.
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Probabilistic comparisons (model (ii))
[Basu, Cornuéjols, Molinaro 2010 [BCM]]

e Let f and I be selected uniformly

o Compare average (avg) and worst-case (wc) gap between
closures over all possible cost vector.

e For a cost vector ¢ € R_’X
{minc x | x € i}

- {minc x | x € G}

gap(Cy, Gy, c)

with value +oo if C; =0 or {minc x | x € G} = 0.
Findings:
e For > 1and |[| = +oo:  Prob(wc(A,S) > o)~ L — L,

e For @ > 1 and € > 0 (lower bound on entries in ¢):
Prob(avg(R(f,T),S(f,N) < a) 21—



Probabilistic comparisons (model (iii))
[He, Ahmed, Nemhauser 2011 [HAN]]

e Let f vary uniformly in the unit square U with uniformly
distributed rays.

e Compare the two splits containing U vs. the four Type 1
triangles containing U;

e Comparison based on coefficients on rays or volume cut off.
Probability that one type dominates the other.
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Probabilistic comparisons (model (iii))
[He, Ahmed, Nemhauser 2011 [HAN]]

e Let f vary uniformly in the unit square U with uniformly
distributed rays.

e Compare the two splits containing U vs. the four Type 1
triangles containing U;

e Comparison based on coefficients on rays or volume cut off.
Probability that one type dominates the other.

Findings:

e One of the two splits is more likely to dominate a Type 1
triangle than the opposite. Probability tends fast to 0 as
number of rays increases.

e Same conclusion for volume cut off. Probability tends to 1 as
number of rays increases.



