
Sistemas de Control Realimentado: Tiempo Discreto

Especificaciones en el Dominio del Tiempo para Sistemas Discretos

•Error en régimen permanente:

$$e_{ss}^* = \lim_{t \to \infty} e(t) = \lim_{K \to \infty} e(KT) = \lim_{z \to 1} (1 - z^{-1}) E(z)$$

•Para un sistema realimentado:

$$e_{ss}^* = \lim_{z \to 1} (1 - z^{-1}) \frac{R(z)}{1 + G(z)G_c(z)}$$

Especificaciones en el Dominio del Tiempo para Sistemas Discretos

• Constante de error estático de posición (K_p^*)

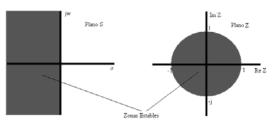
$$K_p^* = \lim_{z \to 1} G(z)G_c(z) \to e_{ss}^* = \frac{1}{1 + K_p^*}$$

Especificaciones en el Dominio del Tiempo para Sistemas Discretos

• Constante de error estático de velocidad (K_v^*)

$$K_{V}^{*} = \frac{1}{T} \lim_{z \to 1} (1 - z^{-1}) G(z) G_{c}(z)$$

$$\to e_{ss}^{*} = \frac{1}{K_{V}^{*}}$$


Especificaciones en el Dominio del Tiempo para Sistemas Discretos

• Constante de error estático de aceleración (K_a*)

$$\begin{split} K_{a}^{*} &= \frac{1}{T^{2}} \lim_{z \to 1} (z - 1)^{2} G(z) G_{c}(z) \\ &\to e_{ss}^{*} = \frac{1}{K_{a}^{*}} \end{split}$$

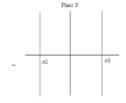
Mapeo entre Plano S y Plano Z

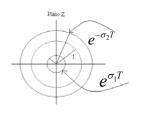
Transformacion: $z = e^{sT}$, Plano $s = \sigma + j\omega$

Mapeo entre Plano S y Plano Z

Transformacion: $z = e^{sT}$, Plano $s = \sigma + j\omega$

1)
$$s = j\omega \leftrightarrow |z| = 1$$
 $z = e^{j\omega T}$


2)
$$s = 0 \leftrightarrow z = 1$$
 $z = e^{0T} = 1$


3)
$$s = -\infty \leftrightarrow z = 0$$
 $z = e^{-\infty T} = 0$

3)
$$s = -\infty \leftrightarrow z = 0$$
 $z = e^{-\infty T} = 0$
4) $\sigma < 0 \leftrightarrow |z| < 1$ Zona estable en verde

Mapeo entre Plano S y Plano Z

Ejemplos:

Polos Discretos para Sistemas de Segundo Orden

• Polos dominantes para sistema continuo

$$s_{1,2} = -\xi \omega_n \pm j\omega_n \sqrt{1 - \xi^2}$$

• Con $z = e^{Ts}$, los polos correspondientes en el plazo z

$$z_{1,2} = \exp\left[T\left(-\xi\omega_n \pm j\omega_n\sqrt{1-\xi^2}\right)\right]$$

Polos Discretos para Sistemas de Segundo Orden

• Entonces, los polos discretos son:

$$|z| = e^{-T\xi\omega_n}$$

$$\int z = T\omega_n \sqrt{1-\xi^2}$$
 (rad)