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Abstract

This work presents an Expert System based on fuzzy analog ganglionar lattices. Its reasoning scheme is designed
analogously to the expert’s mental organization and it is realized on an (analog) operator called the ganglionar
lattice. It is a connectionist system that uses the medical knowledge to define its architecture. The operator evokes
some similarities to higher order neural networks and performs as the knowledge base and inference engine of the
expert system, in a unified manner. A main feature of this operator is that it exhibits the variables corresponding
to all intermediate concepts identified by the expert; this characteristic is shown to be most valuable for assessing,
explicating and prospecting in medical applications. Further, it is capable of (i) evaluating a consequent for a
variety of non-approximate reasonings with multiple antecendents of different relative importance under limited
uncertainty; (ii) explicating the conclusions at different levels of abstraction to suit the user; and (iii) prospecting
for the best *a priori’ sequence of unevaluated antecedents, from which to choose following tests. These procedures
are based on the objective criterion of the consequent’s uncertainty decrease (entropy). All results are produced in
numerical form and may be translated into restricted natural language. A simple example of this technology is fully
developed. Finally the method’s potentials are discussed for future applications.

Abbreviations: AAVG — arithmetic average, BR. - basic reasoning, ci — cardiac insufficiency, cs — lung congestive
signs, dy — dyspnea, ES — expert system, EXP — explicative capacity index, GL — ganglionar lattice, he —
hemoptysis, hs — heart signs, le — lung edema, mGL - ganglionar lattice operator, nBR — basic reasoning operator,
PP — probabilistic product, PRO — prospective capacity index, PS — probabilistic sum, 51 - only number one
antecedent matters operator, 5-T — triangular norm and co-norm, ta— tachycardia, UNC — uncertainty index, WAVG
— weighted average, 4b — heart 4™ bruit

L Introduction

This work presents an Expert System, ES, for medical
applications based on fuzzy analog ganglionar lattices,
GL. The mathematical operators defined and the over-
all structure of the model have some similarities to
the activation function and architecture encountered
in higher order neural networks [1]. Nevertheless the
model shows important differences because units are in

1-1 correspondence with useful intermediate concepis
identified by the expert, and its structure is defined on
an order relation among the units. This structure allows
the use of well established medical knowledge relat-
ing clinical manifestations, syndromes, pathological
states, etc., and incorporating them to the architec-
ture. Whenever this medical knowledge is not explic-
itly available, the model behaves similarly to a neu-
ral network relating a pattern of inputs to the output.
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Thus the system could be defined as a connectionist
model [2-4] using knowledge to define its architec-
ture and data to identify its coefficients. Nevertheless
this technology presented here is not knowledge-based
in the classical sense. For comprehensive reviews of
knowledge-based systems see |5-8].

Asitis well known, experts do not agree in building
an explicit model for their reasoning [9]. The assump-
tion here is that the architecture of the ES will reflect
the expertise of a single specialist, or that of a group
of them agreeing on the reasoning strategy.

This ES for medical applications based on fuzzy
analog GL has been under development for several
years [10-13]. The main assumptions behind this ES
are: (i) the reasoning can be simulated by an analo-
gy to the expert’s mental organization of his formal
and heuristic knowledge, and (ii) a complex medical
reasoning can be decomposed into Basic Reasonings,
BR, each corresponding to a concept with useful sig-
nificance to the expert. For example, the diagnosis of a
disease can be decomposed into syndromes, patholog-
ical states, clinical findings, etc. A similar decomposi-
tion has been proposed earlier [14].

The inputs to this model are all the primary (direct-
ly observable) antecedents that are relevant to a deci-
sion. These antecedents are not precisely measurable,
thus they are fuzzily specified as the patient’s degree
of membership of each primary antecedent’s inten-
sity. In medical diagnosis, for example, the prima-
ry antecedents are the patient’s subjective sensations
{symptoms), appreciation or measurement of signs and
results of instrumental procedures, etc. The output of
the model is the consequent’s intensity; e.g., intensity
of a disease in the patient.

The model relates the most abstract consequent
(top), to the primary antecedents through a hierarchi-
cal structure made of Basic Reasoning units, BRs. This
structure is defined by the order relation of ‘inclusion’;
thus it 1s the lattice [15] of the consequent. The con-
sequent of any intermediate BR is an antecedent to
superior BRs in the structure; and the antecedents of
any BR are consequents of lower BRs and/or primary
antecedents.

Up to now, each BR has been realized by a sub-
lattice of units capable of operating on two antecedents
only [10, 11]. Each unit was an operator specified by
the kind of relationship among its inputs: associative
type (‘and’), non-associative type (‘or'), and exclud-
ing operator, among others. This realization proved
deficient because it forces the model to an artificial
decomposition of each BR in units of the various types,

which are difficult to distinguish, and produce a non-
trivial growth of the lattice. This enlargement blurs
the association to useful concepts which is needed to
explicate and justify the conclusions, Moreover, this
growth prevents a more precise identification of the
coefficients,

An iterative computational procedure to identify
the coefficients of the model, based on the gradient
method, was first used in [11]. These parameters were
proportionally adjusted, considering their sensitivity
and the error between the model and the specialist, for
a sequence of training cases. This iterative procedure is
similar to the back-propagation method used in neural
networks to adjust weighits [16].

