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Abstract—A filter method of feature selection based on mu-
tual information, called normalized mutual information feature
selection (NMIFS), is presented. NMIFS is an enhancement over
Battiti’s MIFS, MIFS-U, and mRMR methods. The average
normalized mutual information is proposed as a measure of re-
dundancy among features. NMIFS outperformed MIFS, MIFS-U,
and mRMR on several artificial and benchmark data sets without
requiring a user-defined parameter. In addition, NMIFS is com-
bined with a genetic algorithm to form a hybrid filter/wrapper
method called GAMIFS. This includes an initialization proce-
dure and a mutation operator based on NMIFS to speed up the
convergence of the genetic algorithm. GAMIFS overcomes the
limitations of incremental search algorithms that are unable to
find dependencies between groups of features.

Index Terms—Feature selection, genetic algorithms, multilayer
perceptron (MLP) neural networks, normalized mutual informa-
tion (MI).

I. INTRODUCTION

I N pattern recognition, each pattern is represented by a set
of features or measurements, and viewed as a point in the

-dimensional feature space. The aim is to choose features that
allow us to discriminate between patterns belonging to different
classes. In practice, the optimal set of features is usually un-
known, and it is common to have irrelevant or redundant features
at the beginning of the pattern recognition process. In general,
it is desirable to keep the number of features as small as pos-
sible to reduce the computational cost of training a classifier as
well as its complexity. Other objectives of dimensionality reduc-
tion are improving the predictor performance, and facilitating
data visualization and data understanding [1]. To deal with these
problems, two main dimensionality reduction approaches are
typically used: feature extraction and feature selection [2]. Ac-
cording to Jain et al. [2], feature extraction are methods that
create new features based on transformations or combinations
of the original feature set. The term feature selection refers to
methods that select the best subset of the original feature set.

Feature selection algorithms can be classified into filters
and wrappers [3]. Filter methods select subset of features as a
preprocessing step, independently of the induction (learning)
algorithm. Wrappers utilize the classifier (learning machine)
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performance to evaluate the goodness of feature subsets.
Several different criteria have been used for evaluating the
goodness of a feature [4] including distance measures [5],
[6], dependency measures [7], [8], consistency measures [9],
[10], information measures [11], [12], and classification error
measures [13]. Some authors have explored the combination
of filter and wrapper algorithms, which allows the latter to
exploit the knowledge delivered by the filter algorithm in order
to speed up the convergence of the wrapper algorithm [6], [14].

Yu and Liu [8] decompose the set of features into irrelevant
features, redundant features, weakly relevant but nonredundant
features and strongly relevant features. According to the au-
thors, an optimal feature subset should include all strongly rele-
vant features and a subset of the weakly relevant features (those
nonredundant). They use the concept of Markov blanket [15]
to define feature redundancy. A new framework of feature se-
lection is proposed that decouples relevance analysis and re-
dundancy analysis. In [10], methods for selecting relevant but
nonredundant attributes are proposed. The authors claim that
employing different sets of relevant but nonredundant features
improves classification accuracy.

In this paper, we focus on feature selection methods based
on mutual information (MI) as a measure of relevance and re-
dundancy among features. Battiti [11] defined the feature re-
duction problem as the process of selecting the most relevant
features from an initial set of features, and proposed a greedy
selection method to solve it. Ideally, the problem can be solved
by maximizing , the joint MI between the class vari-
able and the subset of selected features . However, com-
puting Shannon’s MI between high-dimensional vectors is im-
practical because the number of samples and the central pro-
cessing unit (CPU) time required become prohibitive. To over-
come these limitations, Battiti [11] adopted a heuristic criterion
for approximating the ideal solution. Instead of calculating the
joint MI between the selected feature set and the class variable,
only and are computed, where and are
individual features. Battiti’s mutual information feature selector
(MIFS) selects the feature that maximizes the information about
the class, corrected by subtracting a quantity proportional to the
average MI with the previously selected features.

Kwak and Choi [12] analyzed the limitations of MIFS and
proposed a greedy selection method called MIFS-U, which in
general, makes a better estimation of the MI between input
attributes and output classes than MIFS. Another variant of
Battiti’s MIFS is the min-redundancy max-relevance (mRMR)
criterion [16]. The authors showed that for first-order incre-
mental search, i.e., when one feature is selected at a time, the
mRMR criterion is equivalent to max-dependency, i.e., esti-
mating . The MI for continuous variables was estimated
using Parzen Gaussian windows [16]. To refine the results of the
incremental search algorithm, i.e., minimize the classification
error, mRMR is combined with two wrapper schemes. In the
first stage, the mRMR method is used to find a candidate feature
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set. In the second stage, the backward and forward selections
are used to search a compact feature subset from the candidate
feature set that minimizes the classification error. However,
MIFS-U and mRMR present similar limitations as MIFS in the
presence of many irrelevant and redundant features, as will be
discussed in Section III.

Chow and Huang [17] proposed the optimal feature selec-
tion MI (OFI-MI) algorithm. In this method, a pruned Parzen
window estimator and the quadratic mutual information (QMI)
are used to estimate MI efficiently. This allows estimating di-
rectly the high-dimensional QMI between the set of selected
features and the output class. However, only 2-D QMI between
features are computed. The OFI-MI method selects features one
by one using a criteria for feature relevancy and another for
feature similarity (redundant). OFI-MI outperformed MIFS and
MIFS-U on four data sets.

