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Abstract

Transport network expansions have usually been analysed calculating returns to scale with

variable network size (RTS), which has been shown to suffer from a number of
shortcomings because, in the end, it attempts to capture as a scale property something
that in fact is related with scope, namely the addition of new products when a transport
network expands. In this paper the authors develop a method to calculate economies of

spatial scope from transport cost functions with aggregate output, which is then
illustrated using the results of a published study on airlines. We conclude that the method
holds very well and that, coupled with the strict calculation of economies of scale

(corrected returns to density), it permits a clear explanation of observed firm behaviour.
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1.0 Introduction

When a network variableN is included in the estimation of a transport cost
function, empirical studies of the transport industry structure make a
distinction between returns to density (RTD) and returns to scale (RTS).
The former assumes a constant network when output increases (increase
in density), while the latter assumes that the network grows as well (increase
in output through a network expansion but keeping density constant).
Accordingly, RTD is calculated as the inverse of the sum of product elasti-
cities of cost, whileRTS includes the network elasticity in the summation as
well. Most empirical studies of the airline industry (where the number of
points served, PS, is the usual network variable), have reported the
presence of increasing returns to density and constant returns to scale, as
concluded by Caves, Christensen, and Tretheway (1984), Kirby (1986),
Gillen, Oum, and Tretheway (1985, 1990), Oum and Zhang (1991),
Kumbhakar (1992), Keeler and Formby (1994) and Baltagi, Griffin, and
Rich (1995) among others. These results indicate that, on costs grounds,
it would be advantageous for firms to increase traffic densities on their
networks, but it would be inconvenient to expand their networks. Observed
industry behaviour, however, was different: after deregulation — in the US
first and then in the rest of the world — the air industry has concentrated
and the networks served have expanded through mergers, alliances, and
acquisitions. Thus, firms have tried to increase their network size, which
seems to contradict constant returns to scale as previously defined. Two
reactions emerged; on the one hand, some authors have argued that
network growth can be understood as an attempt to exploit economies of
traffic density (for example: Oum and Tretheway, 1990; Brueckner and
Spiller, 1994). On the other hand, a series of re-examinations of the
methods to calculate scale economies for all transport industries have
been proposed in the literature (Gagné, 1990; Ying 1992; Xu et al., 1994;
Oum and Zhang, 1997).

The re-examination of the calculation of scale economies has been
mostly based upon the interrelation among the arguments of the estimated
cost functions, namely products, attributes and network variables. This
approach, however, has suffered from an important difficulty: no single
set of output descriptions has been used, which is reflected in the lack of
accepted standard definitions for economies of density and economies of
scale. As some have pointed out, what is scale in one study may be density
in another, and some have pointed out that ‘‘economies of scale, as they are
usually measured in the context of manufacturing industries, simply
represent economies of density in a network industry’’ (Filippini and
Maggi, 1992, p.308). Jara-Dı́az and Cortés (1996, from now on JDC)
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proposed a new look at the subject showing that, in a rigorous sense, an
improved version of what today is understood as economies of density is
in fact scale under a strict definition, which had been suggested by
Panzar (1989) using a linear aggregate output. The JDC approach was
based upon the interpretation of the different forms in which output has
been described as implicit representations of the displacements of goods
and persons that transport firms produce. Let us briefly review this.

In the case of transport, a firm produces movements of different things
between many origins and destinations (OD pairs), during different
periods. Strictly, then, the product of a transport firm is a vector
Y ¼ fyijktg, where yijkt represents flow of type k (goods or persons),
between origin i and destination j, during period t (Jara-Dı́az, 1982a,b;
Winston, 1985; Braeutigam, 1999). JDC and many others have noted
that as vector Y can not be used in the empirical work because of its
dimension, estimated cost functions are specified in terms of aggregates
that represent both products — such as ton-kilometres, total passengers,
seat-miles — and so-called attributes — such as average length of haul or
average load factor. Although both the strict description of transport
output and the need to use aggregates for econometric purposes have
been frequently recognised in the literature,1 JDC stressed a fundamental
fact, namely that behind these aggregates hides vector Y as defined
above, and that this can and must be recognised when undertaking
economic analyses. As economies of scale analyse cost behaviour as all out-
puts expand by the same proportion (Panzar and Willig, 1977), a correct
calculation of scale economies in transport activities should be related
with the same growth of all flows in vector Y (something first hinted by
Griliches, 1972). But this could be analysed from an estimated cost function
~CC( ~YY) — where ~YY ¼ f~yy1; . . . ; ~yyh; . . . ; ~yyH0g is the vector of aggregates — by
examining the behaviour of each aggregate ~yyh when Y varies. If aggregates
are formally written as functions of Y, that is, ~yyh � ~yyhðYÞ, then
~CCð ~YYÞ � ~CCð ~YYðYÞÞ. From this basic observation, and by looking at scale
in terms of the elasticities of cost with respect to the elements of Y, JDC
showed that an internally consistent calculation of the degree of scale
economies can be obtained using the elasticities of cost with respect to
the aggregates ~yyh, provided each of these elasticities is weighted by its

1For example, Gillen et al. (1990, p.13) state that ‘‘ideally one would treat every type of airline service in

every city pair market as a separate output. The impossibility of estimating a cost function with

thousands of outputs requires some aggregation of the data. After aggregation, output attribute

variables are introduced to control for some of the aggregation bias.’’ Braeutigam (1999, p.68)

states that ‘‘treating the movement of each commodity from each origin to each destination as a

separate product would be desirable. There would be so many outputs however, that estimating a

cost function would be impossible.’’ See also Winston (1985, p.64–65) and Small (1992, p.50).
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(local) degree of homogeneity with respect to Y.2 In what follows, we will
call vector Y the true product following Jara-Dı́az (1982a) and Winston
(1985), to distinguish it from the aggregate product used in empirical work.

Oum and Zhang (1997) pointed out that the JDC method for the
calculation of economies of scale corresponds to an improvement of
what is called economies of density, RTD, in the transport economics
literature, because network variations (changes in N) are not allowed.3

They are right: scale in terms of the true product Y— from now on referred
as disaggregated scale — is in fact density in terms of ~YY . What about RTS,
the relevant index when analysing network growth? In this direction, the
JDC formulation goes beyond the correct calculation of returns to
density/disaggregated scale. By looking at ~YY in terms of Y, Basso and
Jara-Dı́az (2002) have shown that economies of scale with variable network
size, RTS (scale in terms of ~YYandN) are inadequate to study the cost effects
of network expansions. In essence, this happens because RTS imposes that
the traffic density — roughly the average load per link — remains constant
after the network expansion, a condition that looks reasonable when
considering ~YY but is shown to impose unreasonable relations among
flows when considering Y. Moreover, and in spite of proposals to depart
from the constant density assumption, Basso and Jara-Dı́az also show
that improving RTS is a hopeless course of work.

