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It is customary to analyze transport industry structure using two indices: (1) economies of density and
(2) economies of scale with variable network size. The latter has been defined to analyze the behavior of costs when

output and network size expand simultaneously. After reviewing in detail what is intended with the calculation
of RTS under this definition, we show analytically that, when the spatial aspects underlying transport produc-
tion are taken into account, the seemingly reasonable conditions imposed on the aggregate output descriptions
and the network variable conceal implicit output expansions that are not uniquely defined: they happen to
depend on the specification of variables and on the evaluation point. Furthermore, most of the multiple output
expansions analyzed correspond to cases that are hardly instructive. We conclude that this index is inherently
ambiguous, hardly contributes to an adequate analysis of transport industry structure, and should be replaced
by the calculation of economies of spatial scope (Journal of Economic Literature L91, L11, D40).
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1. Introduction
Industries characterized by network technologies are
disproportionately represented in econometric cost
studies. There are two related reasons for this. First,
network technologies are usually thought to be charac-
terized by economies of scale. This has resulted in most
of them being regulated over the years, which, in turn,
has meant much better than average data availability
for cost function estimation. Furthermore, the open-
ing of such industries to competitive entry has often
focused important policy debates on the extent of scale
economies that may or may not be present. Unfortu-
nately, their network structure makes the aggregation
problem under discussion particularly severe. If point-
to-point transportation (or transmission) movements
are viewed as the true cost-causitive outputs of the
firm, a firm operating even a relatively small network
must be viewed as producing an astronomical number
of products. (Panzar 1989, p. 44)

Spady and Friedlaender (1978) showed how sensi-
tive transport cost function analysis was to product
specification. The emergence of the new multioutput
theory (synthesized by Baumol, Panzar, and Willig
1982) further promoted this discussion. Presently,
most of the empirical work on transport cost functions
includes a variety of product descriptions, attributes,
and network indices. After Caves, Christensen, and
Tretheway (1984), it became customary to ana-
lyze transport industry structure using two indices:
(1) economies of density (RTD) and (2) economies

of scale with variable network size (RTS).1 The first,
aimed at analyzing costs as product grows within a
fixed-size network, is calculated as the inverse of the
sum of the cost elasticities with respect to products.
The second, aimed at studying both product and net-
work growth, includes, in addition, the elasticity of
cost with respect to the network size. Both RTD and
RTS have become the textbook concepts to analyze
transport industry structure (Small 1992; Berechman
1993; De Rus and Nash 1997; Braeutigam 1999; Pels
and Rietveld 2000).
Some authors, however, have expressed reserva-

tions concerning these concepts. Regarding RTD,
Panzar (1989), in a simple example, showed that
“returns to density are precisely equal to (what has
been previously defined to be) the degree of mul-
tiproduct economies of scale!” (pp. 43–44), some-
thing also mentioned by Hurdle et al. (1989) and
Filippini and Maggi (1992). Jara-Díaz and Cortés
(1996, hereafter JDC) showed theoretically that, in
fact, an improved version of economies of density is
scale under a strict multioutput definition. Oum and
Zhang (1997) concurred with JDC (1996). Regarding
RTS, Panzar (1989), whose observations have received
surprisingly little attention in the transportation lit-
erature, showed that the Caves et al. (1985) measure
of returns to scale (RTS) is always equal to one in his

1 Antoniou (1991) traces this distinction back to Koontz (1951),
however.
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simple example, pointing out that this is not particu-
larly relevant for the analysis. Second, some authors
have suggested, either literally or implicitly, that RTS
and scope are related (Daughety 1985; Hurdle et al.
1989; Borenstein 1992). JDC (1996) pointed out that
network expansions require scope—and not scale—
analysis, because they usually imply an increase in the
number of products (origin-destination pairs). Finally,
Antoniou (1991) argued that not considering the so-
called network attributes in the calculation of RTS is
unjustified. Oum and Zhang (1997) proposed to con-
sider the relations between attributes and the network
variables to calculate RTS.
Yet, despite the caveats and proposals for improve-

ments, RTS still is the concept used in applied research
to study issues such as ownership, regulatory reform,
the scope for competition, or postderegulation mar-
ket structures.2 In this paper, we provide a rigorous
base to examine what has been intuitively and qual-
itatively suggested, explaining why and where RTS
fails as a tool for industry structure analysis. We begin
by discussing output, scale, and scope in transport
analysis in §2. Building on this, in §3, we offer a dis-
cussion of the current interpretation of RTS. In §4, we
then move to the main issue, a close examination of
the meaning and use of RTS. We conclude that this
index is ill-defined and does not contribute to an ade-
quate analysis of transport industry structure, propos-
ing spatial scope as the relevant concept to be used.

