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a b s t r a c t

Face recognition has a wide range of possible applications in surveillance, human computer interfaces and

marketing and advertising goods for selected customers according to age and gender. Because of the high

classification rate and reduced computational time, one of the best methods for face recognition is based

on Gabor jet feature extraction and Borda count classification. In this paper, we propose methodological

improvements to increase face recognition rate by selection of Gabor jets using entropy and genetic

algorithms. This selection of jets additionally allows faster processing for real-time face recognition. We

also propose improvements in the Borda count classification through a weighted Borda count and a

threshold to eliminate low score jets from the voting process to increase the face recognition rate.

Combinations of Gabor jet selection and Borda count improvements are also proposed. We compare our

results with those published in the literature to date and find significant improvements. Our best results

on the FERET database are 99.8%, 99.5%, 89.2% and 86.8% recognition rates on the subsets Fb, Fc, Dup1 and

Dup2, respectively. Compared to the best results published in the literature, the total number of

recognition errors decreased from 163 to 112 (31%). We also tested the proposed method under

illumination changes, occlusions with sunglasses and scarves and for small pose variations. Results on

two different face databases (AR and Extended Yale B) with significant illumination changes showed over

90% recognition rate. The combination EJS–BTH–BIP reached 98% and 99% recognition rate in images with

sunglasses and scarves from the AR database, respectively. The proposed method reached 93.5%

recognition on faces with small pose variation of 251 rotation and 98.5% with 15% rotation in the FERET

database.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In most large cities across the world, tens of thousands of
cameras have been installed for video surveillance. In the London
(UK) subway system, there are over 13,000 cameras installed for
surveillance [1]. In Paris (France) there are more than 9500 [2], in
Madrid (Spain) more than 6000 [3] and in Santiago (Chile) over 800
cameras [4]. Most metropolitan areas have thousands of cameras
installed for surveillance on highways, in malls, department stores,
airports, train stations, university campuses, schools and down-
town districts streets. In contrast to the massive deployment of
cameras, there is very limited capability for monitoring in real time
the captured images.

Face recognition technology shows advantages over other
biometric identification techniques in specific applications such
as ‘‘watch list’’. Face recognition does not require active participa-
tion of the subjects and it can be performed at a distance [5].
Additionally, face recognition is possible in cases where the only
ll rights reserved.
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information available from a person is a picture. Another advantage
of face recognition is that everybody can be enrolled in contrast to
fingerprint identification in which a segment of the population
does not have a fingerprint compatible with biometric identifica-
tion [6]. Face recognition is also being developed for selective
marketing applications as well as human machine interfaces [7].

Face recognition is a topic of active research and several
methods have been proposed to perform this task. Many methods
have focused on face and eye localization which are crucial steps
previous to face recognition [8–11]. An important number of
papers have focused directly on face recognition with the assump-
tion that the face has already been localized [12,13]. We will focus
our literature review on the latter methods that have yielded the
highest face recognition performance. Eigenfaces [14], based on
principal component analysis (PCA), is a method that reduces face
image dimensionality by a linear projection that maximizes the
dispersion among the projected samples. Fisherfaces [15], based on
linear discriminant analysis (LDA), is similar to eigenfaces but uses
a linear projection to maximize distance among different classes
and minimize distance within each class. Other methods for face
recognition are based on the discrete cosine transform (DCT)
[16,17] and the Walsh–Hadamard transform (WHT) [18]. The first
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method compares DCT-based feature vectors from the input and
gallery images and the second one is a low complexity algorithm
that compares WHT-based feature vectors using mean square error
(MSE). Locally linear discriminant embedding (LLDE) [19] improves
the locally linear embedding (LLE) method by adding invariance to
scale and translation using a class translation vector. The purpose of
LLE [20,21] is to map a high dimensional vector into a low
dimensional one. Another face recognition method is spectral
feature analysis (SFA) [22] which preserves the data’s nonlinear
manifold structure. SFA is a special case of weighted kernel
principal component analysis (KPCA) [23]. Dynamic Training
Multistage Clustering (DTMC) [24] is a face recognition method
that uses a discriminant analysis to project the face classes and does
clustering to divide the projected data. To create the most useful
clusters, an entropy-based measure is used. In [25] a Hausdorff
distance-based measure is used to represent the gray values of
pixels in face images as vectors. It was found that the transforma-
tion of the image is less sensitive to illumination variations and also
maintains the appearance of the original gray image.

