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Abstract—In the daily operation of a bus system, the movement
of vehicles is affected by uncertain conditions as the day pro-
gresses, such as traffic congestion, unexpected delays, randomness
in passenger demand, irregular vehicle dispatching times, and in-
cidents. In a real-time setting, researchers have devoted significant
effort to developing flexible control strategies, depending on the
specific features of public transport systems. In this paper, we
propose a control scheme for the operation of a bus system running
along a linear corridor, based on expert rules and fuzzy logic. The
parameters of the fuzzy controllers were tuned through a particle
swarm optimization (PSO) algorithm. That is, the control strate-
gies aim at keeping regular headways between consecutive buses,
with the objective of reducing the total waiting time of passengers.
The proposed control systems rely on measures of the position
of each bus, which are easy to obtain and implement by means
of emerging automatic vehicle location devices through Global
Positioning System (GPS) technology. The utilized strategies are
holding, stop-skipping, and the integration of both. After tuning
the controller parameters, we conducted several simulation tests,
obtaining promising results in terms of savings in waiting times
with the implementation of the proposed rules, noting that the
best performance occurred when fuzzy rules are included. The
methodology has great impact, and it is easy to implement due to
its simplicity.

Index Terms—Bus-stop control strategies, expert systems, fuzzy
control, public transport system.

I. INTRODUCTION

IN THE daily operation of public transport systems, mainly
that of buses, the movement of vehicles is affected by

different uncertain conditions as the day progresses, such as
traffic congestion, unexpected delays, randomness in passenger
demand, irregular vehicle-dispatching times, and incidents. At
the planning level, the decision maker must decide the design
key variables (i.e., route design, fleet size, capacity of buses,
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and frequency), which are based on the average values of
spatial and temporal distribution of passenger demand and
traffic congestion over certain periods of operation. However,
following such a preplanned schedule could suggest inefficient
operational schemes due to the inherent uncertainty of the
system conditions. In a real-time setting, the variability of the
headway between buses would considerably impact the users’
level of service through the passengers’ waiting time at bus
stops. Note that the same average frequency (computed for a
period of 2–3 h defined at an aggregate level) could result in
quite different headway distributions; the typical phenomenon
of bus bunching is an example of how the dynamic conditions
can produce high variability in headways, which represents an
undesired system behavior associated with long waiting times
for passengers at bus stops.

As an attempt to reduce the negative effects of service distur-
bance, researchers have devoted significant effort to developing
flexible control strategies, depending on the specific features of
the problem. Particularly interesting are what the researchers
call real-time control strategies that depend on the availability
of real-time information through on-vehicle equipment such as
automatic passenger counters and automatic vehicle location
devices. These strategies are designed to allow the operator to
dynamically react to system disturbances.

The most studied strategy in recent years is holding, in which
vehicles are held at specific stations for a certain time and in
most cases oriented to keep the headway between successive
buses as close as possible to a predefined value. Moreover, to
control vehicles by the opposite effect (speed up buses, instead
of delaying them as in holding), we found strategies such as
expressing or stop-skipping, where buses can skip some of the
predefined stops according to what the operator decides in real
time.

As field tests of hypothetical situations are, in general, quite
expensive and hard to get implemented, some authors have de-
veloped simulations at the microscopic level of transit systems
to evaluate, among other things, real-time control strategies
such as holding, stop-skipping, and traffic signal priorities.
For a deep review of such techniques and some illustrative
applications, see [4] and [10].

In this paper, we propose control strategies designed to keep
each group of three consecutive buses on a route equidistant,
with the final objective of keeping regular headways between
them to reduce the total waiting time of passengers. This is
achieved through either holding buses at certain stops in certain
situations or forcing buses to skip specific stops in others. In
simple terms, the philosophy behind the expert control strategy
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that we will propose consists of moving forward the central
bus—if it is late—with respect to the central position of the
trajectory between the bus immediately behind and the bus
ahead, through stop-skipping; otherwise, the central bus is
delayed through holding.

The control system relies on measures of the position of each
bus, which is relatively easy to obtain nowadays by means of
emerging Global Positioning System (GPS) technology. In our
scheme, the strategies we include are holding, stop-skipping
and the integration of both. These two strategies correspond to
station-control-type according to the classification in [5]). Note
that the proposed strategies (i.e., holding and stop-skipping)
are able to either delay or advance the schedule of the buses,
increasing the flexibility of the methodology for avoiding up-
stream chain effects.