In the earliest work [10], the lattices to evaluate six
cardiopathies were developed according to the special-
ist’s reasoning. They were successfully tested with data
from clinical records. Later this method was applied
to determine the degree of normality of the ECG [11],
and to diagnose, characterize essential hypertensive
patients [17].

The main purpose of this work is to formalize a
methodology and to develop the mathematical tools
for an ES for medical applications based on ganglionar
lattices, surmounting the above discussed deficiencies.
This paper includes substantial improvements which
will eventually permit treating some of the expert’s
abilities and limitations, such as the reasoning with
imprecise antecedents, and his approximate reasoning,
respectively [18].

In section II, the nBR operator is developed and
realized, detailing some of its properties. Then the
mGL operator is defined, supplying methods for
parameter identification and emphasizing the role of
its structure. In section III the advantages of this type
of ES are demonstrated by developing methods for
explicating the system’s conclusions and for prospect-
ing the unevaluated antecedents, both at different levels
of abstraction to suit the user’s needs. In section IV a
detailed application example is shown. Finally, a dis-
cussion of results and conclusions for future improve-
ments are provided.

II. Methodology
Preliminary definitions
Often a specific complex medical reasoning leading to

evaluate a consequent, can be decomposed into a lat-
tice of BRs [10, 11, 14]. These units are hierarchically



organized by the order relation of ‘inclusion’, thus
their structure is a lattice in the sense of Birkhoff [15].
The model proposed here, applicable when the rea-
soning problem yields to this decomposition, shall be
called the Ganglionar Lattice, GL, of the specific con-
sequent. For example, the diagnosis of some diseases
can be decomposed into an organization of syndromes,
clinical findings, pathological states, etc., which final-
ly would depend on signs, symptoms, etc. [10, 11,
13, 14]. When the above decomposition is not known,
the model reduces to a single BR. This last basic idea
was earlier suggested by Zadeh [ 19] in connection with
fuzzy theory applied to medical diagnosis. In what fol-
lows the methodology for defining and using the ES
based on GLs is presented, illustrated, and discussed.
It must be emphasized that the procedure to define the
GL is most suited for incorporating a single expert's
formal and heuristic knowledge to the model.
Consider the set of relevant primary antecedents
to a top consequent. An antecedent is relevant, when
the expert’s formal or heuristic knowledge asserts this;
and is primary when it is directly observable. Of this
set, consider only those subsets bearing a useful signif-
icance to the expert in relation to the consequent, ie.,
useful significance for reasoning with the antecedents,
explaining the consequent, or communicating partial
aspects of the problem. Following the definition of
a lattice [15], this family usually contains a few of
the 2" possible subsets of the power set of primary
antecedents, including always the full set at the cusp
{the consequent), and the singletons next to the base
{the primary antecedents). When the relation of ‘inclu-
sion’ is used to order this family of subsets, the result-
ing structure is the ganglionar lattice of the top conse-
quent, based on the relevant primary antecedents. This
construction is exemplified in section IV, part 1.
Associate a Basic Reasoning unit, nBR, 1o each
node of the above defined lattice, except to the nodes
next to the base (primary antecedents). The outgo-
ing arcs at any node represent a single consequent,
which is antecedent of nBRs at higher levels in the
lattice. The incoming arcs at any node represent the
distinct antecedents specified by the lattice; each of
these antecedents is identified with a consequent of an
nBR at inferior level. For the top nBR the output vari-
able is the top consequent, and for others, some input
variables are primary antecedents. Thus, an nBR is an
operator realizing the specific relationship among the
‘n' antecedents by which its consequent can be evalu-
ated ai each node af the laitice. This operator is thought
out to simulate different types of human reasoning, i.e.,
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the types of relationships employed to assign values to
the consequent. The nBRs are ‘basic” in the sense that
no further decomposition is meaningful to the expert.
Each nBR, together with its consequent, bears the name
of the concept associated with the subset of prima-
ry antecedents covered by the concept; this name and
subset is previously identified by the expert.

Realization of a basic reasoning unit

For the realization of an nBR, a multivariable polyno-
mial operator is proposed. This operator puts forth the
tavorable characteristics of a weighted average opera-
tor [20-23] to treat antecedents with different impor-
tance, and also exhibits the advantages of the triangular
norm and co-norm operators |23, 24], using the proba-
bilistic sum and product, to simulate different forms of
reasoning. This family of operators allows the propaga-
tion of the intensity, and eventually of the uncertainty,
from the antecedents to the consequent.

Definition

Mathematically, the Basic Reasoning unift is the oper-
ator nBR: s ¢ I" — nBR(s) ¢ |, where 1 = [(,1], and s =
[s1...84 ] is a vector of input variables representing the
‘n" antecedents. The explicit expression for the nBR
is

" =1 n

nBR(s) = Y ai([J(s;)")
J=1

1=l

where the {0,1}-structural matrix [by;]. i = 0,..,2"-
I, and j = 1,...n, represents the composition of the
s-products among the *n’ antecedents. If the i*" term
contains the factor s;, then by; = 1 and otherwise b;; =
0. For example,

2HR(sy,8) = ag + a15) + asy + aas s

IBR(s),89,8) =ag + a151 + azs + ais
+ @481 82 + as58183 + dgszsy + d781828;3

The number of operations to compute the consequent of
an nBR are (2"-1)+ " ; —2(- 1{nY(j!(n-j)!} } products
and (2"-1) sums.