2. Product, Scale, and Scope in
Transport

A multioutput cost function C�w�Y� is defined as
the minimum expenditure necessary to produce the
output vector Y at input prices w. Economies of scale
exist if an expansion by the same proportion of all
products in Y causes a less than proportional increase
in cost. Economies of scope exist if it is cheaper to
produce Y with one firm than to split production
into two orthogonal subsets. In other words, scale
analysis deals with the (proportional) growth of all
products, while scope analysis is related with the
addition of new products to the line. Analytically,
the (multiproduct) degree of economies of scale at Y,
S�Y�, is calculated as the inverse of the sum of cost
elasticities with respect to products at Y. A value
of S larger, equal, or less than one shows increas-
ing, constant, or decreasing returns to scale at Y,
respectively, indicating the relative cost efficiency of
proportional expansions or reductions of output. The

2 Recent papers are Mizutani (2004, rails), Liu and Lynk (1999, air-
lines), and Filippini and Prioni (2003, buses). For earlier studies,
see Oum and Waters (1996), Braeutigam (1999), Pels and Rietveld
(2000), and Jara-Díaz (2000).
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Figure 1 An Illustrative OD Structure

degree of economies of scope at Y relative to a subset
R of products, SCR�Y�, is calculated as SCR�Y� =
�C�w�YR�+C�w�YM−R�−C�w�Y��/C�w�Y�, where
YR is vector Y with yi = 0� ∀ i � R ⊂ M , and M is
the whole product set. A positive SCR means that it
is cheaper to produce Y with one firm than to split
production into two orthogonal subsets R and M −R
(Baumol, Panzar, and Willig 1982).
In the case of transport, a firm produces move-

ments of people and goods between many origins
and destinations (OD pairs) during different periods.
Strictly, then, a transport firm produces a vector Y =
�yijkt�, where yijkt represents flow of type k (goods
or people), between origin i and destination j , dur-
ing period t (Jara-Díaz 1982a, b; Winston 1985; Ying
1992; Braeutigam 1999). Because of our emphasis on
the spatial dimension of transport production, let us
keep the ij subindices only. Scale economies exist if
cost increases less than �% when all flows increase
by �%, while there are economies of scope if it is
cheaper to produce all OD flows Y with a single firm
than to specialize production spatially. In the exam-
ple of Figure 1, regarding the movement of freight on
six OD pairs, there are economies of scale at Y (i.e.,
S > 1) if it is not efficient from a cost viewpoint to
have various firms, each one serving a fraction of Y,
competing on the six OD pairs. If there are disec-
onomies of scope for the partition �y12�y21�0�0�0�0�,
�0�0�y23�y32�y13�y31�—i.e., if SC < 0—then it would
not be cost efficient to have a single firm produc-
ing all six flows, but it would be better to have two
firms, each one serving one of the subsets (see Jara-
Díaz 2000). Conversely, it may well happen that firms
exhibit S = 1 and SC > 0 simultaneously (as illus-
trated in Jara-Díaz 1982b; Jara-Díaz and Basso 2003),
in which case it would be cost efficient to have them
competing, each one serving all six OD pairs.3

3 It is important to note that the OD structure represented in
Figure 1 does not represent a physical network nor a route struc-
ture but the product vector (Jara-Díaz and Basso 2003). Thus, a firm
using a hub-and-spoke route structure (hub in Node 3, say), still
produces six outputs, in spite of using only two links.
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As the number of OD pairs served is usually huge,
output aggregation is necessary for the economet-
ric estimation of cost functions. Many aggregates
have been used in the literature, some of which
are named “products,” such as passenger-kilometers,
seat- or vehicle-kilometers, or number of shipments,
while others are named attributes or characteris-
tics, such as average length of haul or load factor;
since the mid-1980s, network size variables—such as
route miles or the number of points served—have
also been considered (Jara-Díaz 2000). Both the strict
definition of transport output and the need for aggre-
gation have been frequently recognized in the liter-
ature.4 Hereafter, following Jara-Díaz (1982a, b) and
Winston (1985), we will call vector Y the true trans-
port product, as a way to distinguish it from the
vector of aggregates, which we will denote by �Y =
�	y1� � � � � 	yh� � � � � 	yV �. As seen here, the concepts of scale
and scope are crystal clear when the vector Y is con-
sidered; let us move then to the relevant case of aggre-
gates and the definition and use of its associated scale
concepts: RTD and RTS.

3. Returns to Density and Returns to
Scale from Aggregated Cost
Functions

Consider an estimated cost function 	C��Y�N�, where
N is the variable representing network size and input
prices are suppressed for simplicity. Returns to den-
sity (RTD) and returns to scale (RTS) are defined on
	C��Y�N�: “RTD refers to the impact on average cost of
expanding all traffic, holding network size constant,
whereas RTS refers to the impact on average cost
of equiproportionate increases in traffic and network
size” (Oum and Waters 1996, p. 429). Analytically,

RTS= 1∑
h∈H 	�h +�N

� (1)

where 	�h is the elasticity of 	C��Y�N� with respect
to aggregate product 	yh and �N is the elasticity
with respect to N . As RTD does not include �N ,

4 Ying (1992, p. 231) states, “This multiproduct nature is especially
evident for transportation firms, which transport various commodi-
ties or passengers from a specific origin to a specific destination
over a spatial network � � � � Empirical studies in transportation have
necessarily aggregated output data � � � � In these situations, some
researchers have tried to capture the heterogeneous nature of this
single output through a vector of output quality or attribute vari-
ables.” Braeutigam (1999, p. 68) states that “treating the movement
of each commodity from each origin to each destination as a sepa-
rate product would be desirable. There would be so many outputs
however, that estimating a cost function would be impossible.” See
also Winston (1985), Gillen, Oum, and Tretheway (1990), and Small
(1992). The first detailed discussion regarding output definition and
aggregation can be traced back to Jara-Díaz (1981).