In the literature, we find several holding models that rely on
real-time vehicle location information [5], [7], [13], [22], and
[28]. In [5]–[7], deterministic quadratic programs are proposed
under a rolling horizon scheme, considering that the holding
decision for a specific vehicle affects the operation of a specific
subset of the precedent vehicles. On the one hand, they show
that holding strategies could reduce the variance of the waiting
time of passengers, as well as the expected value of both waiting
and travel time. On the other, they concluded that having two or
more holding stations over a corridor is not necessary. These
conclusions are contradictory with the results in [22], where
Sun and Hickman showed that holding vehicles in several
control stations would be better than having a single holding
stop. Most of the controllers are finally heuristically solved due
to the mathematical complexity of the formulations. In [28],
Zolfaghari et al. developed a mathematical control model for
holding using real-time information of locations of buses along
a specified route, which is solved with simulated annealing. In
[26], Yu and Yang proposed a dynamic holding strategy where
the on-time performance of the early bus operation at the next
stop is considered and the holding times at stops are optimized.
Genetic algorithms are proposed to optimize holding times.

In regard to stop-skipping, in [16], Khoat and Bernard con-
cluded that this strategy would effectively reduce the in-vehicle
travel time for passengers; however, the modeler has to be
very careful due to the increment in waiting time of those
passengers skipped by the buses at stops. As a real-time control
strategy, stop-skipping has been studied in [5], [6], [11], [17],
and [22]. The idea is to speed up buses by skipping stops (one
or more) for vehicles to recover their preplanned schedule after
a disruption or unexpected delay. This allows the total waiting
time of passengers at stations to be reduced by considering
the negative effects of extra waiting time for those passengers
whose stop has been skipped. In general, a station-skipping
decision is made before the buses depart from the terminal.
Conversely, in [22], Sun and Hickman allowed the control
action to be made once the vehicle is on route.

In [5], an integrated model encompassing holding, dead-
heading, and expressing is formulated. Cortés et al. [3] and
Sáez et al. [21] designed and evaluated a predictive control
strategy that also integrates the two strategies (i.e., holding
and stop-skipping) to solve a real-time public transport control
problem with uncertain passenger demand, relying on online

information of the system behavior. Similarly to [22], in their
model, the decision of skipping bus stops is made in real time,
which makes their framework more adaptable and responsive to
real-time delays.

With regard to fuzzy logic used in the field of transportation,
in [24], Teodorovic and Lucic developed a model for the syn-
chronization of a public transport system with transfers, where
the number of passengers at the transfer station is assumed to be
approximately known. The model is based on the fuzzy ant sys-
tem that represents a combination of the ant colony system and
fuzzy logic. Houng and Teodorovic [14] developed a decision
support system framework for integrated emergency vehicle
preemption and transit priority system investment planning.
They proposed fuzzy set concepts and multiattribute decision-
making methods to rank order transit signal priority strategy
alternatives at the intersection level. In [20], Onifade et al.
employed a fuzzy logic control technique to predict traffic
conditions and proposed a flexible approach to allocate buses.
The technique involves the fuzzification of input variables
based on major traffic conditions, such as day of the week, time
of the day, public holidays, weather conditions, and location.
In addition, [19] presented a controller based on fuzzy logic,
which assists the speed and distance vehicle control, offering
driving strategies and actuation over the throttle of a car. In the
context of traffic control applications, Gokulan and Srinivasan
[12] proposed a fuzzy decision system to dynamically compute
green times at each cycle of an intersection by using local data
received from the sensors directly connected to the intersection
and the communicated congestion data from the neighboring
intersections connected to the outgoing.

We recognize two relevant sources of stochasticity com-
monly observed in transit systems such as the simple one-way
loop route studied in this paper: 1) the demand at bus stops
and 2) the traffic conditions. At this stage, we only present
the developments associated with changes in demand patterns
(passengers arriving at stops as detailed in [3] and [21]), which
are reflected in the distances from the bus that triggers each
event and the buses immediately before and after. The distances
are affected due to the passenger transfer operations occurring
at bus stops; if the demand is high, buses normally take more
time at stops, increasing the total travel time through the system.

Thus, the demand is indirectly considered by the position
of the vehicles, which changes depending on the intensity
of passengers that arrive at each station during the modeling
period. Therefore, as the position of the buses is the only input
to feed the controllers, the required data from the system and
the complexity of the online algorithms used are considerably
simplified.

In this application, link speeds are assumed to be fixed, which
is a reasonable assumption in the case of exclusive corridors of
buses, where they are isolated from the rest of the traffic in most
segments of the route.