As stated above, some have argued that the network growth observed in
spite of RTS ¼ 1 can be understood as an attempt to exploit economies of
traffic density. For example, Brueckner and Spiller (1994) state that ‘‘the
growth of networks can be understood as an attempt to exploit economies
of traffic density, under which the marginal cost of carrying an extra
passenger on a nonstop route falls as traffic on the route rises. By funneling
passengers through a hub airport, the switch to hub and spoke operations
raised traffic densities and allowed carriers to reduce their costs.’’ Oum and
Tretheway (1990) provide a graphical example to support their claim that
‘‘in spite of constant returns to scale/network size, the addition of a station
to a hub and spoke system can result in economies. This is due to the
exploitation of economies of traffic density by the traffic stimulation effects
of hubs.’’ Although in principle the argument seems reasonable, the
increasing returns to density found in many studies were calculated
explicitly keeping the size of the network fixed. This means that economies
of density can be used without ambiguity to explain the merging of firms

2These ‘‘weights’’ happen to be between 0 and 1 for usual output aggregates.
3The theoretical reason for this is that an equiproportional change in Y produces no change in N. In

other words, an increase in all OD flows provoke neither increase nor decrease in the number of points

served, PS.
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that serve the same set of nodes but, as found in every econometric study
that has considered a network variable, expanding the network is costly4

and this is not considered in the density justification for network growth.
In our opinion, perhaps this is an intuitively correct but incomplete
explanation: it does not take into account the necessary change in costs
provoked by a larger network and there is no methodology, to our
knowledge, to test the claim empirically. Note that RTS in its usual form
might capture the fact that increasing the network is costly, but it cannot
encompass the density explanation, since density is kept constant by
construction.

What is next, then? If the concept of economies of scale with variable
network size, RTS, is unsuitable to do a proper analysis of the cost effects
of network growth and the density explanation cannot be tested and
actually leaves outside the network expansion effect itself, what is to be
done in order to examine the very relevant issue of network expansion in
the transport industries? In our opinion, the situation so far is the
following: we know how to detect the presence of economies of density/
disaggregate scale, but we do not have a method to analyse the cost conve-
nience of network expansions (or reductions) from cost functions estimated
in terms of aggregated products. A new method, that replaces RTS in
this task, is needed. We believe that the correct approach is the calculation
of economies of spatial scope, because ‘‘increasing network size is
unambiguously associated with an increase in the number of products
and, therefore, networks variables are related with economies of scope’’
(Jara-Dı́az, Cortés, and Ponce, 2001). This is particularly evident when N
is represented by the number of points served, PS, because increasing PS
implies increasing the number of OD flows. Economies of spatial scope
have been suggested in the literature as an explanation for merging or the
formation of alliances (see, for example, Hurdle et al., 1989; Oum, Park,
and Zhang, 2000). Nevertheless, although theoretical analyses about how
and why economies of spatial scope could arise are available (see, for
example, Jara-Dı́az and Basso, 2003), there is no method to calculate
them from an estimated cost function with aggregate output, to our
knowledge. Note also that learning the extent of economies of scope is of
interest not only to assess the cost convenience of network expansions,
but also because economies of scope and scale are related with sub-
additivity, that is, with the existence of natural monopoly.

In this article we present a method to calculate spatial scope from
transport cost functions with aggregate output, including an empirical
example. The method also rests on the ~yyh � ~yyhðYÞ property of aggregates,

4For example, Gillen et al. (1990) found an elasticity of the cost with respect to PS of 0.132.
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proposed by JDC. But, just as behind RTS lies a constant density imposi-
tion in order to control for the value of aggregated flows after a network
expansion, our method to calculate scope will impose a related condition
on the disaggregated flows. The method not only permits us to study the
cost convenience (or inconvenience) of network growth, but also provides
a way of incorporating the density explanation in a strict economic way by
considering cost changes produced by both density and network size
increases. In order to illustrate the applicability and potential of the
method, it is applied using information from a particularly rigorous
published article on airlines. Using that data and results, we show how
the analysis of industry structure can be improved and what kind of insights
can be gained.

2.0 The Method

2.1 Economies of spatial scope

In multiproduct theory (Baumol, Panzar, and Willig, 1982), the degree of
economies of scale S deals with the effect on costs of a proportional
expansion of all products. On the other hand, economies of scope are
related with the cost convenience (or inconvenience) of jointly producing
two sets of products. If C(Y) represents a cost function where input
prices have been omitted for simplicity, the degree of economies of scope,
SC, is calculated as

SCA ¼ SCB ¼ CðYAÞ þ CðYBÞ � CðYDÞ
CðYDÞ ; ð1Þ

whereD is the set of all products,A [ B ¼ D andA \ B ¼ 1 (that is, A and
B form an orthogonal partition of D). YA is vector YD with yi ¼ 0,
8i =2A � D; YB is defined analogously. Thus, a negative value for SCA

implies that it is cheaper to let a second firm produce the outputs in B
than to expand the line of production of a firm already producing the out-
puts in A. If SCA is positive, then it is cheaper to let a single firm produce
everything (YD). Note that SC lies, theoretically, in the interval [�1, 1],
since it represents the proportion of cost savings due to joint production.

Emphasising the spatial dimension of product — or equivalently,
assuming one type of cargo and one period for simplicity — in the case
of transport S takes care of cost behaviour as OD flows expand proportion-
ally, keeping the number of OD pairs constant, while SC deals with costs
when OD pairs are added. Thus, within the context of variable networks,
spatial scope is useful to analyse whether a certain firm A serving PSA
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nodes with PSA � ðPSA � 1Þ potential OD flows should expand its network
to serve PSD nodes, adding PSD � ðPSD � 1Þ � PSA � ðPSA � 1Þ new flows,
or these new flows should be served by a new firm. To be precise through an
example see Figure 1, where firmA serves two OD pairs and SC can be used
to analyse the convenience of adding four new OD pairs through the
addition of a new node (3). A positive value for SC would indicate
incentives to add node 3, producing vector YD. Note that the incremental
cost of serving a new node is given by CðYDÞ � CðYAÞ, which will be
different from CðYBÞ unless SC is nil.5 Note also that the underlying
physical network (links and terminals) that may be necessary to produce
the flows is not shown. Furthermore, nothing is imposed about the route
structure, that is, the way in which OD flows are produced using the
network, for example directly, cyclically, or through a hub. What is
shown is simply the OD structure of production. The role of the physical
network as an input, of the route structure as an endogenous decision
and the technical analysis behind transport operations that leads to cost
functions, are presented in Jara-Dı́az and Basso (2003).