Recently, local matching methods and face representations have
become popular in face recognition research. The local binary
pattern (LBP) method was proposed in [26], in which the face image
is divided into square windows where a binary code is generated
whenever a pixel exceeds the value of the average within the
window. The distance measure with best results was w2, with 97%
success rate in Fb FERET set [27]. Gabor wavelets [28–31] have been
used to extract local features achieving outstanding results in face
recognition. In [32,33] a Sparse representation method is used for
face recognition. This method is robust to occlusions, noise,
illumination changes and varying pose. Another important aspect
of this method is that no information is lost as in methods based on
feature extraction.

One of the first methods based on Gabor wavelets for face
recognition was the Elastic Bunch Graph Matching (EBGM) method
[34]. The EBGM method uses a set of Gabor jets associated to nodes
that extract a local feature from the face. EBGM reaches 95%
accuracy on the FERET Fb set [27]. Gabor Fisher Classifier (GFC) [35]
is a face recognition method that uses the enhanced Fisher linear
discriminant model (EFM) [36] on a vector obtained from Gabor
representations of images. Local Gabor binary pattern (LGBP)
operator is a combination between Gabor wavelets and the LBP
operator. Local Gabor binary pattern histogram sequence (LGBPHS)
[37] uses the LGBP operator. LGBP maps are obtained for 40 Gabor
filters (five scales and eight orientations) on the face image
by dividing the image in non-overlapping rectangular windows.
A sequence of histograms is computed in each rectangular window
and this sequence is compared to the one in the gallery
using histogram intersection and weighted histogram intersection
[37]. The best results are 98% and 97% for Fb and Fc sets of
FERET [37].

A method based on the histogram of Gabor phase patterns
(HGPP) [38] uses the phase from the Gabor filter feature to compute
the global Gabor phase patterns (GGPP) and local Gabor phase
patterns (LGPP) with global and local information about the pixel
and vicinity. Similarly to LGBPHS, the image is divided into non-
overlapping rectangles and the features are compared using the
method of histogram intersection and weighted histogram inter-
section trained with Fisher separation criterion. The results
obtained were 97.5%, 99.5%, 79.5% and 77.8% in Fb, Fc, Dup1 and
Dup2 sets of the FERET database [38]. Gabor filters are also
employed in a method called local Gabor textons (LGT) [39] where
the image is divided into regions generating a cluster for each
region based on the Gabor features forming a vocabulary of textons.
The vocabulary histogram is compared to those of the gallery using
w2 with the Fisher criterion weights. The best result of LGT is 97% for
the Fb set of FERET database [39].
The face recognition method called learned local Gabor pattern
(LLGP) [40] has a learning stage where each training image is
filtered by C Gabor filters at different scales and orientations. With
the C Gabor features a clustering is performed to generate C
codebooks. In the recognition stage the LLGP codebooks are applied
to the C Gabor features obtaining C LLGP maps. These maps are
divided into non-overlapping regions obtaining a histogram for
each region generating a sequence of histograms. This sequence is
compared to the histogram intersection and the final classification
is performed using the nearest neighbor method. The LLGP method
reached 99% in Fa, 99% in Fb, 80% in Dup1 and 78% in Dup2 of the
FERET database [40].

The Local Gabor Binary Pattern Whitening PCA (LGBPWP) [41]
method is based on LGBPHS and doing the Whitening Process with
PCA. This is an improvement over PCA because component
discrimination is not lost at high frequencies. Furthermore, this
method selects features based on the variance and obtains some of
the best published results on the FERET face database in the subsets
Dup1, 83.8% and in Dup2, 81.8%, respectively.

An interesting algorithm using 3D and 2D models with Gabor
features was proposed in [42]. The enrollment is performed with a
3D model, and then the recognition is done with 2D feature
extraction, in which Gabor Filters are used with 3 scales and 8
orientations.

The best results for face recognition published to date in the
literature with the FERET face database use the local matching
Gabor method (LMG) [43]. The recognition rates were 99.5%, 99.5%,
85.0% and 79.5% for the subsets Fb, Fc, Dup1 and Dup2, respectively.
With this method, a total of 4172 Gabor jets are employed to extract
features at five different spatial resolutions (l). A Borda count
method is used to compare the inner product among the Gabor jets
[43,44] between the input face image and the Gabor jets from faces
in the gallery.

In [45], Gabor feature selection is performed with different
methods including genetic algorithms (GA) [46,47]. Using this GA
method, the 15 most relevant coordinates for Gabor features are
selected and the fitness function is the recognition performance.

In a recently published review of Gabor wavelet methods
for face recognition [48], research based on Gabor Wavelets is
presented, compared and ranked. The method with highest overall
performance is LMG [43].

