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1. Introduction

It is not only the operators of public transport who have to use resources to
produce trips: the users themselves have a crucial input as well - their time. Users
have to walk, wait, and travel inside the vehicle and, by doing so, they spend time,
which is a resource consumed in the production of the trips. The microeconomic
analysis of public transport must include this fact in order to find the optimal
provision of services and the corresponding optimal prices. This is not new in
transport analysis: car congestion pricing is the result of the inclusion of users’
travel time in the pricing analysis. It is based upon the increasing relation between
car users’ travel time and patronage after a certain demand level due to a negative
externality in the use of road space. As a consequence, the price that induces the
best possible use of the road space is the difference between the value of the
marginal time for all users and the value of the average travel time for each user.
This chapter examines optimal public transport fares from the same viewpoint.

Section 2 discusses the cost structure of public transport. Then, optimal fares
and their financial results are examined. As the existence of scale economies is
shown to be crucial for the financial result of optimal fares, returns to scale in
public transport are discussed in Section 4. Following that, a brief discussion about
the impact of substitute modes and second best fares is presented. In Section 6 the
relation between optimal fare and distance is analyzed. The chapter closes with a
summary and discussion.

*The work in this chapter was partially funded by Fondecyt, Chile, Grant 1010687, and the
Millenium Nucteus “Complex Engineering Systems.”
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2, Costs in public transport
2.1. General aspects

In the microeconomic analysis of public transport, two types of resources have to
be taken into aceount: those provided by the operators, as vehicles, fuel, terminals,
or labor, and those provided by the users, narmely their time, usually divided into
walting, access, and in-vehicle time. The total cost {C) can be written as

CT = Cnp + CU" (1)

where C,, and Cy; are the operators’ and users’ costs, respectively.

There are two elements that help identify the main variables for a cost analysis
of the operation of public transport: route and fleet. The relevant route-related
variables that affect either operators’ or users’ cost, or both, are the length,
density, and number of stops. The corresponding fleet variables are the number of
vehicles (or frequency) and vehicle size. In order to analyze the relation between
costs and patronage (Y), it is necessary to establish which of these variables are
fixed and which can be adapted to the demand level. In some cases, such as urban
railways, the three route dimensions are fixed owing to physical reasons; for public
transport, frequency and vehicle size are the operational attributes that are the
casiest to adapt to demand. In the case of buses, institutional factors tend to define
relatively stable routes, but length, density, and stops are easy to change in

physical terms. Bus frequency is easy to adapt as well, as opposed to vehicle size,

which can only be changed when buses are renewed. The flexibility of both the
route and fleet decreases with the size (cost} of the type of vehicle (bus < tram <
metre).

2.2 Cost structure

Given the elements discussed above, the relation between costs and patronage will
now be examined. It is better to analyze the total cost structure in public transport,
separating it into its two components: operators’ cost and users’ cost.

Considering the inputs supplied by the operators, there are operational and
capital costs. The former include energy, crew, maintenance, and administration,
and the Iatter are infrastructure and rolling stock costs. Engineering cost studies
find that, in the absence of vehicle congestion, the average operators’ cost decreases
with demand (Meyer et al., 1965; Boyd et al., 1978; Allport, 1981).

Regarding the inputs supplied by the users, these costs are associated with travel
times (waiting, access, and in-vehicle) and their money values. Each camponent has
a clear relation to the different route and fleet elements. First note that frequency
adaptation is the simplest input adjustment when the demand changes in the case

i
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of vehicles with fixed capacity. In scheduled transit systems, frequency increases
with patronage (something that will be examined later), which will make in-
vehicle time increase due to vehicle interactions, except in the case of rigid modes
(e.g- metro) where a maximum feasible frequency exists. Nevertheless, not only
vehicle congestion increases in-vehicle time, passenger boarding and alighting do
as well. On the other hand, the waiting time decreases with frequency (demand),
and, if the routes design is adaptable, demand expansions will induce a densification
of the system, yvielding reductions in access time as well.

