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Abstract. The automated flaw detection in aluminium castings
consists of two steps: a) identification of potential defects using image
processing techniques, and b) classification of potential defects into
‘defects’ and ‘regular structures’ (false alarms) using pattern recognition
techniques. In the second step, since several features can be extracted
from the potential defects, a feature selection must be performed. In
addition, since the two classes have a skewed distribution, the classifier
must be carefully trained. In this paper, we deal with the classifier
design, i.e., which features can be selected, and how the two classes
can be efficiently separated in a skewed class distribution. We propose
the consideration of a self-organizing feature map (SOM) approach for
stratified dimensionality reduction for simplified model building. After
a feature selection and data compression stage, a neuro-fuzzy method
named ANFIS is used for pattern classification. The proposed method
was tested on real data acquired from 50 noisy radioscopic images, where
23000 potential defects (with only 60 real detects) were segmented and
405 features were extracted in each potential defect. Using the new
method, a good classification performance was achieved using only two
features, yielding an area under the ROC curve A, = 0.9976.

Keywords: automated visual inspection, neuro-fuzzy methods, alumi-
nium castings, ROC curves.

1 Introduction

Shrinkage as molten metal cools during the manufacture of die castings, can
cause defect regions within the work piece. These are manifested, for example,
by bubble-shaped voids, cracks, slag formations or inclusions (see examples in
Fig.[). Light-alloy castings produced for the automotive industry, such as wheel
rims, are considered important components for overall roadworthiness. To en-
sure the safety of construction, it is necessary to check every part thoroughly.
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Fig. 1. Radioscopic images of wheels with defects.

Radioscopy rapidly became the accepted way for controlling the quality of die
cast pieces through computer-aided analysis of X-ray images [I]. The purpose of
this non-destructive testing (NDT) method is to identify casting defects, which
may be located within the piece and thus are undetectable to the naked eye.
The automated visual inspection of castings is a quality control task to deter-
mine automatically whether a casting complies with a given set of product and
product safety specifications. Two classes of regions are possible in a digital X-
ray image of an aluminium casting: regions belonging to regular structures of
the specimen, and those relating to defects. In the computer-aided inspection of
castings, the aim is to identify these two classes automatically. Data mining and
image processing methods have been developed in a wide range of techniques
for data treatment. Thus, it is possibly to apply several of these techniques for
the defect detection task. Many approaches for automated defect detection in
X-ray images have been used; these approaches included neural networks [2J3],
statistical classifiers [3], fuzzy clustering [4] and fuzzy expert systems [5].

Typically, the automatic process used in fault detection in aluminium cast-
ings, as shown in Fig. [2], follows a pattern recognition methodology that can be
summarised in two general steps [3]:

a) Identification of potential defects:
e Image formation: An X-ray image of the casting being tested is taken and
stored in the computer.
e Image pre-processing: The quality of the X-ray image is improved in order
to enhance the details of the X-ray image.
e Image segmentation: Each potential flaw of the X-ray image is found and
isolated from the rest of the scene.

b) Detection:
e Feature extraction: The potential flaws are measured and some significant
characteristics are quantified.
e Classification: The extracted features of each potential flaw are analysed
and assigned to one of the two following classes: ‘defect’ or ‘regular structure’.
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Fig. 2. Automatic process in fault detection in aluminium die castings [3].

In step a), the identification of real defects must be ensured. Nevertheless, using
this strategy an enormous number of regular structures (false alarms) is iden-
tified. For this reason, a detection step is required. The detection attempts to
separate the existing defects from the regular structures. In step b), since several
features can be extracted from the potential defects, a feature selection must be
performed. In addition, since the two classes show a skewed distribution (usually,
there are more than 100 false alarms for each real defect), the classifier must be
carefully trained.

In this paper, we deal with the classifier design, i.e., which features can be
selected, and how the two classes can be efficiently separated in a skewed class
distribution. A self-organizing feature map (SOM) approach is used for stratified
dimensionality reduction for simplified model building [6]. After a feature selec-
tion stage, a neuro-fuzzy method based on an adaptive-network-based inference
system (ANFIS) [7] is used for the classification. The advantage of neuro-fuzzy
systems is the combination of both properties: non linear learning based on nu-
merical data and handling uncertainties in data.

The rest of the paper is organised as follows: in Section 2] the pattern recog-
nition using SOM and ANFIS is presented. Experiments and results on X-ray
images are presented in Section Bl Finally, Section H gives concluding remarks.

2 Pattern Recognition Using SOM and ANFIS Algorithm

As explained in Section [1 the automated visual inspection follows a pattern
recognition methodology. This Section presents the steps of the proposed method
using SOM and ANFIS algorithms applied to the automated flaw detection of
castings.