In this paper, we propose several improvements to the LMG
method [43] based on Gabor jets selection and Borda count
enhancement. The LMG Borda count method was previously
compared to another method that combines characteristics using
vector/histogram concatenation on the face recognition problem
[43]. The best results were obtained with Borda count tested on the
FERET database [27]. Additionally, in the Borda count method, each
Gabor jet is considered as a feature vector that is compared to the
corresponding Gabor jet from the gallery using the cosine distance
as a similitude measurement. As in the case of Adaboost [49,50],
each Gabor jet constitutes a weak classifier and a large quantity of
them are combined in the Borda count method to become a strong
classifier [44,43]. We also consider a modification in the Borda
count computation by using weights in the input scores.

We propose modifications in the Borda count classifier [43],
Gabor jets selection using entropy and GAs, and weighted combi-
nation of jets into the Borda count. Besides improving face
recognition results, Gabor jet selection allows faster processing
for real-time face recognition. We also propose improvements in
the Borda count through a weighted Borda count and a threshold
for voting to increase the face recognition rate. Combinations of
Gabor jet selection and Borda count improvements are also studied.
The proposed new method achieves significantly better results
than those published in the literature to date. Our results are
compared to those of nine recently published papers.
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2. Methodology

2.1. Local matching Gabor for face recognition

Face recognition based on local matching Gabor consists of
three main modules [43]: image normalization, feature extraction
through Gabor jets computation and classification using Borda
count matching, as shown in Fig. 1. The first module performs face
normalization through image rotation, displacement, and resizing
to locate the eyes at a fixed position. The normalized image has the
eyes fixed at positions (67, 125) and (135, 125) within a 203�251
pixels image [43]. The second module performs the Gabor jet
computation to extract features from the face using the eyes as
reference points. Gabor jets are computed on selected points
using five grids placed over the face as shown in Fig. 2(a)–(e).
The five grids indicate the positions where features are extracted by
the Gabor jets at five different spatial resolutions. In correspon-
dence to the grid size, the Gabor wavelet has five spatial scales
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At each point on the grid, the Gabor wavelet has eight different

orientations 0rmr7 in (1). Fig. 2(a)–(e) shows with a + sign the
position where the Gabor jets are computed and also shows a white
square depicting the Gabor jet size for each of the 5 spatial
Input
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Normalization Feature
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Gabor Jets
Database

Gabor Jets
Image

Alignment

Fig. 1. Local matching Gabor consists of three main modules: image normalization, feat

matching.

Fig. 2. . A face from the FERET database with the five grids for spatial scales (a) n¼0, (b) n
where the Gabor wavelet is computed. The white squares represent the size of the Gabor

and (e) 101�101.
frequencies. One jet is a set of Gabor features, for the eight
orientations, extracted at one point on the grid. Therefore, a jet
can be represented by a vector of length 8 for the coordinate (n, x, y).
The method assumes that a gallery is available with the faces of the
persons to be identified. For each face in the gallery, the Gabor jets
are computed off-line and stored in a database for later online
recognition. The third module, the Borda count matching, performs
a comparison between the set of Gabor jets computed on the input
face image and each set of Gabor jets stored in the gallery. This
comparison is performed using an inner product between each
Gabor jet, which is a vector of length eight at each point of the five
grids. The result of the inner product between Gabor jets of the
input face image and the Gabor jets of the gallery is a matrix of
N�M dimensions, where N is the number of face images in the
gallery and M is the number of jets. The final classification is
performed using the Borda count method [44] which selects
according to a vote among all jets, the identified face from the
gallery. In the Borda count method, all jets are sorted based on inner
product results with the gallery elements. The top ranked jet gets
the score N�1 and the last jet gets score 0. Fig. 3(a) illustrates the
Borda count process for a matrix S with dimensions N�M, where Sij

is the score of the jth Gabor jet comparison with the ith image of the
gallery. Each column C of matrix S is sorted out thus obtaining the
matrix with sorted columns O with dimension N�M as shown in
Fig. 3(b). Each component Oij in one column of O is the score from
N�1 to 0. Finally the complete score for the ith gallery element is
the sum of all rows in the ith column of O, and the final score
Pi ¼SM

j ¼ 1Oij, as shown in Fig. 3(c).
Table 1 shows an example of the Borda count computation score

for the case of 6 jets and a gallery with 4 images. The gallery image i3
obtains the highest score for most of the jets and the highest final
score. Face identification is performed choosing the rank-1 image
score, i.e., the largest score value is selected as the recognized face,
in the P vector.
Output
Recognition

Classification

Comparison
Inner product Borda Count

ure extraction through Gabor jets computation and classification using Borda count

¼1, (c) n¼2, (d) n¼3 and (e) n¼4. The sign + represent the spatial point on the grid

jets for each spatial scale in pixels of (a) 25�25, (b) 37�37, (c) 51�51, (d) 71�71
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gallery. (b) Matrix with sorted columns O with dimension N�M with values N�1 to 0 in each column. (c) Borda count score for the ith gallery element as the sum of all column

in the ith rows of O.