Moreover, there is no explicit objective function defined
in this scheme; however, the goal pursued by the operator is
implicit in the logic of the control rules toward a regularization
of headways, which positively affects passengers through the
minimization of waiting times. The different schemes are tested
in simulation.
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In our research, even though we study a single line (no
buses connections), we identified, as a major contribution of
the proposed schemes, the simplicity and potential savings in
computation resources and technology from the fact that this
methodology is based on a set of straightforward control rules
to decide the real-time behavior of vehicles. Moreover, the
methods presented here do not depend on demand and traffic
predictions, which are appropriate when neither future demand
nor traffic information is available. The simplicity of the pro-
posed methods in terms of applicability and computational
complexity is a strong reason to justify the implementation of
such schemes in real systems, which is feasible, even if just
basic technology elements are available (GPS technology and
online communication with the driver). Note in addition that
the complexity of the proposed algorithms does not explode
with the size of the problem; therefore, they can be applied to
large-scale bus corridors.

More sophisticated strategies based on hybrid predictive
control (HPC) have been developed by the same authors in
previous works (see [3] and [21]), who formulated state-space
models along with a detailed dynamic objective function and
future demand prediction methodologies in a closed-loop con-
trol scheme. In these works, the formulation of the objective
functions include terms of waiting and travel time incurred
by the passengers in the system as a result of the application
of holding and stop-skipping. The performance of such HPC
schemes turned out to be better than the strategy based on
fuzzy rules that we are proposing in this work, although the
implementation of such complicated systems requires high-
quality real-time measures of system variables; that implies
sophisticated technological features, which are not available to
most operators of transit systems in the world.

The major contribution of this paper is the development of
an integrated real-time control scheme applied on a single bus
corridor. We use the two aforementioned strategies holding and
stop-skipping, which are both applied in the context of a control
expert system and a control system based on fuzzy logic; in
both controllers, the objective is to minimize the waiting time
of passengers through the regularization of headways between
consecutive buses. We establish expert rules for holding and
stop-skipping, as well as fuzzy rules for holding, stop-skipping,
and the integration of both.

In the next section, the proposed bus system is described,
highlighting the way in which headway regularization is incor-
porated into the control scheme. In Section III, the different
expert rules and fuzzy rules are described in detail, including
a parameter tuning of fuzzy controllers. In Section IV, we
develop simulation tests and discuss the results, ending in
Section V with the conclusions and proposed further steps of
this research topic.

II. PUBLIC TRANSPORT SYSTEM

A. System Description

The methodology developed in this paper is applied on
a simple network, corresponding to a linear public transport
corridor that typically crosses a large urban region. The system

Fig. 1. Public transport system representation.

can be represented by a one-way loop route (see Fig. 1), with
N stations and Nb buses running along the loop, each with a
capacity for carrying C passengers.

B. Design Assumptions

The corridor is assumed to be isolated from the rest of the
traffic, and therefore, one can assume a fixed average speed
for the buses v0 on each stretch between consecutive stops.
Moreover, from the number of buses running Nb, the total
distance of the corridor, and the circulation speed, we can
estimate the total cycle time of the buses (to complete the loop),
which defines the design frequency f offered to the users. We
assume that the operator has the technology to control the buses
in real time. Station 1 is the terminal of the bus route, where all
passengers must get off.

The operator determines the design variables (frequency f
and fleet size Nb) based on historical demand information
through a representative stop-to-stop demand matrix for each
modeling period.

As mentioned in the previous section, one major advantage
of the methods proposed here is simplicity, in the sense of
defining rules only from bus position information, which means
that the demand is not directly incorporated into the model but
indirectly through the bus trajectories and how they change
with the system evolution with time. The simulation assumes
an uncertain demand, where passengers dynamically arrive at
stations by following a Poisson process with different demand
rates differentiated by station and period. The destination stop
is randomly chosen among the stations ahead of the station
from where the passenger gets on. The total time used for
boarding and alighting is assumed to be proportional to the
number of passengers and corresponds to the maximum time
between boarding and alighting [21]. Finally, link speeds are
assumed to be fixed in this model, which is a reasonable
assumption in cases where buses are isolated through exclusive
lanes/corridors.

In Section II-C, we define the available strategies the operator
can rely on to regularize the headways in real time to recover
the predefined design headway (which is inversely related to
design frequency f ) due to the natural distortion provoked by
the time spent in transference of passengers, which is unknown
beforehand because of the assumed uncertainty of the stop-to-
stop demand.

C. Closed-Loop Strategy

The major goal of this work is to evaluate the performance
of expert and fuzzy control strategies to regularize the headway
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Fig. 2. Relative positions of three consecutive buses.