In a different approach, Hild et al. [18] estimated the Renyi’s
quadratic entropy using Parzen windows and Gaussian kernels,
instead of estimating Shannon’s entropy, thus reducing the com-
putational complexity. Then, the MI was approximated from
Renyi’s entropies to perform feature extraction using supervised
training. In [19], entropic spanning graphs are used to estimate
the MI between high-dimensional set of features and the classes.
In this method, entropies are estimated directly from data sam-
ples, avoiding the estimation of pdfs. In this approach, the com-
plexity does not depend on the number of dimensions but on the
number of samples. However, a greedy forward feature selection
algorithm is used, which adds features one at a time. In [20], a
wrapper algorithm that uses an output information theoretic ob-
jective function for evaluating classifiers is proposed. The MI
between the class labels and the discrete labels output by the
classifier is used for the task of feature selection in multilayer
perceptrons (MLPs) and support vector machines (SVMs).

The MIFS, MIFS-U, mRMR, and OFI-MI algorithms are all
incremental search schemes that select one feature at a time. At
each iteration, a certain criterion is maximized with respect to
a single feature, not taking into account the interaction between
groups of attributes. In many classification problems, groups of
several features acting simultaneously are relevant but not the
individual features alone. If any attribute of the group is absent,
then the rest become irrelevant to the problem at hand. This phe-
nomenon is known in evolution theory as epistasis [21]. Feature
selection algorithms that evaluate the relevance of a single fea-
ture at a time will not select the optimal feature subset if the
classification function depends on two or more features concur-
rently; see, for example, the extended parity problem with rel-
evant, irrelevant, and redundant features [13], [20], or the con-
tinuous XOR problem [1].

Genetic algorithms (GAs) have been successfully applied
to feature selection [22], [23]. The selection of groups of
features can be done efficiently by using GAs, since they ex-
plore the solution space and exploit the most promising regions
without doing an exhaustive search. In addition, niching genetic
algorithms can solve multimodal problems, forming and main-
taining multiple optima [24]. The computational load of simple
GAs can be reduced by introducing a strategy for speeding
up their convergence. For example, by introducing a priori
knowledge in the iterative process and new genetic operators
that accelerate the convergence toward the best solutions. In
[25], hybrid GAs are proposed that include local search op-
erators to improve the fine-tuning capabilities of simple GAs.

The local search operators allows to add (remove) the most
(least) significant feature to individuals in the GA population.
The hybrid GAs outperformed both simple GAs and sequential
search algorithms with several standard data sets. In [26], a
hybrid GA is proposed that uses MI for feature ranking in the
local search operations. The authors used a modified version of
the MIFS-U criterion [12] to remove the insignificant features
of every subset generated by GA in each generation. The GA
for feature selection proposed in [13] introduced a guided
mutation operator to accelerate convergence. Such mutation
operator eliminates the irrelevant inputs to the neural classifier
based on a pruning mechanism for neural networks.

In this paper, an enhancement over Battiti’s MIFS, MIFS-U,
and mRMR methods is proposed. The proposed feature selec-
tion method is called normalized mutual information feature se-
lection (NMIFS). Due to its incremental nature, the proposed
method is fast and efficient, but its performance degrades in
problems where group of features are relevant but not the in-
dividual features composing the group. For this reason a second
method, called genetic algorithm guided by mutual informa-
tion for feature selection (GAMIFS), is proposed. It is a hybrid
filter/wrapper method that combines a genetic algorithm with
NMIFS. GAMIFS is able to find both individual relevant fea-
tures and groups of features that are relevant.

Section II presents a background on MI, and the procedures
used for estimating it. Section III describes the limitations
of MIFS, MIFS-U, and mRMR criteria. Sections IV and V
introduce the proposed feature selection methods NMIFS and
GAMIFS, respectively. Section VI describes the artificial and
benchmark data sets used in the simulations and presents the
simulation results, as well as their discussion. Finally, the
conclusions are drawn in Section VII.

II. BACKGROUND ON MI

Let and be two continuous random variables with joint
probability density function (pdf) , and marginal pdfs

and , respectively. The MI between and is de-
fined as [27]

(1)

Consider two discrete random variables and , with alpha-
bets and , respectively. The MI between and with a
joint probability mass function and marginal probabili-
ties and is defined as follows:

(2)

The MI has two main properties that distinguish it from other
dependency measures: first, the capacity of measuring any kind
of relationship between variables; second, its invariance under
space transformations [28]. The former property has its root in
that the MI is built from joint and marginal pdfs of the variables
and does not utilize statistics of any grade or order. The second
property is based on the fact that the argument of the logarithm
in (1) is nondimensional [29], thus the integral value does not
depend on the coordinates chosen (transformation in the feature
space). This property is preserved for transformations that are
invertible and differentiable [28], such as translations, rotations,
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and any transformation that preserve the order of the original
elements of the variables.