Table 1
Borda count computation example for a case of a gallery with 4 face images and 6

Gabor jets.

Matrix S Matrix O Matrix P

c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6

i1 0.7 0.2 0.6 0.4 0.2 0.7 1 1 2 2 1 2 9

i2 0.8 0.0 0.1 0.2 0.7 0.1 2 0 0 0 2 0 4

i3 0.9 0.6 0.9 0.5 0.8 0.6 3 2 3 3 3 1 15

i4 0.3 0.9 0.2 0.3 0.1 0.8 0 3 1 1 0 3 8
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2.2. Databases

2.2.1. The FERET database

The FERET database is the most widely used benchmark for face
recognition algorithms [43]. In order to compare our results to
other methods, we followed the FERET face recognition protocol
that is described in detail in [27]. In the following, we briefly
describe the FERET database and the FERET tests. The FERET
database has a large number of images with different gesticula-
tions, illumination and a significant amount of time between
pictures taken. The FERET database is organized in 5 sets of images:
the gallery is Fa, and the test sets are Fb, Fc, Dup1 and Dup2. In the
Fa set there are 1196 face images of different people. In the Fb set
there are 1195 images of people with different gesticulations. Fc
has 194 images with different illumination. In Dup1 there are 722
images of pictures taken between 0 and 34 months of difference
with those taken for Fa. The Dup2 set has 234 images taken at least
18 months after the Fa set. Fa set contains one image per person and
is the Gallery set, while Fb, Fc, Dup1 and Dup2 are called test sets.
2.2.2. The AR database

The AR database [51] contains frontal faces from 60 females and
76 males. Pictures were taken in two different sessions, with 13
pictures per person per session. Six of the thirteen images contain
illumination changes or gesticulation and one image is neutral. In
three images the person is wearing sunglasses and in another three
images, the person is wearing a scarf.
2.2.3. The Extended Yale B database

The Extended Yale B face database [52,53] contains images from
37 different subjects with varying illumination. Each subject has 65
images illuminated from different angles.
2.2.4. The ORL database

We used the ORL (Olivetti Research Laboratory) faces database
[54] for verification. This database contains 400 images of 40
individuals (10 images per individual) with different expressions,
limited side movement and limited tilt. The images were captured
at different times and with different lighting conditions. The
images were manually cropped and rescaled to a resolution of
92�112, 8-bit gray levels.

2.3. Local Gabor enhancements

In the original paper on LMG [43] it was suggested that further
improvements could be obtained by jet selection. In fact, it was
shown in [43] that a random selection of nearly 50% of the Gabor
jets yielded similar results to using all of them. In this paper, we
propose two alternative ways of selecting Gabor jets using GAs and
entropy information [55]. We also propose enhancements in the
Borda count method by weighting the contribution of each voter by
the score of the Borda count and by using thresholds to eliminate
noisy jet voters. A combination of jet selection and enhanced Borda
count is also proposed.

To train, test and compare different methods we use a database for
frontal faces with illumination changes, gesticulations and different
time difference between the pictures taken for the gallery and the test
set. Two sets were used from FERET database: the FERET training set
which we call Train1 used in [43,56] that it is a standard partition of
FERET with 724 training images. From the total 3880 images in FERET
database, we selected 556 images that do not belong to the subsets Fa,
Fb, Fc, Dup1 and Dup2 and call it Train2.

2.3.1. Genetic selection of jets (GSJ)

We propose to select jets using a GA where each individual in
the population corresponds to a set of selected jets that are coded
onto a string with binary elements or chromosome. The jet
selection is performed according to the values of the binary
elements on the chromosome: if the bit is 1, the jet is selected;
if the bit is 0, the jet is not selected. Since in [43] the total number of
possible jets applied in the five grids is 4172, the chromosome has a
length of 4172 bits. A multi-objective GA was used to maximize the
face recognition rate and minimize the number of jets. The GA uses
a two-point crossover with a rate of 0.8, uniform mutation with
0.05 probability and 100 individuals per population. An example of
jet selection resulting from using GSJ is shown in Fig. 4. Two
training sets were used for the GA, Fa–Train1 and Fa–Train2.



Table 2
Example with the BIP score computations for the same case presented for the original Borda count of Table 1.