Neuro-Fuzzy Method for Automated Defect Detection 829

2.1 Identification of Potential Defects

The X-ray image taken with an image intensifier and a CCD camera (or a flat
panel detector), must be pre-processed to improve the quality of the image. In
our approach, the pre-processing techniques are used to remove noise, enhance
contrast, correct the shading effect and restore blur deformation [§].

The segmentation of potential flaws identifies regions in radioscopic images
that may correspond to real defects. Two general characteristics of the defects
are used to identify them: a) a flaw can be considered as a connected subset of
the image, and b) the grey level difference between a flaw and its neighbourhood
is significant. According to the mentioned characteristics, a simple automated
segmentation approach based on a LoG operator was suggested in [9]. This is a
very simple detector of potential flaws with a large number of false alarms flagged
erroneously. However, the advantages are as follows: a) it is a single detector (it
is the same detector for each image), b) it is able to identify potential defects
independently of the placement and the structure of the specimen, i.e., without
a-priori information of the design structure of the test piece, and ¢) the detection
rate of real flaws is very high (more than 95%).

In order to reduce the number of the false alarms, the segmented regions
must be measured and classified into one of the two classes: regular structure
or defect. In the following sections, the detection of defects will be explained in
further detail.

2.2 Feature Extraction and Feature Selection

Features are used for representing original data in a lower dimension space.
Features extracted can be divided into two groups: geometric features (area,
perimeter, invariant moments, etc.) and intensity features (mean gray value,
texture features, Karhunen-Ldeve coefficients, Discrete Cosine Transform coef-
ficients, etc.) [B]. In order to build a compact and accurate model, irrelevant
and redundant features are removed. The Correlation-based Feature Selection
(CFS) method takes into account the usefulness of individual features for class
discrimination, along with the level of inter-correlation among them [T0].

2.3 Stratified Dimensionality Reduction Using SOM

In the proposed approach, SOM is used for stratified dimensionality reduction
for model simplification. Skewed class distributions can lead to an excessive com-
plexity in decision boundaries construction, so to create a reduced representation
of the original data is necessary. In the stratified dimensionality reduction ap-
proach, the idea is to have an economic representation of the whole dominant
class without loss of knowledge of the internal relationships among features.
SOM is performed using neural networks. The approach transforms a high
dimensional input space to a low order discrete map. This mapping has the par-
ticularity that it preserves input data topology while performing dimensionality
reduction of this space. Every processing unit of the map is associated with
an n-dimensional reference vector, where n denotes the dimension of the input
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vectors. Weight updating is done by means of a lateral feedback function and
winner-take-all learning, and this information forms a codebook.

In this work a SOM codebook of the dominant class is used as new training
data for the next stage of classification. Thus, SOM contributes to the stratified
dimensionality reduction, but in addition, this approach introduces other benefits
like computational load decrease and noise reduction [6].

2.4 Pattern Classification Using ANFIS

Pattern classification attempts to assign input data to a pre-defined class. In our
approach, an ANFIS algorithm is used for supervised classification [11]. ANFIS
is a hybrid network model equivalent to a Takagi-Sugeno fuzzy model, which
means that a rule base can be expressed in terms of fuzzy ‘if-then’ rules like:

Ry:if z is Ay and y is By then 21 = fi(z,y)
Ro: if z is Ag and y is By then zo = fo(z,y)

where A and B are fuzzy sets in the antecedent, and f; is a crisp function of the
consequent. In this type of controller the defuzzification stage is replaced by a
weighted average of incoming signals from each node in the output layer. The
resulting adaptive network can be viewed as shown in Fig. Bl where w; is the
output of each node in the second layer, which multiplies the incoming signals
and outputs the product. This value actually represents the firing strength of a
rule which is normalised in the next layer. Each node is a process unit which
performs a function on its incoming signals to generate a single node output [11].
This node function is a parameterised function with modifiable parameters. If
the parameter set in a node is non-empty, then the node is an adaptive node
an is represented as a square. On the other hand, if the parameter set is empty,
there is a fixed node, which is represented as a circle in the diagram.

In this paper, the ANFIS system is used for pattern classification into defects
and regular structures. Fuzzy ‘if-then’ rules are extracted numerically from data
and defines a mapping between extracted features from radiographic image data

N Rt

T Ty

Fig. 3. ANFIS architecture [7].
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and decision boundaries for defect detection. These features become fuzzy sets
and fuzzy numbers rather than crisp values, achieving robustness in the decision
making process with an approximate reasoning based solution.

2.5 Evaluation Basis

Once the classification is carried out, a performance evaluation is required. The
area under the Receiver Operation Characteristic (ROC) curve is commonly
used for classifier performance for two class problems [12]. This metric provides
a scalar unit which represents overall mis-classification and accuracy rates, dis-
carding unbalanced class distribution effect.