2.2 Scope from aggregates: the role of the average OD flow

For the empirical estimation of transport cost functions, the use of aggre-
gate descriptions of transport product is, in almost all cases, unavoidable.
This implies that the magnitude of flows at an OD level is lost. Unless in the
econometric work one keeps track of origin and destinations by using
spatially disaggregated flows,6 the calculation of SC directly from equation
(1) is not feasible. However, most aggregates ~yyh are implicit functions of Y.
For example, if ton-kilometres (TK) and average length of haul (ALH) are

5For the n-nodes case see Jara-Dı́az et al. (2001).
6See for example Jara-Dı́az (1988) and Jara-Dı́az, Donoso, and Araneda (1991).

Figure 1
Variable Network Size and Spatial Scope

½A� ½B� ½D�
YA ¼ fy12; y21; 0; 0; 0; 0g YB ¼ f0; 0; y13; y31; y23; y32g YD ¼ fy12; y21; y13; y31; y23; y32g
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considered in ~YY , then

TKðYÞ ¼
X
ij

yij � dij ð2Þ

and

ALHðYÞ ¼
X
ij

yij � dij
�X

ij

yij; ð3Þ

where dij is the distance travelled by flow yij between origin i and destination
j (JDC analyse many other aggregates). Therefore, even if the true
(disaggregated) product vectors YA, YB, and YD were unknown, SC
could still be calculated correctly if the corresponding aggregates ~YYðYAÞ,
~YYðYBÞ, and ~YYðYDÞ were known, and an estimated cost function
~CCð ~YY ;PSÞ was available (Jara-Dı́az, Cortés, and Ponce, 2001). Analytically,
SC could be calculated through

SCA ¼ SCB ¼
~CCð ~YYðYAÞ;PSAÞ þ ~CCð ~YYðYBÞ;PSBÞ � ~CCð ~YYðYDÞ;PSDÞ

~CCð ~YYðYDÞ;PSDÞ
ð4Þ

where PSD ¼ PSB > PSA (see Figure 1). Note that the arguments of
~CCð ~YY ;PSÞ in equation (4) are not evaluated at zero output levels, unlike
Cð:Þ in equation (1), allowing the use of translog cost functions directly
for the calculation of scope.7 This happens because the aggregate represen-
tations (such as total passengers or ton-kilometres) do not vanish when
some of the OD flows go to zero as in YA or YB. Furthermore, note that
although YB and YD are associated with the same number of points
served, the number of OD flows is different, which makes the aggregate
descriptions different, that is, ~YYðYBÞ 6¼ ~YYðYDÞ and ~CCð ~YYðYBÞ;PSBÞ <
~CCð ~YYðYDÞ;PSDÞ (Jara-Dı́az, Cortés, and Ponce, 2001).

Let us explore how can we use equation (4) to calculate economies of
spatial scope from an estimated aggregated cost function. As explicitly
considered in equation (4), behind the vector of aggregates ~YYA there is a
true flow vector YA ¼ fyAij g that generates the aggregates. Although the
values of the yAij flows remain hidden behind the (known) aggregates, we
know they fulfil equations such as (2) and/or (3). PSD is also known
since we are analysing a network expansion from PSA to PSD. By con-
struction, PSB is equal to PSD. What remains unknown in equation (4)
are ~YYðYBÞ and ~YYðYDÞ. The former is the aggregated representation of
the product vector implicitly containing the flows that are added after the
network expansion. The latter is the aggregated representation of the

7Of course one has to maintain the assumption that the estimated cost function does a good job in

describing costs, in spite of being specified with aggregate descriptions of product. In other words,
~CCð ~YYÞ � ~CCð ~YYðYÞÞ ¼ ĈCðYÞ.
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product vector implicitly containing both the original flows served— the yAij
flows — and the added flows.

In the absence of more information, some reasonable condition has to
be imposed regarding the magnitude of the flows added after the network
expansion, in order to assign values to the aggregates in both ~YYB and
~YYD, given that one knows ð ~YYA;PSAÞ. This type of requirement is not
new; the condition behind the calculation of RTS that implicitly assigns
values to ~YYB and ~YYD is that density does not change, where density is
understood as the ratio between those aggregates whose elasticities were
considered in the calculation, and the variable representing the network
(PS in our case). As is evident, the condition behind RTS is imposed on
the aggregates, not on the true flow vector Y. But what seems to be a
reasonable condition on the aggregates ~YY induces unreasonable analytical
restrictions on the new OD flows (that is, those behind YB) that prevent a
meaningful analysis of industry structure (Basso and Jara-Dı́az, 2002). If a
condition is needed in order to assess the impacts of a network expansion
on costs, it should be imposed on the true product, the flow vector Y,
even if one is working with aggregates for econometric purposes. This
will permit consistent and more reasonable inferences later on. Therefore,
we propose to calculate economies of spatial scope using equation (4),
under the condition that the average OD flow of each cargo type remains
constant after the network expansion. Formally, we define the average
origin-destination flow for cargo type k as

AODk ¼

X
i

X
j

yijk

NOD
; ð5Þ

where yijk represents the flow of type k between origin i and destination j
and NOD is the total number of OD pairs served. Note that the numerator
in equation (5) is total tons T if k indicates freight and total passengers P
if k refers to persons. This means that two indexes ought to be calculated
if in the study in question freight and passenger services are provided.
Holding this index (indexes) constant when calculating economies of spatial
scope through equation (4) will permit the analytical estimation of the
values of the components of both ~YYB and ~YYD. The idea is simple: calculate
AODA

k from ð ~YYA;PSAÞ, and then estimate ~YYD and ~YYB from
AODD

k � AODA
k .

This general approach will be procedurally dependent on the aggregates
used in each application; in what follows we show analytically how the
method works for a particular although very common aggregate cost
function and then we present an application. It is important, however, to
stress at this point what the proposed approach accomplishes conceptually.
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First, it should be clear that RTS is being replaced by something more ade-
quate. On one hand, the condition we propose is explicit and made in terms
of the true product Y, as opposed to the constant density assumption. On
the other hand, we are using the concept specifically built to study the cost
convenience of adding new products: economies of scope. Second, the
method can accommodate the intuitive density explanation for network
growth, but taking into account the costs associated to the larger network
and providing an empirical way to test it. To see this, note that some of the
new OD flows — which will be on average as large as the originals — will
circulate in the original portion of the network, increasing density,
provided they are not all directly served. This will be cost convenient if
increasing returns to density are present. But, by calculating SC, the
costs of the network expansion itself will be properly captured this time,
as is evident from equation (4). It is not surprising that increasing returns
to density favours the presence of economies of spatial scope even
though they represent totally different ways of increasing output. After
all, economies of density represent economies of scale in terms of the true
product Y and it is well known that the presence of economies of scope
favours economies of scale and vice versa because of a general theoretical
property (Baumol, Panzar, and Willig, 1982). It must be clear, however,
that even in the presence of decreasing or constant returns to density/
disaggregated scale, economies of spatial scope may exist, as illustrated
in Jara-Dı́az and Basso (2003).8 Finally, note that a proportional expansion
of all flows in all OD pairs (which is what lies behind the strict notion of
scale) makes AOD and density (as understood in the literature) grow by
the same proportion. Therefore, the relation between density and disaggre-
gated scale remains intact with the proposed approach.