In summary, when the demand increases, users’ in-vehicle time also increases
owing to vehicle congestion and passengers boarding/alighting, waiting time always
diminishes, and access time decreases if routes can change. Despite an apparently
mode-specific conclusion from the preceding discussion, this qualitative analysis
actually yields a common scheme for the relation between users’ cost and patronage,
On one hand, the most flexible mode (bus) has a higher probability of congestion,
but at the same time it is the easiest to densify when demand increases. On the
other hand, the rigid rail-based modes have little {tram) or ng {metro) congestion
likelihood. So, in the first case a demand growth makes in-vehicle and access times
vary with opposite signs, and in the second case both changes are low or nil, It is
the waiting time, therefore, that prevails, generating a decreasing average users’
cost function (ACy) in all cases, which means that dAC,/dY is negative and
reflects the positive externality that an extra user generates on total travel time in
scheduled transit systems.

The main conclusion is that the sum of the operators’ and users’ costs yields a
total cost that increases less than proportionally with the demand, as found by
Boyd et al. (1978) and Allport (1981} in their engineering cost studies. This means
that the total average cost decreases with demand, which implies that there are
scale economies. As a decreasing total average cost implies that the total marginal
cost is lower than the total average cost, the result is exactly the opposite to the
private car case. In the next section this will be shown to have a crucial impact on
the optimal fares in public transport.

3. Optimal fares in public transport
3.1 The optimal fare

Given that both the operators’ and users’ costs have to be considered, the optimal
fare for a public transport service can be found by maximizing the social benefit
(SB), which is the difference between the total “willingness to pay” (in terms of
both money and time} and the total cost {of both operators and users). Formally,

(V) +Cu(Y)], )

op

Y
MaxSB = [ GC (u)du ~{C
4
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Figure 1. The optimal fare and subsidy in public transport.

where Y is the demand level, and the generalized cost {(GC) is calculated as
GC =P + AC,, 3)

i.e. the fare (P) plus the users’ average cost (AC,), which is the value of in-vehicle,
waiting, and access times that the user experiences, given by C/¥. Note that GCin
equation (2) is the inverse demand function.
The first-order condition for equation (2} is

0SB

e GC*-MgC,, ly- ~MgCy },.=0, {4)
where MgC_ and MgC, are the operators’ and users’ marginal costs, respectively.
Using equation (3), and given that the total marginal cost (MgCy) is the sum of
MgC,, and MgC,,, the optimal fare is

P*=MgCyly. — ACyy-, (5)

as shown in Figure 1. Just as in the case of the private transport optimal fare
(congestion price), the nser has to pay (in money) the difference between the total
marginal cost and the users’ average cost. By doing so, he perceives that the cost of
his trip is the total marginal cost, as he already “paid” the users” average cost (the
own time value). :

By writing users’ marginal cost as

d(Y AC,)
MgC, = ——, 6
v ay (6)
the total marginal cost can be writlen as
dAC,,
MgC, = MgC_ +AC, + y 388 (7)

up dY
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Replacing in equation (5) yields an alternative expression for the optimal fare
. {Jansson, 1979}
dAC
pr=MgC_ .+ Y ——% . 8
g np}Y dY 9 ( )
This expression shows that the passenger has to pay (in money) for the eftect of his
" or her trip on the operators’ cost (MgC,) and for the change that he or she
‘produces in the users’ average cost multiplied by the demand level, a negative
figure that represents the total positive externality on the rest of the users, as
- explained above.