Matrix S Matrix O Matrix SijOij Matrix P

c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6

i1 0.7 0.2 0.6 0.4 0.2 0.7 1 1 2 2 1 2 0.7 0.2 1.2 0.8 0.2 1.4 4.5

i2 0.8 0.0 0.1 0.2 0.7 0.1 2 0 0 0 2 0 1.6 0 0 0 1.4 0 3

i3 0.9 0.6 0.9 0.5 0.8 0.6 3 2 3 3 3 1 2.7 1.2 2.7 1.5 2.4 0.6 11.1

i4 0.3 0.9 0.2 0.3 0.1 0.8 0 3 1 1 0 3 0 2.7 0.2 0.3 0 2.4 5.6

Fig. 4. (a) Entropy histogram for all jets and all of the five wavelengths. (b) Equalized entropy for all jets and all of the five wavelengths.
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2.3.2. Entropy based jet selection (EJS)

Entropy [55] is proposed as a tool to select jets that provide
maximum information about the face. The goal is to find those jets
with the highest entropy because they provide information about
what differs from one face to another. Conversely, those jets with
low entropy among different face images do not provide informa-
tion to differentiate faces, and they therefore act as noisy inputs to
the classification module. Before the entropy computation, the
scores for each jet comparison are normalized to keep the sum of
scores Pijk equal to 1, using (2) and (3)

Pijk ¼
SijkPN

i0 ¼ 1 Si0jk

, ð2Þ

Ejk ¼�
XN

i ¼ 1

Pijk logPijk, ð3Þ

Ej ¼
1

L

XL

k ¼ 1

Ejk: ð4Þ

Indexes i, j and k represent the jth Gabor jet comparison, from
the ith gallery image and the kth input image from the test set. Sijk is
the score of the jth Gabor jet comparison with the ith image of the
gallery and Ejk is the entropy of the jth jet of a given kth input image
from the test set. The total entropy Ej is the average of the entropies
of all images computed on the test set (4), where the number of
images in the test set is L. Ej is a real number and therefore to select
those jets with the highest entropy, a threshold Thn is used; then, if
Ej4Thn, the jet is selected. The optimum threshold Thn was chosen
for each of the five spatial frequencies using a GA with the same
training sets as those in the previous case.

Because the entropy score is not uniformly distributed, the
histogram was equalized. For calculation of entropy Train1 was
divided in two subsets, the first one with 364 images used as a
gallery which we named Train1g and 360 images for test called
Train1t. Another entropy score was computed with the gallery Fa
and the test Train2.
We constructed histograms to show the jets entropy distribu-
tion. Fig. 4(a) shows the jets entropy and Fig. 4(b) shows the
equalized jets entropy for all of the five wavelengths together.

The GA used in EJS is similar to the one used in GSJ, with the
same training sets (Fa–Train1 and Fa–Train2). A multi-objective GA
was used with the same objectives and fitness function, two-point
crossover with probability 0.8, uniform mutation of rate of 0.05,
and 60 individuals per population. The difference is the length of
the chromosome, where each individual has 30 bits (6 bits for each
spatial frequency), with thresholds between 0.1 and 0.73.
2.3.3. Borda count enhancement by inclusion of jets inner product

value (BIP)

In the standard Borda count method, only jet order determines
the final score. In the present paper we propose incorporating the
value of the jet inner product (matrix S) in the computation of the
final score (matrix P). The final score P for the ith gallery element is
Pi ¼SM

j ¼ 1SijOij. Table 2 shows an example of BIP computation that
can be compared to the standard Borda count shown in Table 1.
2.3.4. Borda count enhancement by threshold (BTH)

In the standard Borda count, all jets contribute to the final score
even if the inner product value is very small. By using a threshold,
Th, over the scalar product, it is possible to eliminate very small
value scores, which act as noise, for the Borda count computation.
The jet scores under the threshold are set to zero. If SijoTh, then
Qij¼0, otherwise Qij¼Oij, and Pi ¼SM

j ¼ 1Qij. Table 3 shows an
example of the Borda count computation with Th¼0.55 that can
be compared to the standard Borda count shown in Table 1. The
FERET training database was used to obtain the optimum Th. Using
the FERET training set, the rank-1 identification rate was computed
varying the Th threshold between 0.6 and 0.95 as shown in Fig. 8.
The area for Th between 0.80 and 0.89 has significantly better scores
than the rest; therefore, the Th selected from this region was 0.81
which was the maximum for the training database.



Table 3
Example of the BTH score computation for the original Borda count of Table 1.