2.3 Using AOD to calculate spatial scope from the aggregates: an example

How does this apply to an estimated cost function? Let us illustrate this
general approach with a specific — although popular — example. Let us
consider an aggregated cost function ~CCðTK;ALH;PSÞ where TK
represents ton-kilometres and ALH represents average length of haul
(defined in equations (2) and (3)). We would like to examine whether a
certain firm A, with cost given by ~CCðTKA;ALHA;PSAÞ, has cost incentives

8This could happen because of the same alleged reasons why there might be increasing RTS, as for

example shared use of airport and ground staff, handling of baggage transfers, and passengers

check-in (see for example Oum, Park, and Zhang, 2000). Note, however, that SC > 0 and

RTD ¼ 1 cannot be parallelled by RTS > 1 and RTD ¼ 1 since RTS < RTD analytically (Basso

and Jara-Dı́az, 2003).
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to connect new nodes (airports) assuming that the new OD flows have, on
average, the same magnitudes as those already served (constant AOD), or if
it is better to have another firm serving them. The expanded network will
have a size given by PSD, the incremental cost of serving the new flows is
given by ~CCðTKD;ALHD;PSDÞ � ~CCðTKA;ALHA;PSAÞ, and the cost of
producing these new flows with a different firm is ~CCðTKB;ALHB;PSBÞ.
Then, replacing terms in (4), what should be calculated is

SCA ¼
~CCðTKA;ALHA;PSAÞ þ ~CCðTKB;ALHB;PSBÞ � ~CCðTKD;ALHD;PSDÞ

~CCðTKD;ALHD;PSDÞ
:

ð6Þ
In (6), we only know TKA, ALHA, and PSA, which represents the
point where economies of spatial scope will be calculated. The value of
PSD will depend on the size of the network increase that we would like
to study, for example one or five nodes. As RTS is a local marginal
measure, we would like to consider a marginal change in network size,
that is, one node, which implies PSD ¼ PSA þ 1. From this case, every
network expansion can be analysed incrementally. We will assume that
firms A and D potentially serve all their corresponding OD pairs, which
means that

NODA ¼ PSA � ðPSA � 1Þ; ð7Þ
NODD ¼ PSD � ðPSD � 1Þ ¼ PSA � ðPSA þ 1Þ: ð8Þ

The average OD flow before the expansion is given by

AODA ¼ TA

NODA
; ð9Þ

where TA is total tons moved by firm A, that is, TA ¼
P

ij y
A
ij . As ALH is

the ratio between TK and T (see equations (2) and (3)), equation (9) can
be re-written as

AODA ¼ TKA

ALHA �NODA
: ð10Þ

After the network expansion, the average OD flow is given by

AODD ¼ TKD

ALHD �NODD
: ð11Þ

Now we are fully prepared to use the constant AOD condition — which
plays a role that parallels constant density in RTS — to estimate the
remaining unknown variables TKD, ALDD, TKB, and ALHB. Constant
average OD flow implies equality between (10) and (11). Imposing this
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and replacing equations (7) and (8) we obtain

TKD ¼ TKA � ALH
D

ALHA
� PS

A þ 1

PSA � 1
: ð12Þ

Equation (12) shows that assigning a value to TKD requires an estimate
of the (potential) variation of the average length of haul after the addition
of one node to the network, ALHD. Note that a constant average OD flow
is a condition that implies nothing on travelled distances. This is not
unexpected but consistent with a strict notion of output because, from a dis-
aggregated viewpoint, the route structure, and therefore travelled distances
and ALH, are the result of endogenous operational decisions that depend
not only on the magnitude of all flows served but also on the network
topology (Jara-Dı́az and Basso, 2003). In fact, the literature on empirical
transport cost functions offers explicit alternatives to deal with ALH
when the network expands. One alternative is to consider it constant, a
choice implicitly or explicitly made in many articles where economies of
scale with variable network size have been calculated (see, for example,
Kumbhakar, 1992). A second alternative is the empirical examination of
the variation of ALH with the network variable, following the proposition
of Oum and Zhang (1997). In this alternative, if data permits, the idea is to
estimate a function f such that ALH ¼ f ðPSÞ. Obviously, both alternatives
for ALHD can be explored.

Next, we need estimates for TKB and ALHB. The former could be
estimated as

TKB ¼ TKD � TKA; ð13Þ
that comes from

TKB ¼
X
ij

yBij � dij ¼
X
ij

yDij � dij �
X
ij

yAij � dij ¼ TKD � TKA; ð14Þ

which implies that the distances travelled by the original flows (served byA)
do not vary after the new node is added. As the route structure is an
endogenous firm decision, distances could change if the route structure is
changed. Two things should be noted. First, assuming the distances
travelled by the original flows do not change ensures that, after the network
expansion, the incorporation of the new flows will increase the density on
the original portion of the network, as long as the new OD pairs are not
served exclusively by direct services. This phenomenon can be easily
portrayed using a hub-and-spoke route structure, but certainly is not
limited to that case. Second, ALH may still change because the new flows
do not need to travel, on average, the same distances as the original flows.
On the other hand, the equality TB ¼ TD � TA stands without discussion.
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Once TKB has been calculated, the respective average length of haul can
be obtained from

ALHB ¼ TKB

TB
¼ TKB

TD � TA
) ALHB ¼ TKB

TKD

ALHD
� TKA

ALHA

: ð15Þ

Note that equation (15) for ALHB is valid in general, irrespective of the
alternative chosen for ALHD. In particular, if ALHD ¼ ALHA, then
ALHB ¼ ALHA.

For synthesis, the approach to calculate scope applied to the cost
function ~CCðTK ;ALH;PSÞ in our example turns into the following
sequence of calculations

1: PSD ¼ PSA þ 1

2: PSB ¼ PSA þ 1

3: ALHD ¼ f ðPSDÞ or LHD ¼ ALHA

4: TKD ¼ TKA � ALH
D

ALHA
� PS

A þ 1

PSA � 1

5: TKB ¼ TKD � TKA

6: ALHB ¼ TKB

TKD

ALHD
� TKA

ALHA

7: SCA ¼

~CCðTKA;ALHA;PSAÞ þ ~CCðTKB;ALHB;PSBÞ
� ~CCðTKD;ALHD;PSDÞ

~CCðTKD;ALHD;PSDÞ
:

As indicated earlier, the sequence corresponds to a marginal increase of
the network by one node, that is, from PSA to PSA þ 1. This can be
repeated to evaluate the evolution of SC as the network grows. As is
evident, a different set of aggregated products in the cost function would
require other sequence and specific calculations; for example, the use of
passenger-kilometres mean that PKD and PKB should be calculated from
PKA taking into account average length of trip instead of average length
of haul. Although a case by case analysis is necessary for other aggregates
and attributes, the key aspect is to study analytically the behaviour of each
one under the constant average OD flow condition.

