Parte 4: Diseño de Controladores Proporcional, Derivativo, Integral

Prof. Doris Sáez H.

D.Saez. Arch7. EL42D Control de Sistemas. U. Chile

Controlador PID Continuo

Acción derivativa

- Agrega un cero en el origen de la función de transferencia en lazo abierto.
- La acción derivativa representa la tendencia del cambio, es decir, es una proyección hacia donde se desplazará el proceso en el futuro.

D.Saez. Arch7. EL42D Control de Sistemas. U. Chile

Controlador Proporcional, Integral, Derivativo

$$u(t) = K_p e(t) + \frac{K_p}{T_i} \int_0^t e(t)dt + K_p T_d \frac{de(t)}{dt}$$

$$\frac{U(S)}{E(S)} = K_p (1 + \frac{1}{T_i S} + T_d S)$$

D.Saez. Arch7. EL42D Control de Sistemas. U. Chile

Controlador PID discreto

$$\begin{split} &U(S) = K_P \bigg(1 + \frac{1}{T_i S} + T_d S \bigg) \\ &U(Z) = \Bigg[K_{Pd} + \frac{K_{Id}}{1 - Z^{-1}} + K_{Dd} (1 - Z^{-1}) \Bigg] E(Z) \\ &K_{Pd} = K_P - \frac{K_P T}{2 T_i} \qquad T: \ tiempo \ de \ muestreo \\ &K_{Id} = \frac{K_P T}{T_i} \\ &K_{Dd} = \frac{K_P T_d}{T} \end{split}$$

D.Saez. Arch7. EL42D Control de Sistemas. U. Chile

Controlador PID Continuo

Acción integral

- Elimina error permanente.
- Agrega un polo en el origen de la función de transferencia en lazo abierto.
- Además, la acción integral es desestabilizadora, razón por la cual va siempre acompañada por la acción proporcional

D.Saez. Arch7. EL42D Control de Sistemas. U. Chile