Matrix S Matrix O Matrix Q Matrix P

c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6

i1 0.7 0.2 0.6 0.4 0.2 0.7 1 1 2 2 1 2 1 0 2 0 0 2 5

i2 0.8 0.0 0.1 0.2 0.7 0.1 2 0 0 0 2 0 2 0 0 0 2 0 4

i3 0.9 0.6 0.9 0.5 0.8 0.6 3 2 3 3 3 1 3 2 3 0 3 1 12

i4 0.3 0.9 0.2 0.3 0.1 0.8 0 3 1 1 0 3 0 3 0 0 0 3 6
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2.4. Combination of Gabor jets selection and enhanced Borda count

The proposed individual enhancements, EJS, GJS, BIP and BTH,
were combined and optimized in cascade using a GA to improve
face recognition results. We tested several combinations of indi-
vidual enhancements as follows: EJS–BTH, EJS–BIP and EJS–BTH–
BIP.

2.5. Face recognition under illumination changes, occlusion and pose

variation

We tested the LMG method under illumination changes, occlu-
sion and pose variation using available face databases and compare
the results with those published in international studies [38,32].
For this purpose we used the Extended Yale B and AR databases for
illumination changes, the AR database for occlusion and the FERET
database (subsets: bd, be, bf and bg) for pose variation.

2.5.1. Face recognition with illumination changes

We tested the LMG method under significant illumination
changes using face database AR and Extended Yale B. In order to
compare our results to those previously published, we followed the
methods according to [32].

For the Extended Yale B database, we employed a gallery of 32
images per person and a testing set of 33 images per person for a
total of 37 people. A second partition was performed on Extended
Yale B with only 2 images per person in the gallery. The test set was
composed of 63 images per subject. For the AR face database, 50
men and 50 women from the database were selected and the
gallery contained 7 images per person. The test set contained a
different set of 7 images per person.

2.5.2. Face recognition with occlusions

As in [32] we tested the LMG method with faces occluded by
sunglasses and scarves on the AR face database. As in Section 2.5.1,
we used images from 50 men and 50 women from the AR database.
(i)
 Scarf occlusion: The testing set contains 6 images per person,
i.e., a total of 600 images, with faces occluded by scarves. The
gallery is the same as in Section 2.5.1, and the GA training is
performed with images from session 1.
(ii)
 Sunglasses occlusion: Testing was performed using 3 images
with sunglasses per person from session 2, i.e., a total of 300
images. The gallery is the same as in Section 2.5.1.
2.5.3. Face recognition with pose variation

We tested the LMG method on face recognition with pose
variation as in [33,57,58]. We used the subsets bd, be, bf and bg of
the FERET database [27] and use the frontal image from Fa in the
gallery. Therefore, images with frontal faces in the gallery are
compared to pose variations in bd, be, bf and bg. The subsets bd, be,
bf and bg include pose variations for angles 251, 151, �151 and
�251, respectively. Although these are small pose variations cover
several possible applications for face recognition in access control
and watch list.
2.6. Face verification

Face verification is a very important tool for person authentica-
tion and it is of significant value in security. Following the same
method as in [18] and using the ORL (Olivetti Research Laboratory)
face database [54], face verification was performed with our LMG
method and compared to results published with other methods.
The ORL database contains 400 images of 40 individuals (10 images
per individual). As in [18], we used 5 images per individual for
gallery (faces 1–5) and 5 faces for testing (faces 6–10), with a total
of 200 images for gallery and 200 for testing. We also used the
Detection Cost Function (DCF) [59] to compare with other methods

DCF ¼ Cmiss � Pmiss � PtrueþCfa � Pfa � Pfalse ð5Þ

where Cmiss is the cost of a wrong rejection, Cfa is the cost of a wrong
acceptance, Ptrue is the a priori probability of each individual (1/40
in the ORL case) and Pfalse¼1–Ptrue. We use Cmiss¼Cfa¼1. For
verification with the LMG, it is necessary to compare the inner
product result between one individual of the testing set and only
one individual of the gallery. To determine whether an individual of
the testing set matches the selected one in the gallery, we compute

Vi ¼
1

M

XM
j ¼ 1

Sij: ð6Þ

If an image i exists such as Vi4T, where T is a threshold between
0 and 1, then the individual of the testing set is verified as the one
selected.
3. Results

With the objective of comparing our results to previous work,
we summarized the results of our literature review on local
matching Gabor methods in the following section. One of the
papers in print [48] provides an up to date summary highlighting
the best results reached in face recognition with local Gabor
methodology.
3.1. Previously published results on local Gabor

Our literature review on face recognition is summarized in
Table 4. This table shows the best results on face recognition
published in nine recent papers. The first four columns of the table
show the face recognition rate for different subsets of the FERET
database. The next four columns show the approximate number of
errors on the same subsets of the FERET database. The last column
shows the total number of errors on all subsets of the FERET
database. It can be observed that the best result with the smallest
number of total errors in all subsets is the LMG method [43].