The degree of economies of spatial scope calculated with the method
proposed above has a main objective: to investigate whether there are
cost advantages for the firms to expand their network size. This, in
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conjunction with the degree of economies of density/disaggregated scale,
will permit a correct analysis of the industry structure taking into account
both density (level of production) and network size. In the following section
the method will be applied using a published study on the Canadian air
industry that reports an econometrically reliable cost function with
aggregate output, which we found appropriate to explore the potential of
our approach and its explanatory power.

3.0 Methodological Application

3.1 Summary of the selected article

In order to illustrate the methodological approach described in the previous
section, we have selected the article by Gillen et al. (1990) — built on Gillen
et al. (1985) — which was chosen for various reasons. First, one of the
declared objectives of the authors is ‘‘to extend the knowledge on airline
cost structure where there is significant variation in the size of carriers,
and to clarify the issue of scale economies for small carriers.’’ Second,
the estimated cost function includes products and attributes that permit a
quite direct application of the method presented. Third, the econometric
work is carefully developed, which makes the quantitative results reliable
for analysis. Finally, their calculation of RTD is a correct estimation of
the (disaggregated) degree of scale economies, according to the Jara-Dı́az
and Cortés (1996) methodology. It is worth noting that this article is an
extension of previous single output studies to an aggregated multiproduct
case including freight, regular passenger services, and charter. In what
follows we reproduce only those aspects that are necessary for our
application and analysis.

Six regional and transcontinental Canadian airlines were observed
annually from 1964 to 1980. Using a translog form and variables expressed
as deviations from their means, a long-run cost function was specified as

~CC ¼ ~CCðF ;PS;fð ~YY ;QÞ;w; tÞ; ð16Þ
where ~CC is total cost; F is a vector of firm specific effects; PS is the number
of points served (network size); fð ~YY ;QÞ is a vector of hedonic products; ~YY
is a vector of aggregate products;Q is a vector of attributes; w is a vector of
input prices; t is time.

The aggregated product vector considered three components (our
notation): scheduled revenue passenger-kilometres (PK), scheduled revenue
freight ton-kilometres (TK), and non-scheduled (charter) revenue ton-
kilometres including passenger and freight services (CH). Only the first
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component was specified in a hedonic form (Spady and Friedlaender, 1978)
as f1ðPK ;Q1Þ. Originally, the vector of attributes Q1 considered was:
average stage length for the scheduled passenger service (ASL), scheduled
passenger load factor (PLF), and the weighted average number of seats
per scheduled passenger service (PNS). The results showed that neither
PLF nor PNS were statistically significant. Thus, the final long-run cost
function included a three outputs vector (f1, TK, CH), with a log-linear
specification for f1:

lnf1 ¼ lnPK þ b � lnASL: ð17Þ
Input prices were aggregated into three categories: labour, fuel, and capital
and materials. Note that the cost function is estimated in terms of the
average stage length (ASL) and not the average length of trip (ALT),
which is what we used in the example in the previous section. ASL repre-
sents the average distance of a link in the route structure, where the average
takes into consideration the number of passengers on each link rather than
at an OD level.9 For the application we gathered information on ALT, on
the average length of trip for charter services (ALT-CH) and the average
length of haul of freight (ALH). For the sake of simplicity, the method
will be applied only to three of the six firms studied by Gillen et al. These
carriers are Air Canada, the largest, and the relatively small Nordair and
Quebecair. In Table 1 we show the 1980 values for their products,
attributes, network, and input prices.10 The mean values for 1980 and the
overall means (deviation point) are also shown. The results reported by
the authors for RTD and RTS in 1980 (calculated with ASL constant)
are shown in Table 2.

From their results, the authors conclude that:

(1) Significant increasing returns to density (RTD) are observed at all data
points. Unexploited economies of traffic density are larger for small
carriers (Nordair and Quebecair) than for the larger carriers (Air
Canada).

(2) Constant returns to firm network size (RTS) are found at all data
points, except for Air Canada and Nordair, which exhibit decreasing
and increasing returns respectively (which is the main reason why
these particular firms were chosen for the example).

9Certainly, unless every OD pair is served directly, PK on links will not have a direct counterpart with

PK on OD pairs. However, it is easy to check that total PK stemming from the addition of flows on

links yields the same result as adding PK on OD pairs.
10In fact, these are input price indexes adjusted for a constant rate of technological change. See Gillen

et al. (1990).
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(3) The smaller carriers have a higher unit cost than the largest carrier,
Air Canada, which is consistent with the observed consolidation of
regional carriers into a single one.

(4) The finding of constant returns to firm/network size suggests that a
small network carrier should not have a cost disadvantage, provided
it achieves traffic densities within its small network similar to those
of the larger carriers (Air Canada).

3.2 Application of the proposed method and industry structure conclusions

As three services are distinguished in this study, the sequence of calcula-
tions presented in Section 2.3 ought to be applied not only to TK, but
also to PK and CH. Because of this, and to keep a clear picture of the
firms we are about to analyse through economies of scope, we have
calculated the average OD flow, AOD, for each firm and for each type of
service in 1980. This is presented in Table 3.

Table 2

Returns to Density and Returns to Scale in 1980

Air Canada Nordair Quebecair Mean 1980

RTD 1.147 1.263 1.209 1.211
RTS 0.881 1.147 0.993 0.971

Source: Gillen et al. (1990).

Table 1

Reported Airlines Production (aggregates) and Input Prices
in 1980 and Overall Mean

Air Canada Nordair Quebecair Mean 1980 Overall Mean

PS 59 21 23 32.67 29.90
PK (millions) 23,767.71 703.61 289.70 6,028.17 3,143.30
ASL 1,114.60 528.37 273.49 682.03 590.19
ALT 1,832.89 734.51 402.1 1,127.85
f1 3,781.31 136.12 66.60 1,090.76 590.73
CH (millions) 83.15 60.49 27.86 59.95 40.45
ALT-CH 3,606.50 2,345.01 1,454.91 2,661.59 1,560.80
TK (millions) 552.20 24.11 3.26 142.37 83.41
ALH 3,483.10 1,566.20 1,089.65 1,988.80 1,691.40
Labour price 1.93 1.80 1.69
Fuel price 4.54 5.14 5.13
Cap/Mat price 2.04 2.03 2.01

Sources: Gillen et al. (1990), Gillen et al. (1985), and Statistics Canada Transcontinental &
Regional Air Carrier Operations (years 1971–80), Catalog Number 51-001.
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It can be seen from Table 3 that charter service is more important than
freight for Quebecair and Nordair, while for Air Canada the opposite
applies, something pointed out by Gillen et al.11 Regarding regular passenger
transport, Air Canada presents an average flow that is one-and-a-half and
two-and-a-half times that of Nordair and Quebecair respectively. In general,
Air Canada presents larger OD flows and network size than Nordair and
Quebecair (almost three times more points served than the others).