RTD>RTS because the network size elasticity is posi-
tive since, everything else constant, serving a larger net-
work implies larger expenses (Pels and Rietveld 2000).
Increasing returns to scale (RTS > 1) suggest that,
if possible, both network size and products should
be increased because serving larger networks would
diminish ray average cost; along that ray, the indus-
try would be seen as a natural monopoly. Constant
returns to scale together with increasing returns to
density (RTD> 1) would indicate that, if possible, traf-
fic should be increased keeping network size constant.
As explicitly shown in Equation (1), the sum of

the product elasticities is made over a subset H of
aggregates, whose definition is an issue still unre-
solved in the literature. Most articles do not include
the so-called attributes in H , as in Friedlaender et al.
(1993, railroads), Kumbhakar (1990, airlines), and
Bhattacharyya, Kumbhakar, and Bhattacharyya (1995,
buses). Other authors argue that the inclusion of cer-
tain elasticities will depend on how the product is
expanded, as Caves et al. (1985, railroads) who con-
sider the average length of haul elasticity in some
of their RTS calculations, Windle (1988, buses) who
include the load factor elasticity in a calculation of
RTD, and Caves and Christensen (1988, buses and air-
lines) who include the load factor elasticity for some
RTS calculations.
Gagné (1990), Ying (1992), and Xu et al. (1994) con-

sidered the interrelations among aggregates (“prod-
ucts” and “attributes”) to calculate a total rather than
a partial elasticity. JDC (1996) sustained that the inter-
relations arose because most elements in vector �Y are
implicit functions of the true output vector Y, i.e., �Y
is actually �Y�Y�. For instance, total flow is simply the
sum of the yij over all OD pairs, ton-kilometers are
a sum of distance-weighted OD flows and average
length of haul is the ratio between the latter and the
former. This makes 	C an implicit function of Y as
well, which means that 	C��Y�N�≡ �C�Y� and 	C can be
used to calculate the elasticities of cost with respect
to the true product using the chain rule. Following
this, the multiproduct degree of economies of scale S,
defined in §2, was shown to be equal to the inverse
of the sum of the aggregates’ cost elasticities, each
one multiplied by a factor �h that corresponds to the
local degree of homogeneity of each aggregate with
respect to Y. With this method, the decision about
which aggregates should be considered in H (be it
products or attributes) is no longer arbitrary, although
the �h could be different from zero or one. Oum
and Waters (1996) described the JDC (1996) method
as “a more rigorous reconsideration” of the problem,
although pointing out that it corresponds to the cal-
culation of RTD rather than RTS, because the network
is not allowed to vary. This is correct: S in JDC (1996)
is calculated at the disaggregated Y level, considering
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proportional expansions of the true products (flows)
and, therefore, keeping the network served constant
as no new products (new OD pairs) are considered.
Therefore the result advanced by Panzar (1989) using
a simple example can be generalized: RTD (as defined
in the literature) and S become equivalent provided
the �h defined above are used.5

Regarding RTS, where the network size is not fixed,
the few and mostly qualitative criticisms summarized
in §1 have not generated an agreed measurement pro-
cedure. We now identify some problems that show the
need to sort this out. First, note that an efficient indus-
try configuration (Baumol, Panzar, and Willig 1982) in
terms of production and network size would require
firms exhibiting RTD=RTS= 1, but this can never be
obtained from 	C��Y�N�, even if such efficient config-
uration existed. Second, as seen in the previous sec-
tion, when transport product is described in detail
(vector Y�, S and SC play unambiguously complemen-
tary roles, analyzing proportional flow expansions and
addition of OD pairs, respectively. With RTD and RTS
similar complementary roles are intended, which is
why some authors have related RTS to scope. How-
ever, the relevant case of S = 1 with SC > 0, a perfectly
well-defined outcome in terms of Y, cannot have a
counterpart in RTD= 1 and RTS> 1. Furthermore, in
RTS, density—understood as the ratio between (aggre-
gated) product and the network index—is kept con-
stant while in the case of economies of scope, when the
network is expanded and newOD flows are produced,
nothing is imposed a priori on the average density of
the transport system.6 Hence, while RTS has indeed
some relationship with spatial scope, its value relative
to one (the usual scale reference) will not necessarily
lead to the same conclusion as SC > 0, as confirmed
empirically by Basso and Jara-Díaz (2005). So, if RTD
is multioutput scale, and RTS is not scope, what is RTS
then? We answer this next by moving from the RTS
definition to an examination of the implicit constraints
it imposes on the true transport output vector; that is,
the type of output expansion it analyzes.