Table 5
Face recognition rate on different subsets of the FERET database for our proposed

methods and compared to the best results published up to date in the literature LMG

[43]. Subindex 1 indicates FERET training set Train1, subindex 2 indicates FERET

training set Train2.

Methods Accuracy (%) Number of errors

Fb Fc Dup1 Dup2 Fb Fc Dup1 Dup2 Total

LMG [43] 99.5 99.5 85.0 79.5 6 1 108 48 163

LMG–GSJ1 99.7 99.5 86.3 81.2 4 1 99 44 148

LMG–GSJ2 99.7 99.5 86.3 82.1 3 1 99 42 145

LMG–EJS1a 99.8 100 88.0 84.2 2 0 87 37 126

LMG–EJS1b 99.4 99.5 88.0 87.2 7 1 87 30 125
LMG–EJS2 99.5 99.5 87.0 85.9 6 1 94 33 134

LMG–BIP1 99.6 99.5 86.0 82.9 5 1 101 40 147

LMG–BTH1 99.7 99.5 86.8 82.1 4 1 95 42 142

Table 4
Rank-1 face recognition rate on different subsets of FERET database for different face recognition algorithms published in the literature.

Methods Accuracy (%) Number of errors

Fb Fc Dup1 Dup2 Fb Fc Dup1 Dup2 Total

LMG [43]a 99.5 99.5 85.0 79.5 6 1 108 48 163
LGBPWP [41]a 98.1 98.9 83.8 81.6 23 2 117 43 185

Weighted LLGP_FR [40]a 99.0 99.0 80.0 78.0 12 2 144 51 209

Weighted HGPP [38]a 97.5 99.5 79.5 77.8 30 1 148 52 231

Weighted LGBPHS [37]a 98.0 97.0 74.0 71.0 24 6 188 68 286

LGT [39]a 97.0 90.0 71.0 67.0 36 19 209 77 341

Weighted LBP [37,26]a 97.0 79.0 66.0 64.0 36 41 245 84 406

GFC [37,35]b 97.2 79.9 68.3 46.6 33 39 229 125 426

EBGM [37,34]b 95.0 82.0 59.1 52.1 60 35 295 112 502

a Results extracted from original source
b Results extracted from the first referenced paper, and the original method is the second referenced paper.
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3.2. Results of proposed enhancements

Table 5 summarizes the most important results obtained with
the different methodological enhancements proposed in this paper.
The best result published in the literature [43] is shown on the first
line. The first four columns of Table 5 show the results in % and the
next four columns show the number of errors for each subset of the
FERET database. The last column shows the total number of errors
in all subsets of the FERET database. In the case of LMG [43], the
total number of errors in all subsets is 163.

3.2.1. Results for GSJ

Table 5 shows the best result published for LMG [43] on the first
row. Table 5 also shows the best results obtained for the jet
selection using GSJ, LMG–GSJ1 was trained with Train1 and GSJ2

with Train2. Results show a small improvement in Fb subset
(recognized 2 additional faces). Results were the same for the Fc
subset compared to the original results in LMG [43]. Nevertheless,
on subsets Dup1 and Dup2, results improved 1.3% (9 fewer errors)
and 2.1% (6 fewer errors, for LMG–GSJ2). In summary, for GSJ it is
possible to recognize 18 additional faces compared to LMG [43]
using half the number of jets. The reduction in the number of jets
is significant because it allows faster processing for real-time
computation. Fig. 5 shows a selection of jets resulting from the GA.

3.2.2. Results for EJS

Table 5 shows on lines LMG–EJS1a, LMG–EJS1b trained with
Train1 and LMG–EJS2 trained with Train2, the best results obtained
for the jet selection using entropy information. The best result for
LMG–EJS1b shows an improvement of 0.1% (1 case) for Fb subset, no
improvement for Fc subset, 3% (21 fewer errors) for Dup1 and 7.7%
(18 fewer errors) for Dup2, compared with LMG [43]. EJS2 was
trained with Train2 and showed significant improvements in
recognition rate in the subsets Dup1 and Dup2, reaching an
increment between 2% and 6.4%. The total number of errors was
reduced from 163 to 125 using EJS. This represents a total
improvement of 38 faces compared to LMG. Fig. 6 shows the
equalized entropy for each spatial frequency. Fig. 7 shows an
example of the jets selected by entropy with solution LMG–EJS2.