It is clear that the nBR operator includes not only
the proportional contribution of each antecedent, but
also that of all possible products among them. These
products may be interpreted as dependencies or cou-
plings among antecedents.
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Fig. 1. Hyperplane determined by al + a2 + a3 = | on the coef-
ficients space (al, a2, a3) showing the locus for the allowed coeffi-
cient values of a 2BR. The coefficients permit identifying the type
of reasoning obtained: locus for the Weighted AVeraGe operators,
{WAVG: e 1,0000 + (1-cx W0,1,00, evel}; the locus of the triangular
norm and co-norm operators, {S-T 300,010+ (1-3) (1.1,-1), Bel};
and the singular cases of: (1) the Probabilistic Product, PP: (0,01},
(2) the Probabilistic Sum {PS: (1.1,-13}; (3) the ‘only 5; matters’
operator, {51: (1,0,00}; and () the Arithmetic AVeraGe operator
{AAVG: (0.5,0.5.00}.

Unigueness of the nBR

It is important to notice that if a family of 2" linearly
independent inputs produces 2" outputs through an
nBR specified by a set of coefficients a; then, there is
no other set by that, for the same inputs will produce
the same outputs. This can be proven by the linearity
of the 2" coefficients ap. Thus an nBR operator is
uniquely specified by its 2" coefficients.

Restrictions to the nBR operator

In order to represent the absolute normality (abnormal-
ity) of a variable, the number ‘0" (*1') is used. Thus,
if the absolute normality (abnormality) of all antecen-
dents is to imply the absolute normality {abnormality)
of the consequent, it is sufficient that ag = 0 (E;a; =
1). In other words, ag = 0({X;a; = 1) implies nBR(() =
0 (nBR{1) = 1). The restriction ag = 0 indicates that
the coefficient space is of dimension 2"-1, and the
restriction a; +..+ ay = 1, for g = 2"-1, describes an
hyperplane in the coefficient space, intersecting every
axis at the value *1°. Notice that, if 5; = 1 while all
other inputs are ‘0", then nBR = a;; thus a;el, fori =
1,...n.

The type of reasoning performed by an nBR is spec-
ified by its coefficients. Figure 1 shows the allowed
region in the 3-D coefficient space of a 2BR. Sever-
al types of reasoning can be identified: (i) decoupled

equal importance antecedents; (ii) decoupled unequal
importance antecedents; (iii) the consequent is never
weaker than the strongest antecedent (pessimistic rea-
soning); and (iv) the consequent is never stronger than
the weakest antecedent (optimistic reasoning), among
others.

The ganglionar lattice operator

A ganglionar lattice operator, mGL, is a function-
al composition of the nBR operators composed as
the nodes of a previously defined lattice for a par-
ticular consequent. lis output variables represent the
consequent, the input variables are the ‘m’ primary
antecedents, and the intermediate variables represent
intermediate concepts identified by the expert. For
instance, the ganglionar lattice for the diagnosis of
‘cardiac insufficiency’ is specified in section IV, part
2

The structure of a ganglionar lattice operator, mGL,
can be described by a {0,1} Topology matrix, Tt;; ]
each row represents a subset of primary antecedents
associated with a meaningful concept, and each col-
umn a primary antecedent, j = 1,,m. The entry t;; = 1
if the i'® concept includes the j** primary antecedent,
and ‘(' otherwise. A sample of this matrix is shown in
section IV, part 3.

Definition

Mathematically, the Ganglionar Lattice is the operator
mGL({s):s € I" — 55 ¢ . The explicit expression of
the mGL is specified by [nBR;, T], where nBR; is
associated to the k" node of the lattice of a particular
consequent, and T is the lattice topology matrix.

Properties of an mGL

Some properties of nBRs are retained by any mGL.
It is easy to show (i) if nBR,(0) = 0 and nBR;(1) =
1, for all operators of the lattice, then mGL{0) = 0
and mGL(1) = 1; (ii) if each nBR; in the lattice is
monotonously increasing, then the mGL operator is
monotonously increasing; (iii) since all nBR operators
in the lattice are differentiable then the operator mGL
is differentiable.

An mGL is a composition of polynomial expres-
sions thus resulting, possibly, in a more complex poly-
nomial expression than that of an mBR. In fact, the
degree of an mBR is of (s)*...*s, ), while the degree
of an mGL may be up to (5;*...%s5,,)™"!; thus the
mGL is far more complex than an mBR. Neverthe-



less, the mGL is specified by considerably less than
the 2™ coefficients of an mBR. These facts suggesi
that the mGL is most appropriate to model well estab-
lished complex reasonings, with casted intermediate
concepis and involving a large number of antecedents,
which is aften the case in medicine [10, 11, 14].