5 We should note, however, that this does not close the discussion
regarding scale measures within a fixed-size transport network, as
RTD seems to be linked to the idea of an invariant route structure,
something that is not guaranteed after an expansion of Y; see Jara-
Díaz and Basso (2003) and Basso and Jara-Díaz (2006).
6 The concept of density in RTS is somewhat ambiguous as it
depends on what aggregates are used to describe output (e.g., total
number of passengers, passenger-kilometers, or seat-kilometers). In
many cases, authors argue that economies of density are present if
the average cost of a direct connection decreases with increments
on flows on that connection (see, for example, Hendricks, Piccione,
and Tan 1995), implying that density should be measured through
flow and not volume-distance or capacity measures.

4. A Disaggregate Examination of RTS
RTS is defined on the aggregates, �Y, and the net-
work variable, N . Let us focus on N first. The two
network size variables most frequently used in the
literature are the number of points served, PS, used
mainly in air transport, and route miles, RM, mostly
used in land transport. Because PS is simply the num-
ber of nodes in the system (e.g., number of airports
connected), when PS grows, the number of products
grows. On the other hand, RM has two interpreta-
tions; sometimes it is understood as the total length of
the physical network available, and sometimes as the
total distance usedwithin the physical network. Under
the first definition, the relation between RM and pro-
duction is unclear, as the network can grow keeping
the number of nodes and the number of products
(OD pairs) constant, as opposed to the PS case. More-
over, if RM does not change, density might change in
two ways: (1) increasing product in the existing OD
pairs or (2) increasing the number of OD pairs for the
given network (Keaton 1990). This last output expan-
sion, described as density (RTD) when RM is used,
would be described as scale (RTS) if PS was used.

Observation 1. There is a source of ambiguity
regarding the use of N within the context of RTS, as
the concept itself depends on which network descrip-
tor is used.

Because we will need to focus on a specific network
size variable for the analysis, we will use PS as it is
unambiguous and has a direct interpretation in terms
of the true flow vector; we comment on RM at the
end of the section.
Next, How does RTS relate to the true output

vector? Equation (1) provides no information about
this. One of the few explicit graphical interpre-
tations of a relation between flows and RTS is
given by Braeutigam (1999; replicated in Pels and
Rietveld 2000): in the transport system reproduced in
our Figure 2, network size and aggregated flows—
represented by ton-kilometers (TK)—vary by the
same proportion keeping density constant. As he
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Figure 2 A 25% Network Expansion, Constant Density (Braeutigam
1999)
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explains, “the size of the network has been increased
by adding another node (5) and a link to serve that
node. There are now five nodes �PS = 5�, so the
number of nodes has been increased by 25%, but
the volume of traffic over the existing links has not
been increased (the density of traffic is unchanged).
In other words, the size of the network is increased,
but the density of traffic movements is unchanged.
This is the type of output expansions usually envi-
sioned in studies of economies of scale” (Braeutigam
1999, p. 75).
As explicitly stated by the author, the true prod-

uct is the underlying vector of OD flows yij , which
means up to 12 OD flows on the original network and
up to 20 on the final one, whose values are not given.
Note that only one link is added and the hub-and-
spoke route structure is preserved. How do the TK
figures, before and after the network expansion, relate
to the flows in Y? Let us denote the distance between
nodes i and j as dij . Clearly, the total ton-kilometers
on link 1j , TK1j , is given by the total flow that travels
through that link times d1j . Initially, then

TK0
1j = d1j ·

4∑
i=1
i �=j

�y0ij + y0ji�� j ∈ �2�3�4�� (2)

where the superscript 0 denotes the original flow val-
ues. After the network is expanded, eight new OD
pairs are added but only two of these new flows,
namely 1–5 and 5–1, will use the new link; the other
six will necessarily use some of the other original
four links, adding yi5+y5i to the parenthesis of Equa-
tion (2). As TK1j remains constant for all j ∈ �2�3�4�
after Node 5 is added, either the original OD flows
diminish (which ones and by how?) or they are kept
constant but six out of the eight new OD flows are
nil. Besides this ambiguity, unpleasant by itself, nei-
ther alternative seems particularly informative for a
cost-based industry structure analysis. The hidden
constraint, on the OD flows behind the constancy of
ton-kilometers on each link reveals a problem with
this interpretation of RTS.
Another explicit interpretation of the relation

between flows and RTS is given by Oum and Zhang
(1997) within the context of their discussion regard-
ing the inclusion of the average length of haul elas-
ticity into the calculation of RTS. They explicitly state
that “If an increase in output is accompanied by
a change in network size, that is, if the number of
origin-destination pairs also increases with traffic flows in
each route, then theoretical consistency would require
investigation on the correlation between length of
haul and network size” (p. 310, emphasis added). This
implies growth of traffic on all links, which is not
compatible with the graphical example and the inter-
pretation of RTS provided in Figure 2.

Observation 2. The literature on RTS does not pro-
vide a clear view regarding its relation with the true
output vector Y: nothing can be inferred from its ana-
lytical definition (Equation (1)); some articles provide
contradicting interpretations and most articles do not
even touch on the problem.