" 3.2, The financial result in the presence of scale economies

_ if scale economies exist, the total average cost is higher than the total marginal
cost. This property vields a relevant financial result for optimal fares. Subtracting
the operators’ average cost from both sides of equation (5) yields

P*-AC |y = MgCqly. - ACqly.. )

As deduced in the previous section, AC; is larger than MgC,, which makes the
operators’ average cost larger than P*. Therefore, the optimal fare cannot cover
the operators’ expenses, and an optimal subsidy per passenger (s*} equal to the
difference between AC,, and P* is necessary. Expression (9) indicates that this
optimal subsidy is equal to the difference between AC; and MgCy as well, as
shown in Figure 1. Consequently, scale economies are a necessary and sufficient
condition for optimal fares not being enough to cover operators’ expenses. As said
before, scale economies are equivalent to both decreasing total average cost and

to AC, being larger than MgC..

4. Returns to scale in public transport
4.1. A microeconomic model

Due to the crucial impact of scale economies on the financial result of optimal
fares, in this section returns to scale in public transport are explored in greater
depth. A relevant issue for this discussion is the time period, i.e. which production
factors are fixed and which are variable when fares are optimized. Jansson (1979,
1984) states that fare optimization does not make sense over a strictly defined
short-term period where all inputs are fixed. In fact, the number of vehicles (fleet
size) seems to be easier to change than fares. Therefore, it is reasonable to
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optimize fleet size first and then calculate optimal fares. Consequently, Jansson
concludes that fares should be optimized in the “medium term,” in which the
number of vehicles is variable, implying a variable frequency as well.

The microeconomic public transport operation models available in the literature
optimize different characteristics of the service, such as fleet (frequency), vehicle
siz¢, and routes spacing. If an expenditure function is considered that accounts for
both operators’ and users’ inputs, the optimization of the variable factors yicids a
total cost function C(Y), from which information regarding returns to scale can
be obtained analytically. In what follows a microeconomic model is presented, in
which frequency is optimized consistently with a2 medium-term definition that is
adequate for public transport pricing. As known, deriving a cost function requires
Y to be treated parametrically.

Following Jansson (1980, 1984), let us consider an isolated corridor served by
one circular bus line L kilometers long, operating at a frequency f with a fleet of B
vehicles, This service is used by a total of ¥ passengers per hour, homogeneocusly
distributed along the corridor where each individual travels a distance /. If T
denotes the time in motion of a vehicle within a cycle, and ¢ is the boarding and
alighting time per passenger, then the cycle time ¢_is

Y
=T+t~ 10
L=T+is (10)

On the other hand, the frequency is given by the ratio between the fleet size and
cycle time (B/t_ ), which combined with equation (10) yields

B =fT+1Y. (11)

if ¢ is the cost per bus-hour for the operator, and P, and P, are the values of the
waiting and travel time, respectively, then the total value of the resources consumed
{VRC) per hour is

VRC=Be+P, ~+p L1y, (12) -

2f ¥ L &
where the first term on the right-hand side of equation (12) corresponds to the
operator expenses, and the second and third terms are the users’ waiting and
travel time values, respectively. Note that the access time is not included in VRC
because the route design is not a variable and, therefore, access cost is a constant
that is not relevant to the optimization of the service.
Using equations (10) and (11), we can write expression (12} as a function of B, i.e.

VRC=BC’+P“.LY+R.i(T+ﬂJY. (13)
Y 2(B-1Y) L\ B-fy

This expression shows that, ceteris paribus, increasing the number of vehicles
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diminishes the users’ costs but increases the operators’ costs. The users’ cost

reduction occurs because increasing frequency diminishes both the waiting and in-

yehicle travel times, the latter because fewer individuals board and alight per bus.
Minimizing VRC with respect to B yields the optimal fleet size B*, given by

Bty + \]?Z{lpw erav L) (14)
c \2 L
. which from equation (11) yields the optimal frequency,
Y1 {
Fe fom| =P+ PtY — |, 15
f JCT(Z o L] (15)

xnown as the “square root formula” (Jansson, 1980, 1984). According to this
result, the optimal frequency increases proportionally to the square root of total
demand if the second term in parentheses is negligible relative to the first, but it
can vary proportionally to the demand if the opposite occurs. A similar “square
root formula” was found for the first time by Mohring (1972), and similar results
are found in other single-line microeconomic models, as reviewed by Jara-Diaz
and Gschwender (2003a).