Fig. 3. Generic closed-loop control diagram.

between the arrivals of consecutive buses to stops. To achieve
this objective, the strategies aim at keeping each group of three
consecutive buses equidistant. Then, let us define a discrete
event k as the bus arrives at any stop. In Fig. 2, we show the
relative position of three consecutive buses i − 1 (preceding
bus), i (current bus), and i + 1 (next bus). Let us define xi−1(k)
as the position of the preceding busi−1, xi(k) as the position
of the current busi, xi+1(k) as the position of the next busi+1,
and k as the measurement data event. We define distance di(k)
for referring to the position of the middle bus with respect to
the adjacent buses at the decision time. Therefore, di(k) can
also take negative values as it represents not only magnitude
but direction with respect to the middle point, i.e.,

di(k) = xi(k) −
(

xi−1(k) + xi+1(k)
2

)
. (1)

Fig. 3 shows a generic closed-loop diagram for a control
strategy, in which the control actions are triggered when bus i
reaches a stop (event k). The manipulated variables associated
with event k − 1 are holding hi (k) and stop-skipping Sui (k).
In this application, we chose discrete values for the holding
lapse hi(k): Holding action of bus i at instant k, where hi(k) =
niτ , ni ∈ Z+, τ > 0.

These expressions mean that the holding periods are mul-
tiples of a fixed step τ . This assumption is applied to sim-
plify both the formulation and the application of the solution
algorithm. In the numerical example, τ = 30 [s], and ni ∈
{0, 1, 2, 3}. The reason for choosing discrete holding lapses
was first, from an operational standpoint, to facilitate the bus
drivers to follow the instructions by the central dispatcher.
Moreover, having differences of less than 30 s in holding values
is not practical, mainly due to constraints given by real driving
conditions (unexpected traffic, flexibility of the driver to start
operating, communication with the central control station, etc.).
It is worth mentioning that, in the simulator, we separately
consider the holding action hi and the dwell time [including
the intervals for opening (OTi) and closing (CTi) the doors,
plus boarding and alighting times (BTi and ATi, respectively)].
Therefore, the total stopping time TDi of the ith bus is com-

puted as TDi = hi + OTi + CTi + max{BTi, ATi} (assum-
ing simultaneous boarding and alighting).

On the other hand, stop-skipping is defined as Sui (k) = 1
when the bus skips the stop and Sui (k) = 0 otherwise. Both
manipulated variables are mutually exclusive at every bus stop;
then, when stop-skipping is decided, the holding action cannot
be applied, and vice versa.

Moreover, the discrete event control strategies, in which
events are triggered by the arrival of buses at any stop, allow the
proposed local approach to move close to the global solution,
involving the entire fleet. This can be dynamically applied.

III. CONTROL STRATEGIES

A. Expert Control Strategy

In simple terms, the expert control strategy consists of mov-
ing busi forward if it is late with respect to the central position
of the trajectory between the precedent bus busi−1 and the next
bus busi+1; otherwise, busi is delayed.

Next, we define the expert controller as a set of rules. We
assume that buses move at an average speed of v = 25 km/h,
i.e., 6.94 m/s. Therefore, the product of speed v and the holding
lapse β is the distance vβ that a bus refrains from traveling
due to a holding control action that is equivalent to β, i.e.,
208.2 m. As a consequence, if the bus is held at a lapse of 2β,
it will refrain from traveling a distance of 2vβ. Similarly, if the
bus is held at a lapse of 3β, it will refrain from traveling 3vβ.

Therefore, if the holding control action takes a value β,
we can define a neighborhood ratio vβ/2 around di(k) = vβ
(i.e., vβ/2 < di(k) ≤ 3vβ/2), where this control action will be
applied.

Following the same reasoning, within the range 3vβ/2 <
di(k) ≤ 5vβ/2, the holding control action will take a value
2β (hi(k) = 2β), and for 5vβ/2 < di (k), the holding control
action will take a value 3β(hi(k) = 3β). Instead, if −vβ/2 <
di (k) ≤ vβ/2, the holding and stop-skipping control actions
are not necessary (hi(k) = 0, Sui(k) = 0). Finally, if di(k) ≤
−vβ/2, the control action will be just stop-skipping (hi (k) =
0, Sui (k) = 1).

Thus, adding the limit cases (equalities), we can formulate
the expert control strategy (holding and stop-skipping based on
rules) as the following five rules.

If di(k)≤−vβ/2, then hi(k)=0, Sui(k)=1. (2a)

If −vβ/2<di(k)≤vβ/2, then hi(k)=0, Sui(k)=0. (2b)

If vβ/2<di(k)≤3vβ/2, then hi(k)=β, Sui(k)=0. (2c)

If 3vβ/2<di(k)≤5vβ/2, then hi(k)=2β, Sui(k)=0. (2d)

If 5vβ/2<di(k), then hi(k)=3β, Sui(k)=0. (2e)

Next, we will describe five control strategies based on the
previous set of rules. The first two are particular cases of the
expert control, whereas the remaining strategies correspond to
fuzzy adaptations of the same rules.