The ROC curve is defined as a plot of the ‘sensitivity’ (Sn) against the
‘1-specificity’ (1 — Sp):

TP FP

= = 1— = —
SN = TE T EN SP= TN T FP’

(1)

where

TP is the number of true positives (flaws correctly classified);

TN is the number of true negatives (regular structures correctly classified);

FP isthe number of false positives (false alarms, i.e., regular structures classified
as defects); and

F'N is the number of false negatives (flaws classified as regular structures).

Ideally, S, =1 and 1 -5, = 0, i.e., all flaws are detected without flagging
false alarms. The ROC curve permits the assessment of the detection perfor-
mance at various operating points (e.g., thresholds in the classification). The
area under the ROC curve (A.) is normally used as performance measure be-
cause it indicates how reliably the detection can be performed. A value of A, =1
gives perfect classification, whereas A, = 0.5 corresponds to random guessing.

3 Experiments and Results

In our experiments, 50 X-ray images of aluminium wheels were analysed. In the
segmentation 22936 potential flaws were obtained, in which there were only 60
real flaws, i.e., the skew is 381:1. Some of the real defects were existing blow
holes. The other defects were produced by drilling small holes in positions of the
casting which were known to be difficult to detect (see examples in [d]). For each
potential defect, 405 features were extracted. Detailed description of this data
set can be found in [3].

The feature selection method evaluated 4009 subsets in a total space of 405
features. The selected features are intensity features obtained from 32 x 32 pixels
containing the potential defect and neighbourhood: a) feature 37: first coefficient
of Discrete Fourier Transform component of best ‘Crossing Line Profile’ [13]; and
b) feature 360: coefficient (3,3) of Discrete Cosine Transform [3].

The selected features are used for the complete and simplified ANFIS model
building. The dominant class (‘regular structures’) has 22876 prototypes and
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Table 1. Performance of ANFIS model evaluation for defect detection

Model TP/(TP+ FN)|FP/(TN + FP)|FP/image| Sp |1 —S,| A

Complete Model 57/60 199/22876 3.98 [95%|0.87%0.9968
Simplified Model 57/60 126/22876 252 (95%)|0.55% |0.9976
Threshold classifier [3]]  57/60 | 230/22876 [ 4.60 95%|1.01%]0.9961]

the other class (‘defects’) has only 60 instances. The cmplete ANFIS model is
performed using a training set with a sample (70%) of each class, and the other
instances (30%) as a checking set for model validation. Classifier performance for
this model (16055 training patterns and 6881 checking patterns) is A, = 0.9968.
Another training set is made using SOM codebook vectors from the dominant
class. The simplified model uses SOM algorithm for reducing the 22876 instances
from dominant class (100% of ‘regular structures’ patterns). The resulting code-
book vectors and other 60 instances from the minority class (100% of ‘defect’
patterns) makes up the training set for this model. Classifier performance for
this model (794 training patterns) is A, = 0.9976. The false alarm rate 1 — .S,
obtained with this method is 0.55080% of the total hypothetical flaws (2.52 false
alarms per image), and defect detection S, is 95% accurate. This result out-
performs false alarm rate of 1.00279% (4.60 false alarms per image) reported in
the literature with the same data [3], in which a threshold classifier was used.
Table[ll summarises the results for complete and simplified ANFIS models in the
radioscopic data and the results obtained in previous work.

4 Conclusions

Two-stage simplified model building outperforms classification performance of
a complete ANFIS model. Although this improvement in classifying is not de-
terminant, a simplified model improves results for computational workload and
speed.

Sensitivity analysis using the CFS method had good results in classifier build-
ing with this data set. Although there are powerful wrapper learning schemes for
attribute selection, a good trade-off between results accuracy, attributes interac-
tion identification and computation time in large data sets handling is provided
by this method. Results obtained are concordant with previous work using a
Fischer discriminant for attribute selection [3], i.e., intensity features has better
discriminant power for flaw detection than geometric features, so further research
with this data can be done, including further intensity information, like wavelet
components for the segmented images.

The main contribution of this research was the use of SOM for dimensionality
reduction and the neuro-fuzzy method ANFIS for the pattern classification task.
Neural networks have an inherent ability to recognise overlapping pattern classes
with highly nonlinear boundaries. On the other hand, soft computing hybridiza-
tions provides another information processing capability for handling uncertainty
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from the feature extraction stage. Uncertainty handling of the feature space by
means of fuzzy sets can be highly useful, even when no prior knowledge of data
topology or expert opinions are available, but there is a need for a more power-
ful learning architecture for reduction of false positives. The best performance
(A, = 0.9976) was achieved using the simplified ANFIS model. That means, that
only 2.52 false alarms per image are obtained in the identification of potential
flaws (at S, = 95%).
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