Since the selection criterion is based on the values of the MI
between attributes and classes, feature selection methods based
on MI are extremely sensitive to the computation of this mea-
sure. The MI computation requires to estimate pdfs or entropies
from the data samples. Even small estimation errors can reduce
the efficacy of the selection method drastically. One approach is
to utilize kernels [30] to approximate pdfs by combining basis
functions. Kernel-based methods consist in superposing a basis
function to each point of the feature, typically a Gaussian. The
final pdf approximation is obtained by taking the envelope of
all the basis functions superposed at each point. The quality of
such estimation is generally high, but the computational load is
high. Another approach is to use histograms [30] that partitions
the space in equal segments and counts the number of elements
in each partition. Selecting the partition size is the main source
of error, because segments too large tend to underestimate the
pdf and segments too small do not reflect the coarse detail of
the distribution. Histogram-based methods are computationally
very efficient but they could produce large estimation errors.

A different approach is to estimate entropies directly from
data using nearest-neighbor distances [31]. In [32], an inde-
pendent component analysis (ICA)-based method is proposed
for estimating high-dimensional MI. The main idea is that after
achieving mutually independent components, the high-dimen-
sional MI can be obtained as the summation of marginal (1-D)
MI estimates. The sample spacing approach [33] is used to esti-
mate marginal entropy. In practice, the algorithm uses a greedy
incremental search for ranking features.

Fraser [29] proposed a fast and efficient method to esti-
mate the MI between two random variables using adaptive
histograms. That algorithm is an intermediate level between
kernel-based methods and those methods based on histograms,
since the precision of Fraser’s estimation method is better than
plain histograms, but it is equally fast and efficient. Feature
selection methods proposed in the literature based on MI are
usually applied to problems with continuous features [11], [12],
[17], [34]. However, real problems usually have both contin-
uous and discrete features, and the method used to estimate
the MI in each case should be different. In this paper, we use
an extended version of Fraser’s algorithm [35] for continuous
random variables, while contingency tables are used for discrete
variables.

III. LIMITATIONS OF MIFS, MIFS-U, AND MRMR
SELECTION CRITERIA

Battiti [11] posed the feature selection problem as follows:
Given an initial set with features, find subset with

features that maximizes the MI between the class
variable , and the subset of selected features . Battiti’s MIFS
is a heuristic incremental search solution to the above defined
problem. The MIFS algorithm [11] is the following.

1) Initialization: Set “initial set of features”;
“empty set.”

2) Computation of the MI with the output class: For each
, compute .

3) Selection of the first feature: Find the feature that max-
imizes ; set ; set .

4) Greedy selection: Repeat until .
a) Computation of the MI between variables: For all

pairs with and , compute
, if it is not yet available.

b) Selection of the next feature: Choose the feature
that maximizes

(3)

Set ; set .
5) Output the set containing the selected features.
The parameter is a user-defined parameter that regulates

the relative importance of the redundancy between the candidate
feature and the set of selected features.

The MIFS-U [12] algorithm only changes the selection crite-
rion (3), which is rewritten as

(4)

where is the entropy.
The mRMR criterion [16], for the first-order incremental

search algorithm, optimizes the following condition:

(5)

where is the cardinality of the set . Notice that the mRMR
criterion becomes the MIFS’s criterion when is adaptively
chosen as .

In all cases, the left-hand side term measures the
relevance of the feature to be added (information about the class)
and the right-hand side term estimates the redundancy of the th
feature with respect to the subset of previously selected features.

One problem with MIFS and MIFS-U approaches is that the
left-hand side and right-hand side terms in (3) and (4) are not
comparable. Because the right-hand side term in (3) and (4) is
a cumulative sum, it will grow in magnitude with respect to the
first term, as the cardinality of the subset of selected features in-
creases. When the left-hand side term becomes negligible with
respect to the right-hand side term, the feature selection algo-
rithm is forced to select nonredundant features with the already
selected ones. This may cause the selection of irrelevant features
earlier than relevant and/or redundant features. This problem is
partly solved in the mRMR criterion (5) by dividing the sum
with the cardinality of the set , . Another drawback is that
MIFS and MIFS-U rely on the parameter for controlling the
redundancy penalization, but the optimal value of this param-
eter depends strongly on the problem at hand. In addition, the
MIFS-U criterion is based on the assumption that conditioning
by the class does not change the ratio of the entropy of
and the MI between and , which is only valid for uniform
probability distributions.

In order to analyze the main limitation of the three selection
criteria described above, we need to revise some basic informa-
tion theoretic concepts. The MI definition can be rewritten in
terms of entropies and conditional entropies as follows [27]:

(6)
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where and are entropies and and
are conditional entropies. From (6), the MI can take

values in the following interval:

(7)

From (7), it follows that the MI between two random variables
is bounded above by the minimum of their entropies. As the
entropy of a feature could vary greatly, this measure should be
normalized before applying it to a global set of features. The
normalization compensates for the MI bias toward multivalued
features, and restricts its values to the range . The MI bias
is a well-known problem in the decision tree community, where
a criterion is needed for selecting the best attribute to form the
root of a tree [7]. Quinlan [36] showed that the MI of a feature ,
measured with respect to another variable, is less than or equal
to the MI of a feature created from by randomly adding
more values. For this reason, MI should be normalized with their
corresponding entropy.

IV. NORMALIZED MIFS

We define the normalized MI between and , ,
as the MI normalized by the minimum entropy of both features

(8)

In this paper, we propose to use the average normalized MI as
a measure of redundancy between the th feature and the subset
of selected features , for , i.e.,

(9)

where is the cardinality of set . Equation (9) is a kind of
correlation measure, that is symmetric and takes values in 1

A value 0 indicates that feature and the subset of selected
features are independent. A value 1 indicates that feature is
highly correlated with all features in the subset .