1) Holding Based on Rules: In this case, the control strategy
only computes holding actions; therefore, rule (2a) is discarded,
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Fig. 4. Structure of a fuzzy system.

and rule (2b) is modified. Finally, we obtain the following set
of rules.

If di(k)≤vβ/2, then hi(k)=0, Sui(k)=0. (3a)

If vβ/2<di(k)≤3vβ/2, then hi(k)=β, Sui(k)=0. (3b)

If 3vβ/2<di(k)≤5vβ/2, then hi(k)=2β, Sui(k)=0. (3c)

If 5vβ/2<di(k), then hi(k)=3β, Sui(k)=0. (3d)

2) Stop-Skipping Based on Rules: In this case, the control
strategy only computes stop-skipping control actions. Thus, the
set of rules becomes the following.

If di(k) ≤ −vβ/2, then hi(k) = 0, Sui(k) = 1. (4a)

If − vβ/2 < di(k), then hi(k) = 0, Sui(k) = 0. (4b)

B. Control Strategies Based on Fuzzy Logic

In the aforementioned control strategies, the manipulated
variables turn out to be a discontinuous function of position
di(k), which generates abrupt variations in holding decisions
when position di(k) is close to either the upper or the lower
limits (i.e., −vβ/2, vβ/2, 3vβ/2, or 5vβ/2). To avoid such dis-
continuous behavior associated with the expert control strate-
gies, we propose to adapt the basic rules by using fuzzy logic
techniques [1].

The fuzzy logic defines a fuzzy set A, whose elements
belong to a discourse universe X as the set of tuples A =
[(x, µA(x))/x ∈ X], where µA(x) denotes the membership
function associated with fuzzy set A. The membership function
assigns a membership degree between 0 and 1 to each the ele-
ment of X . The most used membership functions are triangular,
trapezoidal, and Gaussian in shape. Based on this definition, a
fuzzy system corresponds to a set of rules of the following form:

If x1 is A1 and x2 is A2, then y is C (5)

where A1, A2, and C are fuzzy sets.
Fig. 4 shows the structure of a fuzzy system used for control

purposes, where x(k) represents a vector of inputs x1(k) and
x2(k), and y(k) represents the output. The Knowledge Base
contains the expert system rules, and the Inference Engine
determines the output based on fuzzy logic operators. The
Fuzzification Interface transforms the input variables (crisp or
nonfuzzy values of the variables) into fuzzy variables. The
Defuzzification Interface determines the output from the output
fuzzy sets [18]. In this paper, we use the Zadeh logic defined

Fig. 5. Membership functions for position di(k), with holding based on fuzzy
rules.

Fig. 6. Membership functions for holding hi(k), with holding based on fuzzy
rules.

for the Inference Engine and the gravity center method for
defuzzification [1], [27].

1) Holding Based on Fuzzy Rules: In this case, the rules
associated with the fuzzy knowledge base are the same as those
described in Section III-A1 but with variables di(k) and hi(k)
represented by fuzzy sets. Analytically, we have the following.

If di(k) is D0, then hi(k) is H0. (6a)

If di(k) is D1, then hi(k) is H1. (6b)

If di(k) is D2, then hi(k) is H2. (6c)

If di(k) is D3, then hi(k) is H3. (6d)

Fig. 5 and 6 show the membership functions of di(k) and
hi(k), respectively, for the triangular fuzzy sets D0, D1, D2,
D3, and H0, H1, H2, H3 (with µ representing the membership
degree of the corresponding variable). The lower limit of D0

and the upper limit of D3 were fixed to include all the values of
the input variable. The membership functions are parameterized
in terms of the average width corresponding to the base of the
triangle. Parameters a0, a1, a2, and a3 are associated with the
triangle bases for fuzzy sets of di(k), and m0, m1, m2, and m3

are associated with the triangle bases for fuzzy sets of hi(k),
as shown in Figs. 5 and 6. These figures show the initial shape
of the membership functions in a dotted line and the adjusted
shape in continuous line obtained from the parameter tuning
described next in Section III-C.

Unlike the control strategy based on rules described in
Section III-A1, holding takes any continuous value between
hi(k) = 0 and hi(k) = 3β. Remember that the stop-
skipping control actions are not considered in this controller
(Sui(k) = 0).
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Fig. 7. Membership functions for distance di(k), with stop-skipping based on
fuzzy rules.

Fig. 8. Membership functions for stop-skipping Sui(k), with stop-skipping
based on fuzzy rules.

2) Stop-Skipping Based on Fuzzy Rules: This control strat-
egy is derived from the scheme described in Section III-A2 but
formulated as a fuzzy system.