Then, a rigorous analysis of RTS requires: (1) that
we define the problem in terms of the true output
vector; (2) to make use of the distinction between the
flows on the original OD pairs and those on the added
ones. To begin with, it is convenient to recall that the
degree of scale economies, when the cost function is
differentiable, corresponds to the inverse of the local
degree of homogeneity of the cost function (Baumol,
Panzar, Willig 1982). Applying this property to RTS as
defined in Equation (1), the following identity holds:

	C���YH� �YK��N�≡ �1/RTS 	C��YH� �YK�N�� (3)

where K is the complement set of H ; that is, H ∪
K = �1�2� � � � �V �, and �YH is a vector containing aggre-
gates 	yh whose elasticities are considered in the cal-
culation of RTS. Identity (3) means that the calculation
of RTS analytically imposes that, after a network expan-
sion, aggregates in H vary in that same proportion while
those not in H (subset K) do not vary. To explore the
implications of the definition of RTS under this per-
spective, let us look at the true production behind the
aggregates, as done by JDC (1996). Consider a firm A
whose aggregated product vector and network size
are described by �YA and N A, respectively. We assume
that a long-run cost function 	C��Y�N� that fulfils the
usual properties7 and that reproduces industry costs
well is available; hence, firm A’s production cost is
	CA = 	C��YA�N A�. To analyze scale with variable net-
work size as defined in (3), let us consider an expan-
sion of both the network and the aggregates in H by
a certain proportion �; aggregates not in H do not
vary. To simplify notation, let us call L the expanded
firm, such that N L = �N A, �YL = ���YA

H� �YA
K �, and 	CL =

	C���YA
H� �YA

K��N A�.
To fully understand which true output expansion

RTS is analyzing, i.e., how vector Y varies, we will try
to unveil the characteristics of the expanded firm L in
terms of its actual product, the YL vector. Note first
that initial aggregates are defined by �YA�YA�. Sim-
ilarly, behind the aggregate description of firm L’s
product, there is a true flow vector YL whose prop-
erties we want to examine. The problem can be for-
mulated as follows: assume YA is known and that
both N and part of �YA�YA� expands by �, forming
�YL = ���YA

H�YA�� �YA
K �YA� . Then, the question is: What

7 Mainly, this function must be nondecreasing, concave, and linearly
homogenous in input prices and nondecreasing in output.
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are the characteristics or properties of YL, the true
flow vector underlying �YL? Schematically,

�YA�N A� ⇒ ��YA
H�YA���YA

K �YA��N A 

N expansion
�RTS� →���YA

H��YA
K��N A�≡ ��YL�N L�

?↔ �YL�N L��

Recall that we will use the number of points served,
PS, as the network size variable. Because increas-
ing PS, even by one node, implies new OD pairs
in the system (2PSA potential new flows in that case),
the expanded firm L will serve two types of flows: the
original ones and new ones whose origin or destina-
tion is one of the new nodes. How are they assumed
to change after the network expansion within the RTS
context? As stated in Observation 2, nothing can be
inferred from Equations (1) and (3) describing RTS,
and little has been said in the literature regarding
this issue. Recalling the discussion of Braeutigam’s
(1999) example, the first relevant question is whether
the analysis should consider the original OD flows
constant after the network expansion or not. We
believe that, when one is dealing with new products
in addition to old ones, the most reasonable condi-
tion for analysis is that the original OD flows (i.e.,
those served before the network expansion) keep their
level.8 An alternative condition could be that they
decrease (as in Braeutigam’s 1999 case); we get back
to this later.
Let us now discuss what happens with the new

flows. In doing so, we consider two of the most pop-
ular aggregates in the literature: (1) ton-kilometers
(TK), usually an output, and (2) average length of
haul (ALH), usually an attribute.9 First, consider the
simple network represented in Figure 3.
PS expands by � = 3/2 from two nodes �1�2� to

three (1�2�3). The true output of firms A and L
are YA = �y12�y21�0�0�0�0� and YL = �y12�y21�y23�y32�
y13�y31�. The values of the aggregates are

TKA = y12 · d1+ y21 · d1� (4)

TKL = y12 · d1+ y21 · d1+ y23 · d2+ y32 · d2
+ y13 · �d1+ d2�+ y31 · �d1+ d2�� (5)

ALHA = y12 · d1+ y21 · d1
y12+ y21

= d1� (6)

8 This seems to have been the idea behind Figure 2, on the “wrong”
output.
9 As explained in §2, aggregation of the true output Y is a necessity;
“this poses two interesting problems � � � � One is a pre-estimation
problem, dealing with the search for adequate descriptions of
output. The second is an after estimation problem, dealing with
the interpretation of results” (JDC 1996, p. 158). It is the second
problem that interests us, which is why we chose the two most
popular aggregates in the literature. The first problem has been
analyzed elsewhere (e.g., Antoniou 1991; Jara-Díaz, Donoso, and
Araneda 1991).

d1 d2
1 32

Figure 3 Physical Network

ALHL = �y12 · d1+ y21 · d1+ y23 · d2+ y32 · d2
+ y13 · �d1+ d2�+ y31 · �d1+ d2��

· �y12+ y21+ y23+ y32+ y13+ y31�
−1� (7)

Let us analyze the constraints imposed by RTS on
the new flows for three cases, each defined by the
variables in the cost function and the elasticities con-
sidered in the calculation of RTS (set H ).