Finally, on substitution of the optimal fleet size from equation (14) into equation
{13) the minimum of VRC is obtained, i.e. the total cost function Cy:

P ! I
=ctY +2,JcTY| =+ PtY— |+ PTY —. 16
Cr=ctY + &- [2 d LJ+ Y 4 (16)

It is interesting to note that the operators’ cost corresponds to the first term plus
half of the second (i.e. the square root), and that the users’ cost includes the
square root plus the third term. The total average cost is

F, / i
AC, =ct+2 |cT| X+ PtY — |+ PT—, 17
T c JC [ZY ¥ ) v L ( )

L

which decreases with the demand level (Y), implying that scale economies exist.
This reduction is due to the inclusion of the users’ cost in the microeconomic
formulation. This single-line result has been extended to various simple network
cases (Jara-Diaz and Gschwender, 2003b).

4.2. Otherrelevant aspects

The model presented above does not include some important aspects that could
change the cost structure. In what follows, these issues are discussed in order to
ascertain their effects on scale economies.
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Evans and Motrrison (1997) constructed a model incorporating accident risk
and non-scheduled delay. Both are included as part of the users’ cost, but they alse
affect the operators’ cost, as this has to be increased in order to reduce both risk
and delays. Evans and Morrison found that the inclusion of these variables slightly
increased scale economies.

On the other hand, Kocur and Hendrickson (1982) and Chang and Schonfeld
(1991) included the spatial dimension optimizing the distance between parallel
routes. By doing so, both optimal vehicle frequency and optimal lin¢ density are
proportional to the cube root of the demand. This implies that scale economies
are due not only to waiting time, which decreases at a slower rate than in the
single-line case, but to access time as well.

As stated by Kerin (1992), none of these models incorporate externalities such
as congestion or pollution, which would, apparently, tend to decrease the level of
scale economies. If congestion is analyzed in an isolated public transport corridor
in the medium term (frequency adjustment), there are two forms in which it can
emerge. On one hand, as frequency grows with demand, interactions between
vehicles will occur, affecting their speed. On the other hand, as frequency reaches
an upper limit, growing occupancy rates will increase waiting times because of
passengers not being able to board the first vehicle that arrives. The former effect
is more important in the case of flexible modes (buses), and the latter is more
relevant in rail modes, where a maximal frequency cannot be exceeded because of
operational and safety reasons. Therefore, in the isolated corridor analysis there
could be some demand level after which congestion becomes important enough to
make the average total cost increase, as in the private car case.

However, the isolated corridor analysis becomes limited for high demand
levels, as a possible way to adapt a public transport service to high demands is to
increase the route density. The cubic root rule found by Kocur and Hendrickson
and by Chang and Schonfeld for the optimal frequency shows that when route
density is optimized, the optimal frequency increases slower than in the isolated
corridor analysis (square root rule), slowing down congestion effects. On the
other hand, the relationship between public transport and the car has to be
considered when dealing with externalities, as they are usually substitute modes.
This means that an increase in the total number of motorized trips has to be
distributed between public and private transport. In their single public transport
line optimization model, Oldfield and Bly (1988) considered that an increase in
public transport demand implies a reduction in car use. Therefore, the final effect
of the growth in public transport demand can be a reduction in the congestion
level, due to a lower number of cars circnlating. A similar analysis can be done in
the case of pollution, as normally the emissions per trip are less for public
transport than for cars. For synthesis, both the density anatysis and the car — the
transit substitution effect — make the effect of congestion on scale economies 1e$8
important.
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5. The impact of substitute modes and second-best fares