If di(k) is D5, then Sui(k) is S1. (7a)

If di(k) is D6, then Sui(k) is H0. (7b)

The membership functions of variables di(k) and Sui (k)
for fuzzy sets D5, D6, S1, and H0 are shown in Figs. 7 and 8.
Parameters a0 and a1 are associated with the triangle bases for
the fuzzy sets of di(k), and m0 and m1 are associated with the
triangle bases for the fuzzy sets of Sui (k), as shown in Figs. 7
and 8. In addition, parameter TSu represents the time saved
by applying stop-skipping. These figures show the initial shape
of the membership functions in a dotted line and the adjusted
shape in continuous line obtained from the parameter tuning
described next in Section III-C.

Note that, for this controller, the holding action is not
considered (hi(k) = 0).

3) Holding and Stop-Skipping Based on Fuzzy Rules: In the
integrated case, the holding and stop-skipping control actions
are computed based on the following fuzzy rules.

If di(k) is D1, then hi(k) is H1. (8a)

If di(k) is D2, then hi(k) is H2. (8b)

If di(k) is D3, then hi(k) is H3. (8c)

If di(k) is D5, then Sui(k) is S1. (9a)

If di(k) is D4, then Sui(k) is H0. (9b)

The membership functions of di(k) associated with the fuzzy
sets D1, D2, D3, D4, and D5 are shown in Fig. 9. Moreover, the
membership functions for the fuzzy sets H0, H1, H2, H3, and

Fig. 9. Membership functions for distance di(k), with holding and stop-
skipping based on fuzzy rules.

Fig. 10. Membership functions for output, with holding and stop-skipping
based on fuzzy rules.

S1 are shown in Fig. 10. Parameters a0, a1, a2, a3, and a4 are
associated with the triangle bases for fuzzy sets of di(k), and
m0, m1, m2, m3, and m4 represent the parameters associated
with the triangle bases for fuzzy sets of hi(k), as shown in
Figs. 9 and 10.

In the next section, we describe the simulation scenarios
for experimentation, and based on that, we tune the following
parameters: β, TSu, a0, a1, a2, a3, a4, m0, m1, m2, m3,
and m4, involved in the fuzzy controllers (see Figs. 5–10).
With the optimal parameters based on tuning, we conduct
several experiments via simulation to quantify the benefits of
the proposed methods with respect to the open-loop (OL, no
control) scheme (see Section IV).

C. Parameter Tuning of Fuzzy Controller

Many approaches have been proposed for the generation
of tuning fuzzy rules from numerical data. Most of them are
based on evolutionary algorithms [8]. In this paper, evolution-
ary algorithms are used to select the relevant input variables
to determine the number of membership functions on each
input variable and to adjust the shape of each membership
function. Thus, these methods can also determine the number
and type of fuzzy rules, as well as the hierarchical structure of
fuzzy rule-based systems. Cordon et al. [2] comprehensively
reviewed various methods in this field, including the most
representative genetic-algorithm-based methods for the design
of fuzzy systems, which are mainly oriented to the generation
of the number and distribution of the membership functions.

Another method for the design of tuning fuzzy rules is
by using particle swarm optimization (PSO). This algorithm
is based on a particle swarm that represents a population of
candidate solutions [15]. The particles are randomly initialized,
and then, they iteratively move within the search space to find
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Fig. 11. Flow chart of traditional particle swarm optimization.

new solutions. The particles have a fitness associated with
the solution quality, which is usually given by the objective
function to be optimized. Each particle i is characterized by
a position, a velocity, its best previous position, and the best
position among all the particles belonging to the swarm. The
particles are updated (they move) according to their cognitive
and social behavior. An example of this is given in [9], where
the PSO technique is employed to automatically tune the cen-
ters and the widths of the Gaussian membership functions at the
input and output, resulting in the fuzzy membership function of
a Mamdani type of fuzzy controller.

Considering the preceding discussion, we decided to tune the
parameters of the fuzzy controller through the PSO technique.
As previously described in Sections III-B1–B3, the holding
based on fuzzy rules, stop-skipping based on fuzzy rules and
their integration, and holding and stop-skipping based on fuzzy
rules are parameterized (see Figs. 5–10). For those fuzzy con-
trollers, β is the holding time; a0, a1, a2, a3, and a4 are the
parameters for the input fuzzy sets; m0, m1, m2, m3, and m4

are the parameters for the output fuzzy sets; and Tsu is the
time saved by applying stop-skipping. Then, we design a set of
experiments to determine the optimal values of the parameters
mentioned in terms of the minimization of the average waiting
time, which is highly correlated with the regularization of
headways [5]–[7].

In Fig. 11, we show the traditional flow chart of PSO.
Since the original PSO algorithm does not guarantee conver-

gence, in this work, we used a new PSO algorithm [25], which
ensures local convergence and avoids the typical premature
convergence found in the original algorithm.