Case 1. 	C = 	C�TK�PS� and RTS= � 	�TK+�PS 
−1.

According to the definition of RTS in Equation (3),
TK expands by the same proportion as PS; this is,
TKL = �3/2�TKA. From Equations (4) and (5) and after
some manipulation we get

d1
d2

= y23+ y32+ y13+ y31
0�5 · �y12+ y21�− �y13+ y31�

� (8)

As d1 and d2 are known, (8) reveals implicit con-
straints on the new flows magnitudes. For example,
the denominator on the right-hand side has to be pos-
itive. If d1 = d2, it should hold that 0�5�y12 + y21� =
y23+ y32+ 2�y13+ y31�, i.e., the four new flows should
add up to less than half the original ones.

Case 2. 	C = 	C�TK�ALH�PS�, H = �TK�, and RTS =
� 	�TK+�PS 

−1.
Now, ALH is a variable in the cost function, but

is not considered in the calculation of RTS. Hence,
TK increases by 3/2 and ALH remains constant, i.e.,
TKL = �3/2�TKA and ALHL = ALHA. Using Equa-
tions (4)–(7), we get the constraint

0�5�y12+ y21�= y23+ y32+ y13+ y31� (9)

which reveals that the four new flows have to add up
to half the original total flow.

Case 3. 	C = 	C�TK�ALH�PS�, H = �TK�ALH�, and
RTS = � 	�TK+ 	�ALH+�PS 

−1.
Here, both ALH and TK are considered in the RTS

calculation.10 Thus, RTS imposes that TKL = �3/2�TKA

and ALHL = �3/2�ALHA simultaneously, leading to

y23+ y32+ y13+ y31 = 0� (10)

In this case, RTS imposes that nothing should enter
nor depart from the new node.

10 This way of calculating RTS has been justified by some authors,
who explain that because the network is allowed to change, it is
possible that the length of haul also changes. See, for example,
Caves et al. (1985).
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Let us now generalize Cases 2 and 3. Equations (9)
and (10) reveal constraints on the new flows that
do not depend on the link distances, suggesting that
they are independent both of the route structure
(an endogenous decision) and of the physical net-
work (exogenous information). This happens to be
true. For all networks, T =∑

i� j yij and ALH= TK/T ,
where T is the number of total tons moved. In Case 2,
TKL = �TKA and ALHL = ALHA. The latter implies
TKL/T L = TKA/T L, which combined with the former
yields T L = �T A. Then, if y′ and y are the mean of the
new and original flows, respectively, their ratio has to
fulfill (see the appendix)

y′

y
= 1
2
· PS− 1

PS
� (11)

which is valid for all networks and depends only on
the initial value of PS. Regarding Case 3, the condi-
tions are TKL = �TKA and ALHL = �ALHA. The latter
implies TKL/T L = �TKA/T L, which combined with the
former yields T L = T A. This shows that RTS imposes
that the new flows to be served after the network
expansion have to be all zero, irrespective of the phys-
ical network, the original number of nodes, or the
route structure.
As evident, the implicit constraints on the new

flows revealed above differ from case to case, which
means that comparability across studies using dif-
ferent output specifications become complex (if not
impossible), besides the fact that the unveiled out-
put expansions do not seem to be very informa-
tive. Furthermore, a closer look at Equations (8) and
(11) exposes yet another important limitation of RTS;
namely, that the implicit constraints on Y depend
on the evaluation point as well, through the topol-
ogy of the network and the number of nodes. To
see this, note that the constraint on flows in Equa-
tion (8) (Case 1) is network dependent through the
values of d1 and d2, a property that evidently gener-
alizes to larger networks, and that Equation (11) (gen-
eralized Case 2) shows that the average of the new
flows is between one-fourth and one-half the average
of the original flows, depending on the value of PS.
We conclude the following.

Observation 3. Under the condition that the mag-
nitude of old flows remain fixed and PS is the net-
work variable, the type of output expansion that RTS
analyzes is not uniquely defined in terms of Y; it depends
on the aggregates included in the cost function, on
the elasticities considered in its calculation, and on the
evaluation point.