So far, we have implicitly assumed that all inputs and substitute or complementary
modes are optimally priced (at marginal cost). Nevertheless, the car is normally
underpriced. If it is a substitute for public transport, this will imply a more
intensive use of the car than under the optimal modal split (congestion pricing). To
correct this distortion, it is possible to underprice public transport as well, i.e,
increase the amount of the optimal subsidy. Including this effect, Mohring (1979)
found a negative optimal fare for a bus system. However, Kraft and Domencich
{1970} state that for a given subsidy amount it is possible to attract more car users
to public transport by diminishing the access, waiting, and in-vehicle times than by
reducing the fare,

Nevertheless, underpricing public transport in any form (reducing fares or
passenger times) to deal with the underpriced car will have an impact on the use of
other modes such as the bicycle and walking (Kerin, 1992). They are substitute
modes, especially for short trips, and their use will be reduced in spite of the fact
that they are efficient modes in terms of congestion and pollution. Therefore,
trying to optimize prices for every motorized mode would appear to be a better
pricing policy than underpricing all of them.

If for any reason the optimal subsidy cannot be implemented, the second best
fares are those that maximize the social benefit subject to covering the operators’
cost with the fare box. In this case, those markets with larger price elasticities
should have their fares closer to the optimal ones. On the other hand, other
markets with lower price elasticities should have larger increases in their fares.
This Ramsey pricing rule (Ramsey, 1927) allows fare revenues to be increased with
the minimum modal split shift and, therefore, with the lowest loss in social benefit.

6. The optimal fare and distance

A public transport system allows trips between many origin—destination pairs,
Thus, trips with different lengths will usually occur. This is not considered in
models such as the one presented in Section 4, where all passengers travel the
same distance and, therefore, a single marginal total cost and a single average
users’ cost exists, yielding a single optimal fare. Now, if passengers travel different
distances, the question of the effect of trip distance on fares arises.

Cervero (1981) argued that the optimal fare should be positively related to the
trip distance, but his conclusion was obtained considering only the operators’ cost.
When the users’ cost is included in the analysis as well, the optimal fare will
depend on the impact that a marginal passenger produces on the operators’ cost
plus the change that he or she makes to the average users’ cost multiplied by the
total number of passengers, as shown in equation (8). Nevertheless, it must be
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pointed out that this single-product analysis is not adequate when trips with
different distances are considered. Thus, equation (8) only gives partial insight, as
a multiproduct view js necessary for a formal analysis (e.g. Kraus, 1991).

Analyzing a feeder route and considering both the operators’ and users’ costs,
Mokring (1972) argued that the optimal fare should be inversely related to
distance, i.e. exactly the opposite to Cervero’s conclusion. In the feeder route,
passengers are boarding all along the line, but all of them alight at the end of the
route. Thus, each passenger that boards makes those users who boarded before
wait inside the vehicle for the time that he or she needs to embark. The closest to
the end of the service a passenger boards (shorter trips), the fuller the vehicle will
be and, therefore, more passengers will have to wait. As this makes the second
term on the right-hand side of equation (8) larger, the optimal fare should be
larger as well.

In alater work, Turvey and Mohring (1975) emphasized that the distance of the
trip is not the relevant issue. They identify two reasons related to the occupancy of
the vehicle that makes the fare higher: the first is the “Mohring effect” mentioned
above, and the second (Turvey and Mohring effect) is that the higher the occupancy
of the vehicle when the passenger travels in it, the higher the probability of other
users not being able to board because of a full vehicle, increasing their waiting
times. The latter effect is somehow positively related with trip distance.

Kraus (1991) constructed a multiproduct model where the passenger flow on
each origin—destination pair is a different product. Besides including the impact of
a marginal passenger on the in-vehicle time of the other users because of boarding

and alighting (the Mohring effect), Kraus was the first to take into account

crowding inside the vehicle. This “Kraus effect” is considered through a variable
value of in-vehicle time, which increases with the occupancy factor. During the
time that a passenger is inside the vehicle, he or she makes other users travel more
uncomfortable. As in the case of the “Turvey and Mohring effect,” this is partly
positively related with trip length.