In the original PSO algorithm reported in [15], if the current
particle position is equal to both the current best position pbest
and the global best position gbest, the velocity update will
depend only on the value of the inertia weight and its current
velocity. Thus, the particle will only move away from this point
if its previous velocity and inertia weight are nonzero. If the
previous velocities of all the particles in the population are very

TABLE I
PARAMETERS OF THE PSO PROCESS

close to zero, then all of them will stop, and the algorithm
will stop as well, which may lead to premature convergence
of the original PSO algorithm. To solve this issue, we introduce
a new update velocity algorithm to the PSO version proposed
in [25]. The velocity for the particle gbest is updated based on
three terms: 1) a reset of the particle position to the global best
particle position; 2) a search direction (based on the value of the
inertia weight and its current velocity); and 3) a random term for
searching in the area surrounding the global best position gbest.
The velocity of the remaining particles (different from gbest)
is updated using the same velocity equation as in the original
PSO. Then, the new PSO version ensures local convergence and
avoids the premature convergence often observed in the original
PSO implementations.

In our applications, we applied this new version of the PSO
algorithm for tuning the parameters already described for the
three fuzzy controllers proposed.

In Table I, the parameters that integrate the particles
for each of the controllers designed along with their fi-
nal values are shown. For example, for holding based on
fuzzy rule control, the particles are summarized in the set
{β, a0, a1, a2, a3,m0,m1,m2,m3}.

For tuning these fuzzy controllers, we consider Nd = 30
days with different demand patterns. The objective function
used in the PSO algorithm refers to the minimization of∑Nd

d=1 Tw(d), where Tw(d) is the mean waiting time of the
stops on the route simulated by 2 h for each day d.

The epochs and particles for the population were chosen ad
hoc to this particular problem (20 each), showing a reasonable
convergence pattern to have consistent results. The other para-
meters were selected from similar studies in the PSO literature
[23], i.e., particle velocity saturation of 50, two acceleration
parameters, an initial inertia weight of 0.9, and a final inertia
weight of 0.4.

IV. SIMULATION EXPERIMENTS

The proposed control strategies were implemented in Matlab.
The simulator of the transport public system corresponds to a
discrete-event simulation platform. The rules for both fuzzy and
expert controllers were also coded in Matlab.
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Fig. 12. Study for the number of selected control stations. (a) Stop-skipping
based on rules. (b) Holding and stop-skipping based on rules.

The control strategies are applied to a bus corridor of 4000 m
comprising ten stations evenly distributed over the whole route.
The fleet comprises six buses with a capacity of 72 passengers
each. The total simulation period was 2 h, with a warm-up time
(discarded for statistics) of 15 min at the beginning and at the
end of the simulation.

A. Selection of Stops to Apply Holding and Stop-Skipping
Using an Expert Controller

First, we performed sensitivity studies to define the number
of potential stops for applying holding and stop-skipping, which
are both based on the expert controller. We conducted 30
replications for each combination of selected stops to either
hold buses or skip stops. Thus, if, for example, five bus stops
are tested for holding, 30 replications for each possible way to
select five stops among the ten stops along the corridor were
conducted.

In Fig. 12, we show the average waiting time and its
95% confidence interval for passengers, which are closely
related to the variance of the distance between consecutive
buses. Fig. 12(a) shows the sensitivity for stop-skipping in
the context of the stop-skipping strategy based on rules only
(see Section III-A2) to visualize the specific effect of such a
strategy. As expected, in terms of waiting time, the tests showed
that we should leave the option of applying this strategy in all
the stops to minimize such an indicator. We then decided to
apply potential skipping everywhere, which is reasonable as the
conditions for applying skipping are quite restrictive. (Nobody
should get off the bus.) Then, it does not make sense to add an
additional constraint to the controller.

TABLE II
AVERAGE AND STANDARD DEVIATION OF WAITING TIME AND TRAVEL

TIME PER PASSENGER AND COMPUTATION TIME

After deciding to potentially being able to skip every stop, we
analyze the number of stops to apply holding, in the context of
the integrated holding and stop-skipping strategy based on rules
(see Section III-A) in Fig. 12(b). As the figure shows, the best
option is to apply holding at four stops. (The best combination
was, effectively, stops 2, 3, 8, and 9.) The reduction of locations
to hold vehicles also has a practical objective: The application
of holding sometimes requires special infrastructure devices
designed to accommodate vehicles, which makes sense on
selected locations and not at every stop.

B. Simulation Results of the Proposed Strategies

With the considerations explained in Section IV-A, we ran 30
replications for each strategy explained in Section III. Table II
shows the waiting time and travel time per passenger (on
average and std), as well as the computation time taken to
simulate the effective period of 2 h, applying the six proposed
control schemes and the OL option, i.e., with no control at all.