The selection criterion used in NMIFS consists in selecting
the feature that maximizes the measure

(10)

The right-hand side of (10) is an adaptive redundancy penal-
ization term, which corresponds to the average normalized MI
between the candidate feature and the set of selected features.
In (10), there is no need of a user-defined parameter, as the
parameter in (3) and (4).

The complete NMIFS algorithm is as follows.
1) Initialization: Set , initial set of

features, and , empty set.
2) Calculate the MI with respect to the classes: Calculate

, for each .
3) Select the first feature: Find .

Set ; set .

1Theoretically, the MI between two random continuous variables can become
infinite. In practice, when estimated from a finite number of samples using
nonzero width histogram bins or kernel functions, this will not happen, because
of the smoothing bias of these estimators. Consequently, the normalization prop-
erty of (9) is guaranteed if such smoothing density estimators are employed.

4) Greedy Selection: Repeat until .
a) Calculate the MI between features: Calculate

for all pairs , with and
, if it is not available.

b) Select next feature: Select feature that max-
imizes measure (10). Set ; set

.
5) Output the set containing the selected features.
The computational cost of NMIFS is given by the concurrent

sorting of each pair of features, which is required when esti-
mating the MI by Fraser’s algorithm. The sorting method used
was heapsort [37], whose complexity is , even in
the worst case, where is the number of data samples. In addi-
tion, NMIFS calculates the entropy of each feature in the same
step when calculating the MI between that feature and the class
variable . Therefore, NMIFS has the same computa-
tional cost as MIFS, i.e., .

V. GENETIC ALGORITHM GUIDED BY MUTUAL INFORMATION

FOR FEATURE SELECTION

A filter/wrapper hybrid feature selection method is proposed
that has two parts: a genetic algorithm and a neural network clas-
sifier. A GA called deterministic crowding (DC) is used [24].
This is a niching algorithm that in contrast to simple GAs it can
find and maintain multiple optima in multimodal problems. In
DC, all individuals in the population are randomly paired and
recombined, i.e., probability of crossover is one. The binomial
crossover is used here because it has no positional bias. Muta-
tion is optional in DC. The resulting offspring has a tournament
with its nearest parent in terms of Hamming distance. The win-
ners are copied to the new population for the next generation.

For the feature selection problem, subset of selected features
are represented as bit strings of length (total number of fea-
tures in the problem at hand), where “1” in the th position in-
dicates that the th feature is included in the subset, and “0” in-
dicates that the th feature is excluded [38]. In order to evaluate
the fitness of an individual (chromosome), the corresponding bi-
nary string is fed into an MLP classifier. The size of the input
layer is fixed to but the inputs corresponding to nonselected
features are set to 0. The fitness function includes a classifier ac-
curacy term and a penalty term for a large number of features.
The fitness of a chromosome is expressed as [22]

(11)

where is the error rate per unit of the classifier as-
sociated to , is the number of selected features.
The parameter controls the tradeoff between the two terms in
(11). To compute , a three-layered MLP classifier is
trained to minimize the sum of square errors by using a second-
order backpropagation quasi-Netwon (BPQ) learning algorithm
[39]. The accuracy of the classifier is measured as the maximum
rate per unit of correct classifications on a validation set. BPQ
is faster than first-order algorithms and many second-order al-
gorithms such as Broydon–Fletcher–Goldfarb–Shanno (BFGS)
[39].

A method to initialize the initial GA population with good
starting points that makes use of the feature ranking delivered
by NMIFS is introduced. In addition, a new mutation operator
guided by NMIFS is used to speed up the convergence of the
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GA. This operator allows adding a relevant feature or elimi-
nating an irrelevant or redundant feature from individuals in
the GA population. The mutated individual is evaluated first to
verify whether mutation improves the classifier accuracy. Only
if the mutant’s fitness obtained is better than that of the orig-
inal individual the mutation is completed, otherwise the mutated
feature is restored. This is the only mutation operator used here.
The proposed mutation operator can be used with any classifier,
not necessarily an MLP neural network, since the mechanism
for accelerating the convergence does not depend on the nature
of the classifier.

A. Initialization Procedure by Using NMIFS

Let be the population size, and the length of individuals.
NMIFS ranking is used to initialize a fraction of
the population. The user defined parameter allows
choosing the best features of the NMIFS ranking. The rest
of the population is initialized randomly.

initialize_nmifs()

{

Find the subset of the best features using NMIFS
ranking;

Initialize individuals by using NMIFS {

For all {

set the th bit to 1;

}

Else {

set the th bit randomly in ;

}

Initialize individuals randomly;

}

For example, let be the population size, and
the length of the individuals and . The

initialization procedure will select individuals to be
initialized using NMIFS ranking. The bits corresponding to the
top features in the ranking will be set to 1, and the rest
will be set randomly.