In summary, it is not very clear how trip length affects the optimal fare. Both
Kraus and Turvey and Mohring found that the optimal fare should be in part -
positively related and in part inversely retated with trip distance. Regarding the -

users’ cost, what seems to be important for the optimal fare is the occupancy of the

vehicle both when the passenger boards/alights and during the time that he or she
travels in it. The first effect is that the users that are inside the vehicle have to wait
when a passenger boards or alights (the Mohring effect); the higher the occupancy
of the vehicle, the more time is “lost” due to the boarding/alighting of the marginal *
passenger. The second effect is that the space occupied inside the vehicle by @
passenger increases crowding and discomfort for the other users (the Kraus
effect) and increases the probability of other users not being able to board the .
vehicle (the Turvey and Mohring effect). Again, the fuller the vehicle, the hlgher
the impact of the marginal passenger on the other users.
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As there is no clear relation between optimal fare and trip length for a given
route, flat fares seem to be a good option. Moreover, a flat fare is easier and

~ cheaper to implement. Nevertheless, if routes with different lengths exist, it may

be reasonable to have higher flat fares on the longer routes because of the
operators’ costs.

7. Summary and discussion

Just as in the case of private transport, public transport pricing analysis should

- consider both the operators” and users’ costs. The former includes operational and

capital costs, and the latter encompasses all types of travel time. The time frame
for optimal pricing is relevant only if fixed inputs are set at a level that is different
to the optimal, which will normally be the case for those services that are in
operation at the time of the analysis. In general, frequency is a variable that can be
adjusted easily, and, therefore, optimal pricing should always consider this as a
variable. Adapting route length and ronte density is easier for some modes (bus})
than for others (urban trains and trams). Optimal frequencies increase less than
proportionally with demand, following a square root rule if everything else is
fixed, and a cubic root if lines density is a variable.

Operators’ cost models show that average costs diminish with patronage in
general, and the same happens with those components of users’ costs related with
waiting and access time. In-vehicle time tends to increase because of boarding/
alighting and congestion. In general, average costs diminish for both operators
and users as patronage increases (economies of scale}. As the optimal fare
corresponds to the difference between the total marginal cost and the average
users’ cost, the preceding technical property translates into optimal fares that fall
short of the operators’ cost, making a subsidy necessary. In the absence of
congestion pricing, the car is sub-priced, which makes the optimal subsidy even
larger under a social optimum scheme because of the substitute nature of the
car-public transport relationship. Public transport congestion would tend to
diminish that subsidy.

Intuition based only on the operators’ costs suggests that optimal fares should
increase with distance (trip length). However, the inclusion of the users’ costs in
the analysis shows that the relevant variable is the occupancy rate when the
(marginal) passenger boards, travels, and alights, besides the effect on the operators’
costs. These two effects have opposite signs that seem to make a case for flat fares
{larger for longer routes, though). Note that in this analysis of the relation
between optimal fares and distance the effect on urban space has not been taken
into account. Fares that increase with trip length would push toward urban
concentration.
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Optimal subsidies in public transport as presented here are conceived to make
prices equal to the total marginal cost for the optimal operation of the system, and
should not be mistaken with a capital cost subsidy. These latter subsidies may
produce some distortions in the evolution of public transport systems, For example,
Armour (1980) and Frankena (1987) found that capital cost subsidies caused
buses to be replaced earlier. Furthermore, this type of subsidy increases the
probability of constructing capital-intensive projects (e.g. metro lines) in corridors
where low demands do not justify them (Small, 1992). On the other hand, when
the operation is subsidized, various authors (Bly et al., 1980; Anderson, 1983;
Pucher and Markstedt, 1983) found that the operators’ cost increases, because of
higher salaries and productivity reductions.
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