In Table II, indicator B is also included, which quantifies
the benefit associated with the performance of the proposed
controller with respect to the OL system, which is computed
through the expression shown at the bottom of the page.

From Table II, we observe that the travel times are similar
in case of all the proposed controllers. The waiting times using
only the holding action are reduced by 20% with respect to the
OL strategy. A better performance of 40% savings of waiting
time is obtained using the stop-skipping control action only,

B[%] =
[Waiting Time Open Loop] − [Waiting time Control Strategy]

[Waiting Time Open Loop]
· 100
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Fig. 13. Bus trajectories for different control strategies. (a) OL. (b) Holding
and stop-skipping based on rules. (c) Holding and stop-skipping based on fuzzy
rules.

with both deterministic rules and fuzzy rules. Finally, the best
performance, with savings of about 47% in waiting time, is
obtained when using a control strategy based on both holding
and stop-skipping control actions. The maximum benefit is
53.04% when adding fuzzy rules, which was expected since the
fuzzy implementation is more sophisticated and more sensitive
than pure expert control and, therefore, in real applications (in
this case through simulation), should report better performance
than the deterministic set of rules. The reason for having almost
no improvements in term of waiting time is basically because
the rules are oriented to regularize frequencies, which has a
direct impact on waiting time but not on travel times. The travel
time over stretches between consecutive stops is quite stable
since we consider a system running on exclusive corridors.

The considerable benefits of the strategies in all cases are
also due to proper calibration of the parameters via sensitivity
analysis, as shown in Section IV-A. This procedure has to
be adapted to the particular conditions of the system to be
controlled. Then, we can conclude that this preprocess (tuning
of parameters) is very important to obtain a good performance
of the set of rules to be implemented.

The objective of each set of rules implemented is to regu-
larize bus headways. In Fig. 13, we can graphically see this
effect, which ultimately generates benefits through savings in
waiting times, as explained before. Each graph in Fig. 13 shows
the trajectory of the buses (for a representative replication),
considering (a) the OL, (b) expert control, and (c) fuzzy control
and considering an integration of holding and stop-skipping
[in (b) and (c)]. Fig. 13 shows only the final half of the
simulation time.

From the figures, we can see how the trajectory of the buses
is much more dispersed when the control actions are included,
starting from a very condensed situation in Fig. 13(a) (which
is an effect that is called bus bunching) and proceeding to a

much better situation in terms of service regularity, mainly in
Fig. 13(c). We observe that, in general, bunching conditions
are reduced as the proposed control strategies are based on a
local approach working toward the regularization of headways
between arrivals of consecutive buses at stops. Finally, from
empirical simulations, chain effects, bunching, and other kinds
of problems were rarely observed.

V. CONCLUSION

In this paper, a scheme for the operation of a bus system
running along a linear corridor has been proposed, which was
based on expert rules and fuzzy logic. The control system relied
on measures of the position of each bus, which was easy to
obtain and implement by means of the emerging GPS tech-
nology. The strategies used were holding, stop-skipping, and
their combination, with the final objective of keeping regular
headways between buses to minimize the total waiting time
of the passengers. The set of rules, in both deterministic and
fuzzy cases, has been formulated in detail and then applied to
a hypothetical linear corridor via simulation. The parameters of
the fuzzy controllers have been tuned through a PSO algorithm.

The best controllers have been obtained for the combined
strategy including holding and stop-skipping, considering fuzzy
rules, which, for this application, reported savings in the aver-
age waiting times of 53.04% with respect to OL control, which
represents the situation of keeping regular headways only at the
terminal in one of the extremes of the corridor. Travel times
on segments have been considered constant in the simulation,
which means that the system only reported benefits in terms
of waiting times. Sensitivity analyses have also shown that the
optimal way to implement holding was just to hold buses in a
selected number of stations, which, as mentioned before, is not
a minor issue due to practical implementation issues (proper
infrastructure to hold buses for example).

One important conclusion is the simplicity and potential sav-
ings in computation at resources and technology, which would
result if this system were implemented. This is because the
proposed methodologies are based on a set of straightforward
control rules to decide the real-time behavior of buses.

As further research, we plan to extend the base of rules
considering other inputs such as expected departure time from
stops and expected bus occupancy. Moreover, other complex
strategies can be included in the expert system, such as the
additional injection of buses when the demand reaches a thresh-
old due to online unexpected system conditions. In addition,
we are testing models based on historical data for representing
the behavioral patterns associated with variable speed in the
fuzzy control design to incorporate both traffic congestion and
demand disturbances.
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