It must be emphasized that the main advantage of
an mGL is that it exposes all the intermediate vari-
ahles corresponding to useful concepts, which at least
in medicine, are of paramount importance to observe
the behavior and eventually to explicate the outcome.
These procedures will be most significant if achieved
on solid, widely understood and accepted intermediate
concepts, such as syndromes, clinical findings, patho-
logical states, etc., since the primary antecedents alone
are not so indicative,

The lattice is named Ganglionar in the same sense
of a cluster of neurons processing multiple synaptic
inputs; as performed by the lattice of nBRs. The GL
is an analogy since its structure resembles the expert’s
mental scheme for reasoning. Moreover, it uses ana-
fog variables that can instantly and simultaneously (and
continuously) produce the value for every consequent
(if the inputs were continuous variables). The realiza-
tion of this type of ES could be achieved on analog
devices instead of a computer program.

The moted tree structure

An extremely simple mGL is obtained when the struc-
ture is in the form of a rooted tree [25]. These struc-
tures can be defined on partitions of the primary set of
antecendents, and successive refinements of the former
partition, down to the singleton partition. An example
is provided in section 1V, part 2.

This special mGL, turns out to be an mBR com-
position of nBRs on disjoint variables, thus its degree
is the same of an mBR, and behaves like one but with
restricted coefficients. Furthermore, it can be proven
that there always is an mBR that behaves exactly alike,
and from which the mGL can be recuperated, provided
T is given. In other words, every mGL with rooted tree
structure can be represented by an mBR. Nevertheless
the converse is not true. This mBR is a more powerful
operator than the mGL, but on far more coefficients
and not exposing the intermediate variables.

The coefficient identifiction of an mGL with rooted
tree structure, is unigue; in fact it can be proven that
two mGLs with the same rooted tree structure and
with the same input-output behavior must have the
same coefficients. This fact is crucial for explicating
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the consequent value. In general an mGL without a
rooted tree structure, cannot be expressed as an mBR,
and the conditions under which uniqueness extends,
are not known.

Identification of the ganglionar lattice

To successfully use an mGL operator it must be spec-
ified to fit a particular reasoning, i.e., the structure
and the coefficients must be identified. The structure
is completely identified by the expert when speci-
fying the subsets associated with concepts of use-
ful significance. The coefficient identification may be
approached in practice by successive approximations,
as is later described. Nevertheless, in the special case
of a rooted tree structure, the coefficients can be exact-
ly computed, given an appropriate set of at least 2™-1
linearly independent ‘training’ cases.

Parameter identification by successive
approximations

Consider an mGL of a specific consequent with its
structure of intermediate concepts already identified
by the expert. Take arbitrary initial values for the coef-
ficients of all nBRs included in the mGL. Consider
also an appropriate variety of training cases supplied
by the expert, including values for all the primary
antecedents and corresponding consequents. The algo-
rithm employed to identify the coefficients corresponds
to that used in System Theory to minimize the square
error by an iterative procedure on the difference equa-
tion of the mGL, using the gradient method. Further-
more this method is similar to the back-propagation
that is widely used in neural networks [ 16]. Its limita-
tions in the non-linear case of rooted tree structure are
well known [16, 26].

This procedure has been applied successfully to
identify the mGL corresponding to ‘cardiac insuffi-
ciency’ using real outcomes certified by the expert, as
shown in section IV, part 4. Also the procedure has
performed well identifying simple monotonous mGLs
without rooted tree structure although the solution may
not be unique. Most important is that the method has
performed with satisfaction identifying the ESs to eval-
uate the normality of ECG [11] and for the diagnosis,
characterization and treatment of hypertensive patients
[17].
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II1. Explication and prospection
Basic ideas

One of the main criticisms of ES focuses on their limit-
ed explicative and prospective capacity [27, 28]. Here,
a new technology based on analog simulation of the
expert’s ability for reasoning is proposed, which turns
out to be suitable to answer the following questions at
different levels of abstraction: (i) Which retrospective
reasons the ES can furnish to explicate the consequent’s
value?, and (ii) Which prospective reasons the ES can
toresee to select the most appropriate successive evalu-
ation to optimally improve the consequent quality?

Actually, the expert builds his answer to the above
questions only on a few antecedents of different con-
ceptual levels. He will choose his arguments regarding
whom he is explicating to, on the following basis: (i)
the arguments must be adapted in level to the user (spe-
cialist, student, etc.); (ii) the arguments must reduce
the user’s uncertainty up to satisfaction, and (iii) the
arguments must be as simple as possible. These crite-
ria essentially identify the explicative and prospective
method developed here, for this ES based on fuzzy
analog GLs.

The problem at hand reduces to classify the sub-
sets of antecedents according to their explicative or
prospective capacity. The basic idea to measure the
explicative capacity (prospective capacity) of subsets
of primary antecedents is by the uncertainty change
that would have occurred (that would occur) in the
previous (next) state of these antecedents.

Suppose that some primary antecedents of a
monotonous increasing mGL are evaluared, i.e., each
one has been measured or estimated and consequently
assigned a punctual value. The rest of the antecedenis
remain unevaluated, i.e., for them a measured or esti-
mated punctual value, is not known. A way to han-
dle this unevaluated condition is by assigning to each
unevaluated antecedent the range I, of equally possible
values and then, the possible values of the consequent
range in an interval of L. The upper limit of this interval
is the pessimistic value, and the lower limit, the opri-
mistic value. Since the mGL 15 assumed monotonous,
these extreme values are obtained by assigning the
value *1°, and assigning the value 0", to all unevaluat-
ed antecedents at once, respectively, keeping all other
antecedents on their respective punctual values,

Define the UNCertainty of the consequent of
mGL{s") at the operating state s*, denoted by
UNC(sp = mGL{s" )), as the interval length of sy. Thus,

UNC(sg) = | max mGL(s*)-min mGL(5*) | , where s*
represents all possible values of each component. For
a monotonous mGL, UNC(sg) = | (pessimistic value)-
{optimistic value) .