B. Mutation Operator Using NMIFS

Since the goal is to exploit the best solutions, the mutation
operator is applied to the top percent individuals in the pop-
ulation. For a given iteration, the procedure is to draw an in-
dividual and evaluate whether its fitness value is greater than

times the maximum fitness obtained in the last generation.
In such a case, a feature is added with probability ; otherwise,
a feature is eliminated with probability . When adding a
feature, it is considered that the bits with value “1” corre-
spond to the subset of features that are present in the individual.
The NMIFS selection criterion is used to select the best feature
to be included among those features that are not present in the
current individual. In the elimination mode, the least relevant
feature present in the individual is eliminated with probability

or the most redundant feature is eliminated with probability
. In the latter case, the feature to be eliminated is the one

that produces the largest increase in MI with respect to the re-
maining features. After mutation, if the fitness of the
mutated individual is greater than the fitness of the original in-
dividual, the latter is replaced in the population. Otherwise, the
original individual is kept in the population.

The following three local search operators are defined. These
operators act over a chromosome in the population. The bits
of in “1” define the subset of selected features . The bits of
in “0” define the set of features that have not been selected, i.e.,

, where is the set of all features.
add_nmifs: Add the most informative feature among the set

of features that are not present in the current individual, , i.e.,
compute

where . Set the th bit of to 1, generating new
individual .

remI_nmifs: Remove the most irrelevant feature among the
set of features already present in the current individual, , i.e.,
compute

where . Set the th bit of to 0, generating new individual
.

remR_nmifs: Remove the most redundant feature among the
set of features already present in the current individual, , i.e.,
compute

where . Set the th bit of to 0, generating new indi-
vidual .

The function generates a random number in with
uniform probability. The mutation procedure acts on a given
chromosome of the population, and it is defined as follows.

mutation_nmifs()

{

If

;

elseif

;

else

;

}

C. GAMIFS Algorithm

Let be an individual of length and fitness . Let be
the subset of features present in (number of bits in “1”), and

its cardinality. Let be the maximum fitness obtained
in the last generation and a fraction of above which
an individual is mutated. Let be the Hamming distance
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between binary strings and . The following algorithm cor-
responds to the DC [24] algorithm with the NMIFS-based ini-
tialization and mutation operator.

gamifs()

{

initialize_nmifs;

repeat {

repeat times {

select two parents and from P;

;

If {

;

If , then ;

}

If {

;

If , then ;

}

replace {

If {

If , replace by ;

If , replace by ;

}

else {

If , replace by ;

If , replace by ;

}

}

} /* end one generation */

} until (stopping condition)

}

VI. EXPERIMENTAL RESULTS

The performance of the NMIFS algorithm was compared
with the results of MIFS, MIFS-U, and mRMR on four data
sets: uniform hypercube synthetic data set, Breiman’s wave-
form data set [40], spambase data set [17], and sonar data
set [41]. In addition, NMIFS was evaluated in a time-series
problem given by Box and Jenkins’s gas furnace data set [42].

In all cases, the MI was estimated using the extended Fraser
algorithm described in [35] for continuous features, and contin-
gency tables for discrete features. The control parameter for
MIFS and MIFS-U was varied in the range with a step size
of 0.1. The results obtained with the best value are used for
comparison with NMIFS.

For evaluating feature subsets, an MLP with a single hidden
layer was trained using BPQ [39] during 200 epochs. All results
presented here are the average of ten trials with random initial-
izations. All data sets, except the sonar data set, were split into
three disjoint sets: training (50%), validation (25%), and testing
(25%). Due to the small sample size (204 patterns), the sonar
data set was partitioned in 50 samples for training, 50 samples

for validation, and 104 samples for testing. The maximum rate
of correct classifications on the validation set was used as stop-
ping criterion. For the data sets with information about classes,
the optimal number of hidden units was selected by running
the BPQ algorithm with , and the MLP architecture
with best validation results was chosen.

The performance of the GAMIFS algorithm was com-
pared with the results of NMIFS, deterministic crowding GA
(DC-GA) without mutation and DC-GA with the mutation
proposed in [13] on four data sets: nonlinear AND synthetic
data set, Breiman’s waveform data set, spambase data set, and
sonar data set. The parameter in the fitness function (11)
was set to 0.1. In this way, the accuracy term is ten times more
important than the penalty term. The central point here is that
when having two solutions with the same accuracy, the one
with less number of features should be preferred. The fitness of
an individual was evaluated three times, and the best solution
found was taken. Ten simulations with the final feature subset
produced for each GA method were carried out. The average
rate of classifications measured on the test set was used to
present and compare results.2

A. Test Problem: Uniform Hypercube

In this synthetic data set, the nature of each feature is known
a priori (relevant, irrelevant, or redundant). The order of impor-
tance of the relevant features is also known. The task is to find
first the relevant features sorted in ascending order (the first fea-
ture is the more relevant), second the redundant features, and
last the irrelevant features.

This problem consists of two clusters of 500 points, each
drawn form a uniform distribution on ten-dimensional hyper-
cubes . The set of relevant features was
generated in decreasing order of importance. A given pattern be-
longs to class if for , and to class

, otherwise. For and , the first feature divides
the unit interval in 0.5, the second one in 0.4, the third in
0.32, and so on. Fig. 1 shows a 3-D version of the hypercube
problem. It can be seen that feature is more discriminative
than , and in turn, is more discriminative than .

The hypercube data set consists of 50 features: features 1–10
are relevant, features 11–20 are irrelevant, and features 21–50
are redundant. The latter are linear combinations of the relevant
features plus 10% of additive noise drawn from a Gaussian dis-
tribution .