Let us stress that what happens with RTS does
not occur with S or with SCR. Both of them ana-
lyze perfectly well-defined and unique output vari-
ations. S always analyzes the behavior of costs for

an equiproportional expansion of current products,
i.e., all OD flows grow by the same proportion, and
SCR deals with well-defined partitions of Y. Indeed,
the actual value of S does depend on the evaluation
point Y, but the type of output expansion does not.
Observation 3 implies that RTS comparisons between
different evaluation points or across studies are an
ineffective exercise, for example, different firms in the
same industry.
Now, Observation 3 has been deduced using PS as

the network variable, but it does extend to the use
of route miles (RM) as well. In this case, the propor-
tion of network growth in Figure 3 would be given by
�= �d1+ d2�/d1 and some different restrictions on the
added flows would appear. These restrictions will be
different for different output specifications and set H .
They will be dependent on link distances in both the
simple and more real networks as well, showing that
the output expansion that is being analyzed varies
with the network topology.
As for the condition that old flows remain con-

stant, we explained that this is what we think is
most reasonable and useful. Other conditions, par-
ticularly the one stemming from Figure 2, i.e., that
link loads are constant, can be analyzed as well. We
now show that problems persist. As discussed, in this
interpretation, old flows have to diminish after the
network expansion to keep the load on the original
links unchanged. For the case of our simple network
in Figure 3, we would have YA = �yA

12�yA
21�0�0�0�0�

and YL = �yL
12�yL

21�y23�y32�y13�y31�. To keep the load
in the original link constant, however, the following
condition has to be met:

yA
12+ yA

12 = yL
12+ yL

12+ y13+ y31� (12)

which directly implies that �yA
12 + yA

12� ≥ �yL
12 + yL

12�.
Assuming, as in Figure 2, that PS is the network vari-
able, we obtain the following conditions on flows, for
Cases 1, 2, and 3, respectively:

d1
d2

= y23+ y32+ y13+ y31
0�5 · �yA

12+ yA
21�

= y23+ y32+ y13+ y31
0�5 · �yL

12+ yL
12+ y13+ y31�

� (13)

1
2 �y

A
12+ yA

21�= y23+ y32 = yL
12+ yL

21+ y13+ y31� (14)

y23+ y32 = 0� (15)

Generalization of the simple network cases is a
more difficult matter here as the equations that will
ensure constancy of load on old links depend on the
route structure; it is not obvious how the counterparts
of Equation (12) would look for a general case (we
just know there would be many equations). However,
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if z is the average of firm A’s flows and z′ is the aver-
age of firm L’s, it is easy to show that in Case 2 the
RTS condition—that is ���YA

H� �YA
K��N A�—leads to11

z′

z
= PS− 1

PS
� (16)

Equations (13)–(16) show that Observation 3 applies
to this interpretation regarding old flows as well, and
that the different output expansions are still not really
informative to the analyst (beginning with the fact
that old flows are forced to diminish). Combining
the diminishing old flows interpretation with the use
of RM as the network variable does not improve the
situation.
For synthesis, what Observations 1–3 show is that

RTS is not uniquely defined in terms of what it ana-
lyzes, not even within a particular specification of
output aggregates, network size variable, and the H
set, which makes it inherently ambiguous. Note that
this is not an econometric problem related with
either misspecification of the cost function or with
biased parameter estimates because of the inclusion
of too many or omitted variables; it is an analyti-
cally induced ambiguity. And the larger the number
of aggregates used to describe transport product (or
its “attributes”) in the cost function, the more acute
the problems just described, because the number of
simultaneous constraints increase, irrespective of their
consideration or not in the calculation of RTS. All this
evidently erodes, if not completely destroys, the use-
fulness of RTS as an instrument to analyze transport
industry structure. Comparisons across studies and
within a study are simply meaningless. In addition,
each of the implicit constraints that have to be ful-
filled by the underlying true product does not seem
to be very reasonable. Note that the problems do not
depend on the inclusion or absence of attributes elas-
ticities in the calculation of RTS, something that drew
some attention in the literature.
So, can RTS be rescued in some way? Antoniou

(1991) and Liu and Lynk (1999) argue that in RTS cal-
culations, attributes are held constant but, in fact, they
vary. In our terminology, they were suggesting that
forcing aggregates in H to vary exactly as the network
does, while those not in H do not vary, was not jus-
tified. Oum and Zhang (1997, p. 310) take this view,
arguing that “theoretical consistency would require
investigation of the correlation between length of haul
and network size,” a relation previously suggested by
Caves et al. (1985). Formally (our notation), Oum and

11 If firm A’s flows are all identical to z, firm L’s flows are all iden-
tical to z′, and the route structure is hub and spoke before and after
the network expansion, then the PS− 1 conditions that ensure that
the original links maintain their load are all as in Equation (16).

Zhang (1997) explicitly define ALH= f �N � and argue
that RTS should be calculated as

RTS= � 	�TK+ 	�ALH ·�ALH
N +�N  −1� (17)

where �ALH
N is the elasticity of ALH with respect to

the network index. This proposition seems to con-
tribute to solve some of the problems exposed here—
particularly regarding the unreasonable constraints
on flows—as �ALH

N permits a controlled representa-
tion of the true effect of the network expansion.
However, what about the other aggregates, which
have to vary in the same proportion as the network
because of the constant density condition? One could
think that expanding Oum and Zhang’s (1997) proce-
dure to those aggregates could be of assistance. Unfor-
tunately, it is not, as we now discuss. Assuming that
functions 	yh�N � can be estimated, the total derivative
could be taken as the network expands, because if
the network grows by �, aggregates would change to
	yh��N�. Then, the presumably improved version of
RTS would be