It should be noticed that if the consequent is a fuzzy
variable, the computation of the area under the possi-
bility distribution is a measure of its uncertainty. This
concept reduces the evaluation of UNC when real vari-
ables are used. If all the antecedents are unevaluated
{evaluated pointwise) the consequent is totally uncer-
tain (certain), and UNC(sg) = 1 (UNC(sg) = 0).

Explicative capacity

Consider only monotonous mGLs at an operating state
specified by 5*. Define the EXPlicative capacity of
a subset 5; of primary antecedents of an mGL(s") at
the operating state s*, denoted by EXP(S;), as the
uncertainty decrease in the consequent, when a state s~
is forced retrospectively. This previous state is obtained
by changing the values of all the antecedents in §; to
range I, while the rest remain as given. Thus EXP(S;) =
UNC(mGL{s™)) - UNC(mGL(s").

The modification on 5 to obtain s~ consists of
the assumption that all the antecedents in §; become
retrospectively unevaluated, i.e. if 5;¢5; then s7; =
I

Prospective capacity

Consider only monotonous mGLs at an operating state
specified by 5*. De fine the PROspective capacity of
a subser §; of primary antecedents of an mGL(s"),
at the operating state s, denoted by PRO({S;), as the
average uncertainty decrease in the consequent when
all the unevaluated antecedents in §; take all possible
values, while the rest remain as given. Thus PRO(S;) =
< UNC(mGL(5")) - UNC(mGL(s%)) >, where <-> is
the average integral operator computed for all uneval-
vated antecedents in 5;, and where s* are the given
antecedent values. The values s* contain, as integra-
tion variables, all the unevaluated antecedents in S;.
The unevaluated antecedents not in 5;, simultaneously
take the value °1°, to compute the pessimistic case, and
the value ‘0", to compute the optimistic case.

It can be shown that for monotonous mGL with
rooted tree structure, the computation of the average
uncertainty decrease is equivalent to assigning the val-
ues (1.5 to all unevaluated antecedents in S;. Thus,
the formidable computation to obtain PRO(S;) can be
avoided.




If §; contains evaluated antecedents only, then
PRO{S;) = 0; clearly no uncertainty decrease can
be achieved by §;. The opposite occurs if 5; con-
tains all antecedents and everyone is unevaluated, then
PRO(5;) = 1.

Meaningful partitions

To advantageously use EXP(S;) and PRO(S;) it
is required an organization of the set of primary
antecedents, S = {5, 57,,5y }. according to the mGL
structure. Consider any partition of § and call it mean-
ingfulif all its members correspond to meaningful con-
cepts in the mGL, including the primary antecedents
as concepts; and denote it by P. Thus P can be viewed
as a set of concepts of different levels of abstraction,
and each concept is a subset of §.

Explication and prospection

The explication of the consequent in precise terms oth-
er than the consequent value itself, is fundamental for
the acceptance of an ES. Any procedure to explicate
assumes that there is a threshold, U, that must be sur-
passed to achieve explicative satisfaction. On the other
hand, the cyclic procedure to evaluate a consequent
needs an objective strategy to propose the subsequent
evaluation or estimation to be performed, and with
assurance of an optimal consequent’s quality improve-
ment. This prospective strategy assumes that there is a
threshold, V, that must fail to end the cyelic approxi-
mation to the decision. Both procedures use the conse-
quent uncertainty decrease as the basic criterion.

Basic explication and prospection

Consider the singleton partition of the set of primary
antecedents and construct the power set of this parti-
tion. It must be regarded as a set of meaningful con-
cepts: the primary antecedents.

Explication
Rank each member of the power set by EXP and select
those subsets containing a minimal number of mem-
bers (primary antecedents) and with EXP > U, The
concepts included in any solution constitute an expli-
cation of no less than U-completeness of the conse-
quent value. Note that this selection is not unique, in
general, since more than one member of the power set
may satisfy the above conditions.

Optionally, the chosen explication may be trans-
formed into a fuzzy explicative rule in restricted natu-
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ral language, if an intensity-to-words rule, such as the
one given in Table 4, is provided. This procedure is
exemplified for the diagnosis of cardiac insufficiency
in section IV, part 6.

Prospection

Rank each member of the power set by PRO, and select
the highest in the ranking of the group of *p" primary
antecedents. This last condition suggests to perform
‘p’ tests at once. Note that PRO of any set of evaluated
antecedent is null.

This criterion by no means assures the test(s) out-
come, it only constitutes the best ‘a priori’ choice,
from the point of view of informatics, which objec-
tively would optimally reduce the consequent’s uncer-
tainty. This strategy can be successively used until the
threshold V is failed, presumably using the minimum
number of tests to achieve satisfaction. An example of
this procedure is shown in section IV part 5.