Fig. 2 shows the results obtained with MIFS [Fig. 2(a)],
MIFS-U [Fig. 2(b)], mRMR [Fig. 2(c)], and NMIFS [Fig. 2(d)]
on the hypercube problem. The results shown for MIFS and
MIFS-U correspond to the best value in the range .
The -axis in this figure represents the selection order (fea-
ture ranking position), while the -axis represents the feature
number (index). For example, in Fig. 2(a), feature number
15 is selected in the sixth position, and feature number 20 is
selected in the tenth position. The bold and thick bars illustrate
the relevant features, the bars with a dot depict the irrelevant
features, and the thin bars represent the redundant features.
MIFS, MIFS-U, and mRMR select the redundant features after
the irrelevant features, and select irrelevant features before
some relevant features. This effect is stronger in MIFS and

2The C source codes for NMIFS and GAMIFS are available at http://www.
cec.uchile.cl/~pestevez and http://micheltesmer.googlepages.com/researchin-
terests.
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Fig. 1. Three-dimensional visualization of the hypercube synthetic problem.

mRMR [see Fig. 2(a) and (c)], where all the irrelevant features
are selected before seven out of ten and eight out of ten relevant
features, respectively. Fig. 2(b) shows that although MIFS-U
has a better behavior than MIFS, two relevant features are
selected after an irrelevant one. Fig. 2(d) shows that NMIFS
selects all features in the ideal selection order: first the relevant
set in the desired ascending order, second the redundant set,
and last the irrelevant set.

B. Box and Jenkins’s Gas Furnace

Box and Jenkins [42] described a gas furnace system where
the input gas rate could be varied and the resulting CO
concentration in the outlet gas was measured. The goal is
to predict the CO concentration of the output gas using the past
values of both variables.

Ten candidate features were considered for building a predic-
tive model of the gas furnace time series

An MLP classifier was trained using as inputs the features se-
lected by the different methods. The optimal number of hidden
units was determined as 3 by trial and error. The MLP network
architecture was set as , where is the number of
selected features, 3 is the number of hidden units, and 1 is the
number of output units.

This time series has been extensively used in the literature
to measure and compare the performance of feature selection
methods. Some fuzzy logic models select features by min-
imizing the prediction error [43], [44], [45], [46]. Training
consists in finding a set of fuzzy rules that allows obtaining a
good prediction of the desired output, using only a subset of the
candidate features. Notice that these fuzzy methods belong to
the wrappers category, because the attribute selection is made
by training the model.

The NMIFS results were compared with those obtained by
the following fuzzy models [43], [44], [45], [46], by measuring

Fig. 2. Feature ranking in hypercube for (a) MIFS with ���� ���, (b) MIFS-U
with ���� ���, (c) mRMR, and (d) NMIFS.

the MLP performance when fed with the features selected by the
different methods. The normalized mean square error (NMSE)
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TABLE I
PREDICTION ERROR (NMSE) OBTAINED WITH SEVERAL FEATURE SELECTION

METHODS FOR THE FURNACE GAS DATA SET

Fig. 3. Predicted output and absolute error using four features �������� ����
��� ���� ��� ���� ��� selected by NMIFS for the furnace gas data set.

was used as a performance measure to compare the results. It is
defined as follows:

(12)

where is the predicted value (MLP output) and is the mean
value. The closer to 0 is the NMSE value, the higher is the
quality of the prediction. A NMSE of 1 means that the model
just predicts the mean value of the time series.

Table I shows the NMSE obtained with several selection
methods for different number of features. It can be seen that
NMIFS outperformed straight MI in all cases, except for the
case of three features where the same performance is obtained.
NMIFS achieved the same performance as those reported in
the literature [43], [45], [46] when selecting two features and
obtained a lower error than Sugeno et al. model [44] with
three features. Even though NMIFS is a filter method, its
performance is as good as the fuzzy models that belong to the
wrapper category of selection methods.

Fig. 4. Feature ranking for the nonlinear AND problem using NMIFS.

Fig. 3 shows the real and predicted outputs using four features
selected by NMIFS. The small absolute error obtained is plotted
at the bottom of that figure.

C. Test Problem: Nonlinear AND

The nonlinear AND is a synthetic problem devised to show
a situation where NMIFS and any other incremental search al-
gorithm will fail. The version studied here has 14 features: five
irrelevant features – , six relevant features – , and three
redundant features – . Each redundant feature is a dupli-
cate of a relevant feature (features – duplicates – in
this example). The irrelevant features were generated randomly
from an exponential distribution with mean 10. The six relevant
features were drawn from a uniform distribution on . The
relevant features determine to which of two classes belongs a
sample , according to the following nonlinear AND function.

nonlinear_AND()

{

If AND , then

If AND , then

}

NMIFS fails in this problem because features , , and
do not provide information separately, but the presence of

all of them solves the problem. In addition, the nonlinear AND

problem has eight optima corresponding to the combinations
of the three duplicated features.