Although ASL is the only distance-related variable that needs to be
inserted directly in the cost function (through f1 in equation (17)), the
average length of haul of freight services (ALH) and the average length
of trip for both passenger and charter services (ALT and ALT-CH) will
be needed for other calculations, particularly when estimating the outputs
of the D-like firms (see step 4 of the sequence). As explained in Section 2,
average distances — ASL, ALT, ALT-CH, and ALH — can either be
assumed to remain constant as the network grows or its variation with
PS can be examined empirically, following Oum and Zhang’s (1997) pro-
cedure, that is, log-linear equations of the form lnASL ¼ aþ b lnPS.
Let us first use the second alternative. As detailed data are not known,
approximated relations between PS and ASL, ALT, ALT-CH, and ALH
can be guessed using the available information for the six firms considered
in the study for years 1971, 1978, and 1980. From these 18 observations we
obtain the results shown in Table 4 (standard errors in parentheses).

In order to obtain the average distances for the three D-like firms, the
derivatives with respect to PS will be approximated as follows:

lnASL ¼ aþ b � lnPS ) ASL ¼ expðaÞ �PSb;

@ASL

@PS
¼ expðaÞ � b �PSb�1 ) �ASL

�PS
� expðaÞ �b � ðPSAÞb�1:

Table 3

Average OD Flow (AOD) for Each Firm and Each Service in 1980

Air Canada Nordair Quebecair

Passenger (pax) 3,789 2,281 1,424
Charter (tons) 6.74 61.42 37.84
Freight (tons) 46.33 36.65 5.92

11Gillen et al. (1985, p.27) state: ‘‘Regional carriers have operated substantial amounts of charter

services. This is not surprising, given the lack of growth opportunities in the more highly regulated

regional markets for scheduled traffic.’’ Note that comparisons with passenger services are inappro-

priate since these are expressed in number of passengers while the other two are expressed in tons.
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As �PS is equal to one, we finally have

ASLD ¼ ASLA þ expðaÞ �b � ðPSAÞb�1: ð18Þ
Similarly, three other equations are obtained for ALT, ALT-CH, and

ALH, which will be used for the analogous step 3 of the sequence. Before
calculating economies of spatial scope, though, there is a small issue to
deal with. As can be seen in Section 2, ALTB, ALT-CHB, and ALHB can
be calculated on theoretical grounds (step 6 of the sequence). This is not
true for ASL, however. To overcome this problem we impose that the
ratio between ASLB and ALTB, is equal to the average of the ratios
ASLA :ALTA and ASLD :ALTD, based on the fact that this ratio is actually
fairly stable in time — which is why the elasticities of ASL and ALT with
respect to PS are alike. Sensitivity analyses are performed later.

Economies of spatial scope can finally be calculated. The coefficients of
the calibrated translog cost function are reported in Gillen et al. (1990). The
products for firms playing the role of A, B, and D for each of the three
Canadian airlines and the value for SC are shown in Table 5. The results
obtained for the degree of economies of scope are quite appealing. First,
all three fall within the theoretical range, that is, between 1 and �1.
Second, the results show that the three firms have increasing returns to
spatial scope but smaller firms have stronger incentives to expand their
networks considering constant average OD flows (SC being more than
twice as big as Air Canada’s). Recall that all three firms presented
increasing RTD (see Table 2), which means economies of scale in the
strict sense, that is, increasing production (OD flows) on a fixed network
presents cost advantages. Third, the ordering of SC follows the same as
RTD. According to the discussion in Section 2, by increasing their networks
firms are able to partially exploit economies of density. The measure of SC
however, does incorporate the fact that expanding the network is costly.
Lastly, the ordering of RTS is also the same as SC, but only Nordair has
RTS above 1. This may be seen as an indication that RTS could be

Table 4

Elasticities of Average Distances with respect to PS

ASL ALT ALT-CH ALH ASLa

a 4.348
(0.854)

5.008
(0.999)

6.290
(0.558)

5.236
(0.890)

5.793
(1.540)

b 0.598
(0.258)

0.534
(0.302)

0.505
(0.169)

0.644
(0.269)

0.461
(0.101)

R2 0.25 0.17 0.36 0.26 0.17

aOum and Zhang (1997) results.
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biased downwards in terms of policy conclusions, that is, that it would show
more often than SC that network expansions are not convenient.

Although these results provide a useful insight on the structure of the
industry, one can well wonder whether factors other than network size
have a stronger influence on them. The following three issues are explored,
as a way to test the robustness of the results and to help us understand
better what is behind the numbers.

(1) Airlines with smaller network sizes have higher returns to scope;
however they also have higher returns to density/disaggregated
scale, which favours economies of scope. This may partially explain
the differences. In order to explore this issue further, we can compare
the degree of economies of spatial scope of firms that have similar
average OD flows, but different network size. The procedure to
calculate these new values for SC is simple: we increase the values

Table 5

Calculation of Economies of Spatial Scope (1980)

Air Canada Nordair Quebecair

PSA 59 21 23
PKA 23,767.71 703.61 289.70
ASLA 1,114.60 528.37 273.49
ALTA 1,832.89 734.51 402.10
fA 3,781.31 136.12 66.60
CHA 83.15 60.49 27.86
ALT-CHA 3,606.50 2,345.01 1,454.91
TKA 552.20 24.11 3.26
ALHA 3,483.10 1,566.20 1,089.65

PSD 60 22 24
PKD 24,747.55 794.34 330.60
ASLD 1,123.58 541.97 286.60
ALTD 1,844.84 753.84 420.63
fD 3,928.93 152.65 75.08
CHD 86.36 67.21 30.87
ALT-CHD 3,620.69 2,368.68 1,477.54
TKD 573.75 26.90 3.63
ALHD 3,498.41 1,588.31 1,111.06

PSB 60 22 24
PKB 978.84 90.73 40.90
ASLB 1,333.57 681.16 425.12
ALTB 2,191.29 947.18 624.47
fB 148.73 16.42 8.38
CHB 3.21 6.72 3.01
TKB 21.55 2.79 0.37

SC1 0.02811 0.08178 0.06247
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of PK, TK, andCH for each firm, until they all reach the same average
flow (hence given by the maximum).