Higher level explication and prospection

These procedures are identical to the previous ones
except that the meaningful partition, P, includes con-
cepts of higher level of abstraction. There are several
meaningful partitions on which these procedures can
be applied. The lattice itself suggests how to identify
them to suit the user. Each partition is of a different
level of abstraction and simplicity, in relation to the
concepts involved and with respect to the number of
arguments or tests used.

The procedure for explicating is most valuable to fit
the different user's needs: from a specialist to a student.
An example is provided in section IV part 7.

The strategy of prospecting in terms of abstract con-
cepts renders the system friendly to the user, because
it substitutes several observations by one estimation;
that of the chosen concept. The procedure leads to fail
the threshold V easier and faster. The main drawback
of this strategy is that higher order concepts cannot
be properly measured, thus only estimated by exper-
Lise.

IV. Application to cardiac insufficiency

This example is taken from an Expert System to aid
in the diagnosis and characterization and treatment of
hypertensive patients [17]. The Cardiac Insufficiency
is one of the parenchymatous damage caused by this
disease [29].
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Fig. 2. The ganglionar lattice of cardiac insufficiency (ci), exposing
the intermediate concepts of *lung edema’ (Je) = {dyspaeaidy), lung
congestive signs (cs), hemoptysis (he)}; and *heart signs” (hs) =
{tachycardia (1a), heart 4*" bruit (4b)}.

Part I: the structure

Consider the medical diagnosis of Cardiac Insufficien-
cy, “ci’, the top consequent for this diagnostic deci-
sion. According to the expert, the primary antecedents
required to evaluate the ‘ci’ are [29]: ‘dyspnea’ = dy,
‘lung congestive signs’ =cs, *hemoptysis’ =he, “tachy-
cardia’ =ta, and ‘heart 4'* bruit’ = 4b. Thus the set {dy,
cs, he, ta, 4b} = ci. Among all possible subsets of ‘ci’,
the cardiologist identifies the subsets dy, cs, he = *lung
edema’ = le, and ta, 4b = *heart signs’ = hs. Thus the
family of subsets is: < {dy};{cs};{be};{ta};{4b}:{ta,
4b}:{dy, cs, he}:{dy, cs, he, ta, 4b} >. By the order
relation of ‘inclusion” the lattice of Fig. 2 is defined.
The top of the lattice is the ‘ci” and the atoms in the
base are the primary antecedents.

Fart 2: the ganglionar lattice

On the lattice of ci the following nBRs are defined:
le = 3BR(dy, cs, he); hs = 2BR(ta, 4b); and ci =
2BR(le, hs). The composition defined by the structure
is the 5GL(dy, cs, he, ta, 4b) = 2BR(3BR(dy, cs, he),
2BRta, 4b)).

In this case the structure is of the form of a rooted
tree, so the variables partition in the same form as the
structure branches. This fact induces a different per-
spective to view the rooted tree structure by partitions
of the set of primary antecedents, as: the one-member
partition is < {dy, cs, he, ta, 4b} =ci >; a two-member
refinement is < {dy, cs, he} = le, {ta, 4b} = hs >; and
finally the atom partition < {dy}, {cs}, {he}, {ta},
{4b} = is reached.

Table §. Data of thirty cases,

] dy e he ta 4b ci

I 0 0 o0 o 1 010

2 0 0 o 1 D 08

3 0 0 1] | 1 0.20

4 0 0 | { 0 0.15

5 0 0 I 0 1 0.25

6 0 0 I I 0 0.23

7 0 0 I I | 0.35

g 0 1 0 o 0 .45

9 0 [ 0o o 1 0.50
o 0 [ 0 1 0 60
n o 1 0 I I 070
12 0 1 | 0 0 .60
13 o | I o 1 0.0
14 0 | | I 0 075
15 <0 I I I | 085
16 1 0 1] 1] 0 .08
17 1 0 1] 0 1 0.15
18 1 o o I 0 12
19 1 0 1] | 1 0.25
i B | 0 1 1] 0 022
21 1 0 1 LI 0.30
22 1 1] 1 1 1] 0.30
23 | 0 | 1 1 0.40
4 1 I oo 0 0.55
25 1 | o 0o |1 0.70
24 1 I 0 1 0 0.68
2T 1 I 0 1 I 0.75
28 1 I 1 0o o (.85
29 1 I 1 0o 1 095
1 1 1 1 0 0.93

Part 3: the topology matrix

The rows corresponding to single primary antecedents
are superfluous, thus omitted. Then the topology
matrix of the 5GL is a 3 concepts by 5 primary
antecedents, as

dy cs he ta 4b
e |1 1 1 1 1 |fifthlevel
Eli=igulae 400 000 it ieet
he (00 0 0 1 1 | second level

Part 4: identification of coefficients

The following parameter values are obtained adjust-
ing the S5GL by the successive approximation method,
using data from 30 patients with true diagnosis certi-



Table 2. Successive computations of PRO(ci/{antecedents } ).