Fig. 4 shows the feature ranking obtained by NMIFS on the
nonlinear AND problem. The relevant features that are linearly
combined in the nonlinear AND function – are correctly se-
lected in first place. But the relevant features that are multiplied
in the nonlinear AND function – are selected after some ir-
relevant features. In contrast, GAMIFS always found and main-
tained the eight optima, each one containing six relevant fea-
tures. Fig. 5 shows the rate of convergence of the population to
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Fig. 5. Rate of population convergence to multiple optima versus the number
of generations of GAMIFS for the nonlinear AND problem.

Fig. 6. Effectiveness of the crossover and mutation operators as a function of
the number of generations for the nonlinear AND problem.

the eight optima for GAMIFS and DC-GA without mutation and
with random initialization. The marginal gain of using GAMIFS
is approximately 40%.

The effectiveness of the mutation and crossover operators is
defined as the rate of successful applications of these operators.
A mutation is said to be successful if the mutant’s fitness is
strictly greater than its parents’ fitness. Likewise, a recombina-
tion (crossover) is said to be successful if the offspring’s fitness
is greater than their parents’ fitness. Fig. 6 depicts the effective-
ness of the crossover operator and the mutation_nmifs operator
as a function of the number of generations. The effectiveness
of the mutation operator is of 15% in average but it is applied
only to the top 30% of the population. The effectiveness of the
crossover operator decays to less than 5% after 50 generations,
but it is applied to the entire population.

Because the solutions of the nonlinear AND data set are
known, this problem was used to find a good set of parameters
for GAMIFS, in terms of achieving the fastest rate of con-
vergence. The population size was set to to avoid

premature convergence. The number of generations was set to
, in order to allow for at least 75% of the population to

converge toward optima.
Parameters of initialize_nmifs: The and parameters were

varied in . The criterion for chosen the best parameter
combination was the greatest increase in the number of indi-
viduals located at any of the optima with respect to the GA
with random initialization. The best results were obtained for

and . These parameters should be kept small
in order to maintain diversity within the population.

Parameters of mutation_nmifs: The parameter was varied
in , and the and parameters were varied in .
The criterion for chosen the best parameter combination was
the effectiveness of the mutation operator. The best results were
obtained for , , and . This re-
sult means that the mutation operator favors eliminating fea-
tures over adding features. MLPs with architecture 14–6–1 were
trained for 100 epochs, where 14 is the number of inputs, 6 is
the number of hidden units, and 1 is the number of outputs.

Taking into account the results for the nonlinear AND

problem, the parameters of GAMIFS for the simulations with
other databases were fixed as , , ,

, , , and .

D. Breiman Data Set

Breiman et al. [40] introduced a waveform recognition
problem, where three waveforms are sampled at 21 points. Then,
three classes are created by random convex combi-
nation of two of these sampled waveforms ,
respectively. In the noisy version of this problem, every pattern
is augmented in 19 components drawn from a normal distri-
bution . The Breiman database contains 1000 samples
(33% per class). The ideal selection order is to select first the
relevant features 1–21 and then the irrelevant features 22–40.

Fig. 7 show the results obtained with MIFS, MIFS-U, mRMR,
and NMIFS using the Breiman database. Fig. 7(a) and (c) shows
that MIFS and mRMR produced low performance by selecting
only five and two relevant features first, respectively. Both ap-
proaches leave out at the end more than half of the relevant fea-
tures. Fig. 7(b) and (d) shows that both MIFS-U and NMIFS
select 18 out of the 21 relevant features in the correct order. No-
tice that for MIFS-U the best value ( ) was searched for
in the range . This procedure is possible in the Breiman’s
data set because it is an artificial problem, and the solutions are
known.

The subsets of features selected by NMIFS, GAMIFS,
DC-GA without mutation, and DC-GA with the mutation
proposed in [13] were fed into an MLP in order to obtain
classification rates. The MLP architecture used was 40–15–3.
Table II shows the rate of correct classifications using the
subset of features selected for the different methods as inputs to
an MLP classifier. For 13 features selected, GAMIFS outper-
formed NMIFS and DC-GA with mutation. This difference is
statistically significant at the 0.01 significance level according
to the -student test, as shown in the -value column of Table II.
The classification results using the 13 features selected by
GAMIFS are even better than using the entire set of 40 features.

E. Spambase Data Set

The Spam E-mail database [41] consists of 4601 patterns,
with 57 features and two output classes (spam or no spam).
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Fig. 7. Feature ranking for Breiman data set using (a) MIFS with ���� ���, (b)
MIFS-U with ���� ���, (c) mRMR, and (d) NMIFS.

To evaluate the subsets of features selected for the different
methods, an MLP classifier was trained on these subsets. The

TABLE II
MLP CLASSIFICATION RATES OBTAINED BY USING THE FEATURE SUBSETS

SELECTED FOR SEVERAL METHODS ON THE BREIMAN DATA SET

TABLE III
MLP CLASSIFICATION RATES OBTAINED BY USING THE FEATURE SUBSETS

SELECTED FOR SEVERAL METHODS ON THE SPAMBASE DATA SET

architecture used for the MLP was 57–12–1. Tests were carried
out with 3, 6, 9, 12, 15, 18, 21, and 24 features selected by each
algorithm.