RTS=
[ ∑

h∈H∪K

	�h�
	yh

N +�N

]−1
� (18)

In RTS, the value of the aggregates follow what
is actually happening with the components of Y as
N varies across firms or in time. RTS examines the
behavior of cost as the network expands, accounting
for the variations in the level of aggregates (prod-
ucts and attributes). Following this method, industry
structure conclusions would be related with the esti-
mated value for RTS as follows: (1) if RTS > 1, costs
increase less than proportionally with network size,
and increasing network size would be cost efficient;
(2) if RTS= 1, costs increase by the same proportion
as the network, and increasing network size would be
neutral regarding cost; (3) if RTS < 1, costs increase
more than proportionally with network size, and a
network expansion would not be cost efficient. Are
these conclusions reasonable? Note that we are com-
paring network size with total cost. In many cases, it
may happen that costs will increase in a larger pro-
portion than the number of points served (RTS< 1, do
not increase), but the expansion of the network might
be cost efficient because the incremental cost (i.e., the
cost of adding the vector of new flows to the line of
production) is smaller than the cost of serving those
new flows with a different firm. For example, when
the number of points served increases from 2 to 3, the
network expands by 3/2, but four new flows enter
the picture, tripling the number of outputs previously
produced. Costs will very likely increase by more
than 1.5, but the network expansion might well be
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efficiently served by one firm only:12 the “improved”
version fails to properly account for its ultimate goal,
namely, to provide useful information for adequate
conclusions regarding industry structure.

5. Conclusions
In this article we have examined and interpreted
at a flow level the conditions imposed by RTS on
the aggregate descriptions of transport product. We
showed that what appears as a reasonable approach
using aggregates, fails to do the intended job when
looked at in detail. In short, because its properties are
defined on the aggregates, RTS is ambiguous as a tool
to contribute to the analysis of the transport industries
structure within the context of varying networks.
We believe that what has prevented the detection

of these problems has been the failure to think in
terms of the true product Y, which is why RTS is still
used permanently. The inability to estimate cost func-
tions empirically using a precise description of the
product should not be an impediment to make cor-
rect economic inferences when using cost functions
with aggregates, which presumably reproduce indus-
try costs accurately. Otherwise, the meaning of key
multioutput concepts such as economies of scale, spe-
cific scale, and economies of scope can be lost. Aggre-
gates are necessary, and we are not challenging their
use for econometric purposes. What we are defend-
ing is a rigorous view of transport production, which
means, among other things, that the interpretation of
cost functions for the purpose of industry structure
analysis should be done in terms of the true product.
This is feasible and rewarding once it is recognized
that aggregates are synthetic representations of what
a transport firm produces.
The best example of the advantages to think in

terms of Y is the examination of the constant den-
sity condition. Apparently, the idea was to perform
the analysis of a network expansion considering that
the new nodes added to the network are, on average,
“like the others” (recall Figure 2). By analyzing things
in term of the true product, what we have shown here
is, precisely, that the implicit constraints imposed are
far from reflecting this.
We believe that the right approach to answer what

RTS cannot is economies of spatial scope. The real
challenge, however, is how to do this from cost func-
tions that include aggregates to describe production
(the only feasible empirical approach), an area where

12 By constructing a transport cost function analytically from the
technology, Jara-Díaz and Basso (2003) are actually able to develop
this case: the network expands from two to three points served,
and minimum cost increases more than four times (RTS < 1), but
the network expansion is cost efficient (SC > 0) because of better
fleet utilization.

some work has been done recently (Basso and Jara-
Díaz 2005).13 Because RTS estimates have been used
extensively for the analysis of network size and shape
in the last 20 years, once the new methods to replace
RTS are discussed and established, policy conclusions
derived from RTS should be reexamined.
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Appendix
Let PSA = PS. Then, PSL = PS+1 and �= �PS+1�/PS. Then,
T A and T L can be written as

T A =
PS∑
i=1

PS∑
j=1

yij T L =
PS+1∑
i=1

PS+1∑
j=1

yij with j �= i�

As T L = �T A and the original flows do not vary, then

PS+1∑
i=1

PS+1∑
j=1

yij =
PS∑
i=1

PS∑
j=1

yij +
PS+1∑
j=1

y�PS+1�j +
PS+1∑
i=1

yi�PS+1�

≡
(
PS+ 1
PS

)
·
PS∑
i=1

PS∑
j=1

yij

⇒
PS+1∑
j=1

y�PS+1�j +
PS+1∑
i=1

yi�PS+1�

≡
(
PS+ 1
PS

− 1
) PS∑

i=1

PS∑
j=1

yij with j �= i� (A.1)

The 2 · PS new flows are added on the left-hand side,
while the PS�PS− 1� original flows are added on the right-
hand side. If y is the average of the original flows and y′ is
the average of the new ones, then (A.1) can be rewritten as
2PS · y′ = y��PS+ 1�/PS− 1�PS�PS− 1�, from which the ratio
y′/y is obtained as y′/y = 0�5 · �PS− 1�/PS.
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