PRy, PRy PRO; FRO,

PRONcildy) 131 0,139 0.154 b
PROVcifes) 0517 u x X
PROVcifhe) 0176 0.197 ® ®
PRO{(cifta) 0096 0093 0.092 0092
FROMcif4b) 0.092 LA 0088 LORE
UNCici) 1000 0518 0.335 0181
Assign value cs=09% he=07 dy=05 eic

Table 3. Subsets with EXP = (0.8,

Case  Subsets 5; of Cardinal  Explicative
N* primary antecedents capacity
dy ¢ he ta 4b

32 1 1 | I | 3 1,040
31 1 1 1 1 0 4 0912
30 1 1 1 0 1 4 0905
1] 0 1 [ | I 4 0.881
28 | I 0 1 1 4 0825
29 | 1 1 0 0 3 0.823
15 1] 1 1 1 0 3 0,792

fied by the expert given in Table 1. The chosen data
covers most of the possible cases.

Extending the notation, the coefficients of the
respective nBRs are: {le; = 0.063; le; = 0.569; le; =
0.178; ley = 0.069; les = 0.011; leg = 0.021; ley =
0.089}; {hs, = 0.504: hs; = 0.482; hs; = 0.014}, and
{ciy = 0.826; ciz = 0.199; ciy = -0.025}. The adjust-
ment quality, measured by the error between the model
and the expert, is RMS = 2.5%.

To explore on the method’s adjustment quality, a
5BR(dy, cs, he, ta, 4b) was identified with the same
data. The resulting coefficients are: 0.000, 0.079,
0.449, 0.149, 0.079, 0.098, 0.022, - 0.008, - 0.038,
- 0.028, 0.002, 0.072, - 0.048, 0.002, 0.002, 0.022,
0.154, 0014, 0.125, 0.034, 0.005, 0.035, - 0.006,
0.045, 0.025, - 0.005, - 0.082, - 0.103, - 0.163, - 0.033,
- 0.043, 0.144. On this 5BR realization, intermedi-
ate concepts are not be exhibited, thus reducing the
model's explicative capacity. Nevertheless, the highly
increased number of coefficients improves the adjust-
ment quality fifty times to RMS = 0.05%.
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Tabie 4. Restricted language-to-membership
value translation.

Restricted Concept
language membership
Highest 1.0

Very high [0.85-0.99)
High [0 70085}
Medium (030070
Low (0.15-0.30]
Very low (0.01-0.15]
Lowest 0.0

Tabkle 5. EXP for the set (le, hs).

Antecedent Cardinal EXPlicative
i capacity

le: hs

| I 2 10630

1 L] | 0.823

0 | 1 0181

Part 3: prospection for the next evaluation test
Suppose it is the first interview of a patient, i.e., all
primary antecedents of ci are unevaluated. Thus dy =
cs =he=ta=4b=1, and the consequent ci = I. It is not
known which would be the best next test to perform
so that the uncertainty of ci is maximally reduced. A
sequence of best tests cannot be absolutely specified
since the second choice will depend on the outcome of
the first. The best a priori choice at each j** stage is
evaluated in the column PRO;, j = 0,1,2, of Table 2.
Subsequent columns show the best next choice, once
the present evaluation is known. The last row in Table
2 shows a fictitious outcome for the selected evalu-
ation. The order of the following column depends
on the operating point determined by the evaluation
performed now. This choice reduces the consequent’s
uncertainty to the value indicated in the next to the
last row (UNC(ci)). Motice that the evaluation of “cs’
followed by ‘he’ and *dy’, reduces the uncertainty of
¢i from total uncertainty, UNC(ci = [0.0; 1.0]) = 1.0,
to UNC(ci = [0.614; 0.795]) = 0.181.

Fart 6: explication on primary antecedents
Suppose that the patient is completely evaluated for ci
in terms of the primary antecedents: dy =(0.5, s =0.9,

===
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he = 0.7, ta = 0.1, 4b = 0.2, thus computing the ci =
(.64, For example choose the threshold U = 0.8. An
explication suited for a non specialist or student is in
terms of primary antecedents only. This explication is
detailed but long. The procedure to obtain it requires
computing EXP of the 32 subsets of the primary set of
antecedents. Table 3 shows the computed value of EXP
for the 7 most significant groups. Only one of these is of
smallest cardinality, 3, surpassing the threshold of 0.8;
that is N° 29 of EXP({dy, cs, he}) = 0.82. The explica-
tive rule, translated into the restricted natural language
by Table 4, is the simplest satisfactory explication to
80% of the full explication, and reads: “The Cardiac
Insufficiency is of medium intensity (0.64) because the
Dyspnea is of medivm intensity (0.5), the Heart Con-
gestive Signs is of very high intensity (0.9), and the
Hemoptysis is of high intensity (0.7)".

Part 7: explication on concepits of higher

abstraction

The main advantage of an mGL is that it exposes the
higher concepts, not only to understand the model,
but to supply a more conceptual explication. For this
purpose it is adequate to explicate ci = 0.64, in terms of
the clinical findings of ‘lung edema’ =le, with resulting
value of 0.74; and *heart signs’ = hs, with value of 0.15.
The method proceeds evaluating EXP({le}) = 0.82,
EXP({hs})=0.18, and EXP({le, hs}) = 1.00; as shown
in Table 5. All values are computed at the operating
point. Clearly, the simplest choice for 80% explication,
translated to restricted language, reads: ‘The Cardiac
Insufficiency is of medium intensity (0.64) because the
Lung Edema is of high intensity (0.74)".