Fig. 8 shows that the generalization accuracy of an MLP
classifier that uses as inputs the subsets of features selected by
NMIFS, MIFS, MIFS-U, mRMR, and OFS-MI. The results of
OFS-MI on the Spambase data set were reproduced from [17]
for comparison purposes. For MIFS and MIFS-U, the best
parameter was selected, but no significative differences were
found in the range . From Fig. 8, it can be seen that
the best results were obtained with NMIFS for 12 or more
features. The misclassification error using 24 features selected
by NMIFS is near the 7% reported for this database in [41].
For less than ten features, OFS-MI shows better results than
NMIFS. NMIFS outperformed mRMR for any number of fea-
tures, as well as MIFS and MIFS-U except for three features.

Table III shows the rate of correct classifications using three
features selected for the different methods as inputs to an MLP
classifier. GAMIFS outperformed NMIFS, MIFS, MIFS-U, and
OFS-MI.

F. Sonar Data Set

The Sonar data set [41] consists in 60 features drawn from
204 sonar returns from a metallic cylinder and a rock. The MLP
architecture used was 60–5–2.

Table IV shows the rate of correct classifications obtained
by an MLP using as inputs the features selected by NMIFS,
mRMR, MIFS, and MIFS-U for the Sonar data set. NMIFS out-
performed both MIFS and MIFS-U for all number of features
and different values of the parameter. It can be seen also that
MIFS yielded better results than MIFS-U.
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TABLE IV
PERCENTAGE OF CORRECT CLASSIFICATIONS IN TEST SET FOR SONAR DATA SET

Fig. 8. Generalization classifier accuracy in Spambase data set.

TABLE V
COMPARISON OF GAMIFS WITH OTHER METHODS ON THE SONAR DATA SET

Table V shows the rate of correct classifications using the
features selected for GAMIFS and other methods as inputs to
an MLP classifier. GAMIFS outperformed DC-GA with and
without mutation finding the best solution with less number of
features. The classification results using the 11 features selected
by GAMIFS are even better than those using the entire set of 60
features.

G. Scalability of NMIFS and GAMIFS

Table VI shows the running time of NMIFS and GAMIFS
on several data sets. For testing the scalability of the proposed
methods, we included three data sets with a large number of
features, taken from the 2003 Neural Information Processing
Systems (NIPS) feature selection challenge: Madelon, Gisette,

TABLE VI
RUNNING TIME FOR NMIFS AND GAMIFS ON SEVERAL DATA SETS

and Arcene.3 The running times were measured in a Pentium
IV, 1.8-GHz, 1-GB RAM. From Table VI, it can be seen that
NMIFS can be applied effectively to data sets with more than
10 000 features. The running time of NMIFS could be reduced
by using a faster method to estimate entropies such as [33].

Due to the representation used in GAMIFS, the size of the
search space is , where is the number of features. For this
reason, the number of features is restricted to less than 100 in
GAMIFS. Notice that when using and ,
the total number of combinations searched by GAMIFS is

, which is a very small fraction of the size of the
search space for . As a consequence, the appropriate
search space for GAMIFS is between 20 and 100 features. An
alternative approach to deal with larger sets of features is to
apply NMIFS first to reduce the number of features to about
100, and then run GAMIFS over this reduced subset of features.
Because the most expensive part of GAMIFS is to compute the
fitness by training MLP neural networks, another option is to
use a simpler and faster classifier.

VII. CONCLUSION

The proposed method for feature subset selection based on
mutual information, NMIFS, is an enhancement over the MIFS,
MIFS-U, and mRMR methods. We introduced the normalized
MI as a measure of redundancy, in order to reduce the bias of
MI toward multivalued attributes and restricts its value to the
interval . NMIFS eliminates the need of a user-defined pa-
rameter such as in MIFS and MIFS-U. This is helpful in prac-
tice because there is no clear guide on how to set this parameter
for a real-world problem. NMIFS is a method of the filter type

3These data sets can be downloaded from http://www.nipsfsc.ecs.soton.ac.uk/
datasets/
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that selects feature subsets independently of any learning algo-
rithm. The NMIFS method outperformed MIFS, MIFS-U, and
mRMR on several artificial data sets and benchmark problems,
except for the Breiman data set where NMIFS and MIFS-U
yielded similar results, but the latter required to adjust prop-
erly. When comparing NMIFS and mRMR results, it is clear
that normalizing the MI has a great positive impact in the per-
formance. In the gas furnace time-series problem, NMIFS ob-
tained similar or better performance than fuzzy models of the
wrapper type.

We have also proposed GAMIFS, a hybrid filter/wrapper
method that combines the advantages of NMIFS with genetic
algorithms. The accuracy of a trained MLP classifier was used
to evaluate the goodness of feature subsets, but any classifier
could be used in the wrapper part of the method. NMIFS is
used also for finding good starting points for the GA search
(initialization) and as part of a mutation operator. The proposed
mutation operator allows adding or eliminating features to
individuals, using the NMIFS selection criterion as inclusion
procedure and the most redundant or most irrelevant feature
as elimination criterion. GAMIFS overcomes the limitations
of incremental search algorithms such as NMIFS, MIFS,
MIFS-U, and mRMR that are unable to find dependencies
between groups of features.

In future research, it would be of interest to use quadratic MI
[47] for estimating MI between high-dimensional vectors, and
to use the concept of Markov blanket for finding features that are
weakly relevant but nonredundant. These ideas could be com-
bined with the methods proposed here to get better and faster
feature selection methods that may be successfully applied to
large databases.
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