(2) As explained earlier, the use of an econometrically obtained function
to measure the change of the average distances, following Oum and
Zhang (1997), is one of the alternatives for these variables. Alterna-
tively, one can choose to impose that they remain constant (within
each firm) when calculating spatial scope. This is particularly
important to examine in this case because: (i) the regressions were
performed with a rather limited data set; (ii) ASL was updated
using a rule that may be reasonable but is not grounded on theory
as the others are; and (iii) Gillen et al. calculated RTS assuming
ASL remained constant. To calculate a new set of SC we simply
impose that average distances do not change or, which is equivalent,
that the elasticities are zero in Table 4.

(3) As can be seen from Table 1, the three airlines faced different input
prices.While this certainly has an influence on the degree of economies
of scope, we would like to know whether that influence is sizeable or
not. To control for this factor we calculate new values for SC for each
firm using the same set of input prices (the average).

These sensitivity analyses — and every possible combination of them—
are presented in Table 6.

Regarding the first issue — the influence of output levels — it can be
observed from measures 3, 4, 7, and 8, that even if similar production

Table 6

Economies of Spatial Scope (SC) in Various Cases

Air Canada Nordair Quebecair

SC with different input prices across firms
SC1 Average distances are variable 0.02811 0.08178 0.06247
SC2 Average distances are fixed 0.02559 0.07635 0.05615
SC3 Average distances are variable

AOD are equal
0.02729 0.07130 0.07453

SC4 Average distances are fixed
AOD are equal

0.02486 0.06638 0.06660

SC with identical input prices
SC5 Average distances are variable 0.02761 0.08203 0.06315
SC6 Average distances are fixed 0.02513 0.07658 0.05673
SC7 Average distances are variable

AOD are equal
0.02680 0.07154 0.07525

SC8 Average distances are fixed
AOD are equal

0.02441 0.06659 0.06721
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scales (in the true product sense) are imposed, firms with smaller networks
still show higher returns to spatial scope (network size) than Air Canada.
Comparing SC3 to SC1, and SC7 to SC5, reveals that the degree of
economies of scope decreased for Air Canada and Nordair but increased
for Quebecair. As explained before, increasing density (production)
exploits part of the increasing returns to density (scale), pushing SC
towards zero. Why then has Quebecair a higher measure of scope? The
answer lies in the fact that RTD is a ray measure: it tells what happens
when all the flows increase by the same proportion. In other words, the
product mix remains unchanged. In this exercise however, this was not
the case since, in order to impose equalAOD in every service, we necessarily
needed to change output mix. For example, Quebecair’s freight service was
increased almost eight times while its passenger service was increased only
two-and-a-half times. If we impose an equiproportional increase in all
services equating passengers’ average flow only, the degree of economies
of scope indeed decreases for the three firms.12 Firms with small networks
still display higher returns to spatial scope in this application.

Regarding the second issue, it can be seen that when distances are
imposed to remain unchanged within each firm (SC measures 2, 4, 6, and
8), the degree of economies of spatial scope decreases by around 9.8 per
cent for Air Canada, around 7.4 per cent for Nordair, and around 11.5
per cent for Quebecair. This shows that conclusions remain basically
unaffected. This is reassuring because, in the absence of detailed informa-
tion, our econometric regressions for the average distance were somewhat
unreliable. We know now that the potential impacts of this are small.13

Finally, it can also be seen that the influence of input price differences is
practically immaterial. The degree of economies of scope of Air Canada
decreases by at most 1.8 per cent when its input prices are replaced by
the average, while SC increases by 1 per cent for Quebecair and 0.3 per
cent for Nordair.

In order to examine yet another angle of spatial scope, we have
calculated SC using the proposed methodology increasing PS by one up
to 100. We have done this considering constant average distances and
identical input prices, to isolate better the effect of the network size in SC
(that is, as in SC6). The values obtained for each firm size are represented

12In this case, output levels of Nordair are increased 1.66 times and Quebecair’s 2.66 times. For variable

distances and different input prices, SC is 0.02779 for Air Canada, 0.07638 for Nordair, and 0.05302

for Quebecair.
13Moreover, our elasticities are larger than the elasticity suggested by Oum and Zhang (1997), which

was calculated with detailed data (see Table 4). Our two analyses, then, can be considered as enclosing

one carried out with that elasticity.
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in Figure 2. Recall that the values represented in this figure have been
obtained by imposing that, for every service, average OD flows are constant
as the number of points served increases.

Figure 2 suggests that the initially smaller returns to scope shown by Air
Canada are due to its already large network. The other two firms can
exploit their initially higher returns to spatial scope by increasing their
network sizes. One would expect economies of spatial scope to diminish
with network size, just as returns to scale diminish with production.
Note, however, that this is a property of this cost function and its parameter
estimates; it is not something that is guaranteed a priori. We therefore view
the fact that returns to spatial scope diminish with PS in this case, as
supporting both our method and the cost function estimated by Gillen
et al. (1990).

The behaviour of SC for Nordair and Quebecair is quite similar to Air
Canada’s once they achieve large enough networks.14 It is important to
stress that this is so, in spite of the fact that they have quite different
output mixes, average OD flows, and average distances. We can conclude
then that these firms, which have smaller production scales and stage
lengths, should not have disadvantages with respect to the larger ones as
long as they reach sufficiently large networks; this is the main numerical

Figure 2
Economies of Spatial Scope as a Function of Network Size

14The same pattern is observed when this incremental analysis is made either using the regressions for

the distances and different input prices, or fixed distances and different input prices. The only visible

change is that, in the first case, the curve for Air Canada is closer to Nordair’s rather than Quebecair’s.

These figures are available upon request to the authors.
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result from our example.15 The presence of economies of scope is important
by itself because, as shown by Jara-Dı́az (1982b) and Jara-Dı́az and Basso
(2003) on technological grounds, incentives to merge might appear because
of economies of spatial scope even under constant returns to density/
disaggregated scale; note that, as emphasised by Basso and Jara-Dı́az
(2003), this would require RTD ¼ 1 and RTS > 1, which is analytically
impossible. Note also that, although Quebecair has higher returns to
density than Air Canada, it presents smaller returns to spatial scope for
the same values for PS. This further shows that, while returns to density
favour the presence of economies of scope, the former do not determine
the latter completely.

Conclusions on industry structure regarding Canadian airlines should
be taken with care, since we do not have the variance-covariance matrix
of the parameter estimates and, therefore, we can not calculate t-statistics
for our scope calculations. Nevertheless, the results obtained permit a
new interpretation of the process of consolidation of regional airlines in
Canada. We have concluded that, irrespective of density and possible
increasing RTD, the firms with small networks present increasing returns
to spatial scope, which makes it cost convenient to expand their networks.
While returns to density provide a direct incentive to merge for firms
serving the same or highly overlapped network (parallel merging, as RTD
is calculated explicitly with fixed networks), SC provides incentives to
merge for firms with non or minimum network overlapping. The relevant
question then is: what were the options open to regional carriers? A
series of statements in the 1960s, particularly 1969’s regional carrier
policy, confined the regional carriers’ networks to their respective
geographical areas with minimum overlap, showing that the potential for
parallel merging was limited. This makes our finding of increasing returns
to spatial scope a relevant cost explanation for the consolidation observed
afterwards, as it would be a means to enlarge the network size in order to
take advantage of these economies.

