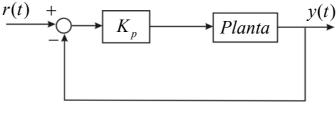
Sintonización de Controladores PID

Motivación

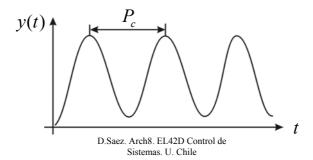
- La mayoría de los controladores industriales que se usan hoy en día utilizan esquemas de control PID.
- Estos controladores aportan un control satisfactorio en la mayoría de los sistemas de control.


D.Saez. Arch8. EL42D Control de Sistemas. U. Chile

Métodos de Sintonización

- 1) Límite de Estabilidad Ziegler & Nichols
- 2) Curva de Reacción Ziegler & Nichols
- 3) Criterio de López
- 4) Control por Modelo Interno (IMC)

Límite de Estabilidad Ziegler & Nichols


1. Utilizando sólo control proporcional, comenzando con un valor pequeño, incrementar la ganancia hasta que el sistema comience a oscilar.

D.Saez. Arch8. EL42D Control de Sistemas. U. Chile

Límite de Estabilidad Ziegler & Nichols

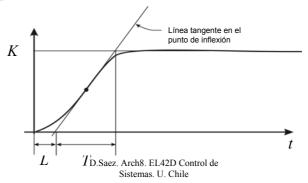
2. Registrar la ganancia crítica del controlador $K_p = K_c$ (crítico) y el período de oscilación de la salida del controlador P_c .

Límite de Estabilidad Ziegler & Nichols

3. Ajustar los parámetros del controlador según la siguiente tabla.

Tipo de controlador	K_p	T_{i}	T_d
P	$0.50K_{c}$	∞	0
PI	$0.45K_c$	$P_{c}/1.2$	0
PID	$0.60K_{c}$	$0.5P_c$	$P_c/8$

D.Saez. Arch8. EL42D Control de Sistemas. U. Chile


Curva de Reacción Ziegler & Nichols

• La respuesta del proceso puede ser caracterizada por la siguiente aproximación de primer orden con retardo:

$$\frac{Y(s)}{U(s)} = \frac{Ke^{-Ls}}{Ts+1}$$

Curva de Reacción Ziegler & Nichols

• A partir de la respuesta al escalón de la planta se obtienen los parámetros *K*, *L* y *T* que caracterizan la aproximación.

Curva de Reacción Ziegler & Nichols

 Los valores L y T además se pueden calcular fácilmente de las siguientes ecuaciones:

$$T = 1.5(t_2 - t_1)$$

$$L = 1.5(t_1 - \frac{1}{3}t_2)$$

Curva de Reacción Ziegler & Nichols

• Los valores t_1 y t_2 se obtienen del siguiente gráfico.

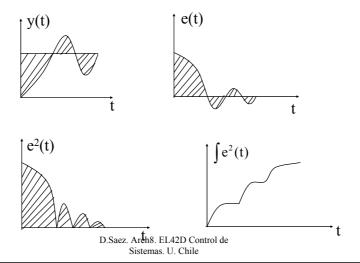
Curva de Reacción Ziegler & Nichols

• Conocidos L y T, los parámetros del controlador se obtienen de la siguiente tabla.

Tipo de controlador	K_p	T_{i}	T_d
P	$\frac{T}{L}$	∞	0
PI	$0.9\frac{T}{L}$	<u>L</u> 0.3	0
PID	$1.2\frac{T}{L}$	2L	0.5L

Criterio de López

- Según el criterio de López los parámetros del PID se encuentran en base a la minimización de los índices de funcionamiento.
- Para esto se asume que la respuesta se aproxima por una función de transferencia de primer orden con retardo.


D.Saez. Arch8. EL42D Control de Sistemas. U. Chile

Índices de Funcionamiento Criterio de López

Medida cuantitativa del funcionamiento de un sistema y se elige de forma que resalte las especificaciones del sistema

Min
$$I_1 = \int_0^T e^2(t)$$
 (ISE)
e(t) = r(t) - y(t)

Índices de Funcionamiento Criterio de López

Índices de Funcionamiento Criterio de López

$$Min I_2 = \int_0^T |e(t)| dt \qquad (IAE)$$

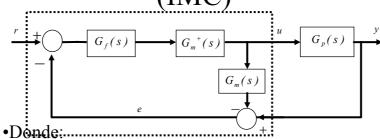
$$Min I_3 = \int_0^T t |e(t)| dt \qquad (ITAE)$$

$$Min I_4 = \int_0^T te^2(t) dt \qquad (ITSE)$$

$$Forma \ general : I = \int_0^T f(e(t), r(t), y(t), t) dt \rightarrow u(t)$$

$$u(t) = f(y(t),)$$

Índices de Funcionamiento Criterio de López


Control	Criterio	a	b	С	d	e	f
P	IAE	0.902	0.985				
	ISE	1.411	0.917				
	ITAE	0.490	1.084				
	Z&N	1.0	1.0				
PI	IAE	0.984	0.986	1.644	0.707		
	ISE	1.305	0.952	2.033	0.739		
	ITAE	0.859	0.917	1.484	0.680		
	Z&N	0.909	1.0	3.333	1.0		
PID	IAE	1.435	0.921	1.139	0.749	0.482	1.13
	ISE	1.495	0.945	0.917	0.771	0.560	1.00
	ITAE	1.357	0.947	1.176	0.738	0.381	0.99
	Z&N	1. DG aez.	Arch80EL42	D Coni to ol de	1.0	0.5	1.0

Índices de Funcionamiento Criterio de López

 A partir de la tabla y las siguientes relaciones, se obtienen los parámetros del PID:

$$K_p = \frac{a}{K} \left(\frac{L}{T}\right)^{-b}$$
 $T_d = Te \left(\frac{L}{T}\right)^f$ $T_i = Tc \left(\frac{L}{T}\right)^d$

Control por Modelo Interno (IMC)

 $G_m^+(s)$: Inverso aproximado de $G_m(s)$

 $G_m(s)$: Modelo de la Planta

G_f(s): D.Saez. Archs: EL420 Control de Sistemas. U. Chile