The possibility of producing these variety of expli-
cations is a paramount characteristic of this technology
since it renders the ES friendly and accepiable to the
user.

V. Discussion and conclusions

An Expert System based on fuzzy analog ganglionar
lattices was presented. It is capable of simulating com-
plex reasonings modeled by a functional composi-
tion of Basic Reasoning operators. This nBR oper-
ator allows different type of association among its
antecedents, generalizing a combination of weighted
average, triangular norm and co-norm operators (prob-
abilistic sum and product, respectively). This lattice
is capable of exhibiting the variables corresponding

to intermediate reasonings, which is valuable in med-
ical applications for explicating at different levels of
abstraction, and for prospecting the best sequence of
unevaluated antecedents. The lattice serves as knowl-
edge base and inference engine in a unified manner.
The procedures to explicate and prospect are founded
on the uncertainty decrease in the consequent respect to
antecedents of different levels of abstraction, thus con-
stituting a friendly method to explicate and an objective
criterion to approach a conclusion.

Each node of the lattice corresponds to a BR unit
capable of processing ‘n" antecedents of different rela-
tive importance. The association of nBRs to each node
of the lattice permits to model the intermediate con-
cepts with useful meaning for the expert. The applica-
tion example shows that the structure of the ganglionar
lattice (mGL) can represent the mental model of the
expert when reasoning, and exhibit more or less detail
according to the user’s preference.

The number of parameters of the nBR operator,
grows exponentially with the number of antecedents.
Even though a large number of parameters results in
good adjustment quality, the computational complex-
ity for the consequent also increases. For example, a
TBR (n = 7) needs 448 products and 126 sums. Real
time applications may be limited by the computational
complexity as antecedents grow in number. Fortunate-
ly, it is unusual to find basic reasonings with more than
seven active inputs [30]. Furthermore, in relation to the
preceding comments, the analog model presented here
uses analog variables, so that it could be realized on
analog nBRs, thus taking no time for processing.

Only in the case of lattices in the form of a root-
ed tree the mGL is recuperated by an mBR; in this
sense the mBR operator is more complete. Also in this
case, the realization of the mGL is unique, so that the
exhibited intermediate variables have a unigue value,
for a given input. The possibility of having multiple
output connections in the lattice structure of an mGL,
makes the complexity grow beyond that of its compo-
nent nBRs, thus obtaining operators that are exponen-
tially more powerful.

In the case of the mGL with rooted tree structure,
the parameters can be identified by calculation, given
a complete set of input-output data covering the space
of parameters. The iterative procedure to identify the
mGL works adequately even for cases without rooted
tree structure, but the solutions may not be unique. For
antecedents with moderate inconsistencies the param-
eters are identified within tolerable accuracy.



The ES on fuzzy analog ganglionar lattice, com-
pared to technologies based on production rules, does
not require to verify the consistency of the basic rea-
soning functions. This is assured by the procedure to
define the lattice architecture and by the coefficients
adjustment, based on data supplied by the expert.

The ‘a priori’ average decrease in the conse-
quent's uncertainty, used as the criterion 10 measure
the prospective capability of an unevaluated group of
antecedents, allows to choose the subset of antecedents
that protentially produces the maximum decrease in the
consequent s uncertainty. The method to select the next
test offers an objective criterion to rank the prospec-
tive capability of different members of a partition of
primary antecedents in order to get as much informa-
tion as possible with fewer tests. Analogously, the ‘a
posteriori’ average decrease in the consequent’s uncer-
tainty, used as the criterion to measure the explicative
capability of a group of antecedents, introduces a very
human aspect in the generation of explications. Results
of the identification process of the subset that produced
the maximum decrease in the consequent’s uncertainty,
have been presented in the application example.

The explicative capacity of the model is useful for
the medical user (physician, student) who wants to
know why the consequent has reached a certain state.
It also allows the user to communicate to the patient
an explication about his condition. In both situations,
it is possible to choose different levels of explication
abstraction according to the user knowledge level.

In the generation of explications using intermedi-
ate concepts, it is required that the mGL is unique,
otherwise the patient’s condition could accept multiple
explications in terms of intermediate concepts.

In relation to the iterative coefficient identification
process, based on successive presentation of input pat-
terns, information about the expert’s reasoning is grad-
ually gained. This procedure is an ‘external instruc-
tor learning process’ and the learning is reflected on
the coefficients. If this procedure is used to identify
the coefficients of an mGL made of a single mBR, as
shown in section IV part 4, not only will the coefficients
be identified but several alternative structures could be
inferred by clustering antecedents through the relative
coefficient magnitudes. Then the GL could be syn-
thesized on several approximate ganglionar lattices,
including each of the several nBRs. This procedure
can serve to identify possible concepts (nBRs) in fields
where these concepts are not yet defined. Besides these
alternative realizations may provide an explication for
the known fact that experts do not necessarily agree on
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a concept structure since, in general, there is no unique
solution.

The model’s mathematical formalization has been
thought out as a conceptual basis for future exten-
sions that will incorporate more realistic aspects of
the human reasoning to the ES, such as the uncertainty
treatment of both the expert’s approximate reasoning
and the antecedents’ imprecision or ignorance.
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