Finally, regarding the issue of how to incorporate changes in average
distances, we want to stress that what is important is to make the assump-
tions explicit when analysing network growth. As in the case of the flows,
where we are explicitly imposing that on average they do not change,
researchers should be clear on what happens with distances (something
dependent not only on the magnitudes of the flows, as discussed). In this

15It is not true though that for this cost function any airline with a small network will have higher returns

to scope than an airline with a large network. It is easy to construct examples where, even with twenty

PS, an airline has returns to scope smaller than Air Canada’s. Thus nothing is defined a priori, show-

ing that the results are simply a reflection of what happened in this industry in 1980.
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sense, we do not deem it necessary to commit to a specific alternative
a priori. Whenever possible both the constant and variable average distance
cases should be explored but, in some cases, data may preclude it. Which
alternative is more ‘‘correct’’ will depend not only on how industry behaved
in the past, but also on what one wants to study. Our finding of little differ-
ence when using one or the other alternative shows that increasing average
distances because of network growth have little impact on the existence of
economies of spatial scope in this case.

4.0 Synthesis, Conclusions and Comments

Transport cost functions have to be estimated using aggregate descriptions
of product. The question is how these functions can be used to study the
potential advantages of expanding the network served. This type of
analysis, complementary to the calculation of RTD (which has been
shown to correspond to scale in a strict sense), has been done in the litera-
ture by means of the RTS index. But RTS has been shown to prevent a
meaningful industry structure analysis regarding optimal network size,
mainly due to the constant density condition (Basso and Jara-Dı́az,
2002). Following Jara-Dı́az, Cortés, and Ponce (2001), we have proposed
here that we should analyse network expansions by looking at the true
product and its translation into a vector of aggregates. Two facts emerged:
first, when the network grows new outputs (OD flows) are produced, which
means that economies of scope should be calculated. Second, as aggregates
are functions of the true product, adding new OD pairs translates into
changes of the aggregates, which makes the orthogonal partitions required
for scope calculation look simply like evaluations of the cost function in
some other values of the aggregates, which have to be calculated. The
method presented in this paper rests on a procedure to find the aggregates’
counterparts of the partitions in order to use estimated cost functions to
calculate economies of scope.

When dealing with empirically estimated cost functions, OD flows are
unknown and some condition should be imposed in order to deal with
the magnitude of the new flows, that is, those added after the network
expansion. We found it reasonable to replace the problematic constant
density condition that underlies RTS by the constancy of the average OD
flow of each type. This was shown to provide enough information to
calculate the new aggregates needed to estimate economies of scope. Our
proposal is based upon this calculation. The method proposed for
economies of spatial scope can not only replace RTS in its intended task
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— analysing the cost convenience of network expansion — but also
encompass an intuitively correct but economically incomplete previous
explanation for network growth, namely that by increasing their networks
firms feed more traffic into the links and, therefore, partially exploit econ-
omies of density. Also, the method can be applied to an estimated translog
cost function, not particularly suited to calculate scope but quite useful to
calculate other indexes and to impose regularity conditions.

In order to illustrate the method, we presented an application using the
results of a published study on Canadian airlines. The calculation of econ-
omies of scope emerged very neatly and the case presented fulfilled very well
the objective of illustrating the potentials of the method: knowing some
information that goes little beyond what is needed for the calculation of
RTS, the degree of economies of spatial scope can be estimated precisely
and unambiguous conclusions regarding network size can be obtained.

The specific conclusions obtained on industry structure regarding
Canadian airlines with the new method should be treated with care due
to the lack of statistical analysis. Nevertheless, the results obtained
permit a new interpretation for the process of consolidation of regional
airlines in Canada. We have concluded that, irrespective of density and
possible increasing RTD (in itself an incentive to merge), the firms with
small networks present increasing returns to spatial scope, which makes
it cost convenient to expand their networks. Our analysis with the small
firms having similar flow levels as the larger firm, and the fact that regional
carriers had non overlapping networks, suggest that increasing returns to
spatial scope was a major cost saving force driving the merging process.
As stated earlier, economies of spatial scope have been suggested previously
as an explanation for merging and the emergence of alliances but they have
not been calculated from an estimated cost function with aggregate output
until now.

A more complete study of industry structure would require a detailed
analysis of both economies of density/disaggregated scale and economies
of scope, involving different configurations, sizes and number of firms.
Just as an example, if a firm that exhibits increasing returns to density/
scale (RTD > 1) and constant returns to spatial scope (SC ¼ 0), decided
to exploit its economies of scale/density by increasing output within its
fixed network, it might happen that SC ¼ 0 turned into diseconomies of
scope (SC < 0). Note also that economies of spatial scope, as calculated
here, do not involve changes in proportion between the different services
offered (output mix). Since we are situated in a multiproduct setting
that includes not only space, industry structure analysis should consider
variations of this proportion between different types of services or flows.
This can be done through sensitivity analyses, as in the previous section,
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but more importantly through the examination of aggregate product-
specific economies of scale, cost complementarity between aggregate
product types, and economies of scope between different types of services
(the type of economies of scope usually calculated in the literature). The
fact that space is the most important specific dimension of transport
production makes the role of the network particularly important but
should not hide the importance of other dimensions.16 It is also important
to recall that this is an analysis in terms of a cost function only, as RTS
was; potential advantages on the demand side are, therefore, yet to be
considered.

The method presented here highlights the importance and usefulness of
viewing transport processes in terms of the true product, even if one cannot
work empirically with that notion. This is particularly relevantwhenmaking
economic inferences irrespective of the specific form that the aggregate
description of product takes. From this viewpoint, it is necessary to
emphasise that what we have presented is a general approach to deal with
network expansions, namely the calculation of spatial scope. The specific
procedure for the actual calculation of SC will depend on the type of
aggregates used in the cost function specification, as shown. The analysis
of how to proceed with other aggregates and attributes is part of future
work.

As a summary, viewing aggregate transport cost functions from the
viewpoint of the true transport product has originated both the method
presented here to calculate spatial scope and the approach by Jara-Dı́az
andCortés (1996) to calculate returns to density/scale correctly. This implies
that a fairly complete and meaningful analysis of a transport industry
structure can be performed from aggregated transport cost functions
provided they are correctly interpreted. Both methods can be applied to
most published studies, which motivates a re-evaluation of their policy con-
clusions. Future studies can take advantage of the econometric advances
that have generated many reliable cost functions for different transport
industries. We believe that our approach permits a richer analysis.
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