The total number of jets in the LMG method is 4172, but there is
a different number of jets due to the filter size at each spatial
frequency, i.e., 2420 jets for n¼0, 1015 jets for n¼1, 500 jets for
n¼2, 165 jets for n¼3 and 72 jets for n¼4. The percentage of
selected jets using EJS1a was 86% for n¼0, 33% for n¼1, 32% for n¼2,
96% for n¼3 and 81% for n¼4. In the case of EJS2 the percentage of
selected jets for each spatial frequency was 24% for n¼0, 76% for
n¼1, 32% for n¼2, 56% for n¼3 and 82% for n¼4. Also, it can be
observed that LMG–EJS2 improved more in subsets Dup1 and
Dup2 rather than in subsets Fb and Fc. On the contrary, the other
solution, LMG–EJS1, improved more in the Fb and Fc subsets than in
Dup1 and Dup2, although the total improvement was less than
LMG–EJS2.

3.2.3. Results for BIP

Table 5, line LMG–BIP1 shows the results obtained by including
the inner product score value into the Borda count computation.
The recognition rate improvement compared with the original LMG
method, was 0.1% for Fb (1 less error), same result for Fc, 1% (7 fewer
errors) for Dup1 and 3.4% (8 fewer errors) in Dup2. The total
number of errors was reduced from 163 to 147 using BIP. The total
improvement was of 16 faces compared to LMG.

3.2.4. Results for Borda count enhancement by threshold (BTH)

The rank-1 face recognition rate is shown in Table 5 as
LMG–BTH1. The average result obtained for Th in the interval
0.80–0.89 was Fb 99.7, Fc 99.5, Dup1 86.8 and Dup2 82.1%, with
only 142 errors in total versus 163 cases in the original LMG
method. Fig. 9 shows the face recognition accuracy for FERET
database using different thresholds in the interval 0.80–0.89. Using
BTH, the total number of errors was reduced from 163 to 142.

3.3. Combined methods

A selection of the best results obtained for combined enhance-
ments is presented in Table 6. The results of the best paper
published in the literature for the LMG method are on the first
line of Table 6. It can be observed that there are several combina-
tions of the proposed methods that yield better results than those



Fig. 5. Selection of jets for each spatial frequency, (a) n¼0, (b) n¼1, (c) n¼2, (d) n¼3 and (e) n¼4, using GA. The total of jets selected is 2094, 50.19% of them, which means a

55% of computation time.

Fig. 6. Computed equalized entropy for jets at five spatial frequencies (a) n¼0, (b) n¼1, (c) n¼2, (d) n¼3 and (e) n¼4. The color represents different spatial frequencies, and the

increased brightness represents higher entropy. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Selection of jets for the five spatial frequencies, (a)–(f) n¼0, (b)–(g) n¼1, (c)–(h) n¼2, (d)–(i) n¼3 and (e)–(j) n¼4, using entropy (EJS). (a)–(e) are selection EJS1 and

(f)–(j) EJS2.
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obtained for each improvement alone. For example the best case
trained with Train1 consists of LMG–EJS–BTH–BIP1b with a total
number of 112 errors compared to 163 using LMG, while the best
case with Train2 LMG–EJS–BTH–BIP2 had 122 errors. This repre-
sents a 31% and a 25% improvement relative to the LMG method.
Other combinations such as LMG–GSJ–BTH–BIP1, LMG–EJS–BTH1
and LMG–EJS–BIP1 yield a total number of errors of 140, 116
and 126, respectively, which represent a 14%, 29% and 23%
improvement relative to the LMG method. This proves that there
are several alternatives with fewer numbers of jets that achieve
significant improvements in classification rate with a decrease in
computational time.
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3.4. Results in face recognition under illumination changes, occlusion

and pose variation

3.4.1. Face recognition with illumination changes results

We use Extended Yale B to test the LMG method with images
under significant illumination changes. Four different random
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Table 6
Face recognition rate on different subsets of the FERET database for our proposed metho

LMG [43]. Subindex 1 indicates FERET training set Train1, subindex 2 indicates FERET t

Methods Accuracy (%)

Fb Fc Dup1 Du

LMG [43]a 99.5 99.5 85.0 79.

LMG–GSJ–BTH–BIP1 99.7 99.5 86.6 83.

LMG–GSJ–BTH–BIP2 99.6 99.5 86.8 83.

LMG–EJS–BTH1 99.8 99.5 88.9 85.

LMG–EJS–BTH2 99.5 100 88.1 86.

LMG–EJS–BIP1 99.5 100 87.8 86.

LMG–EJS–BIP2 99.2 99.5 87.4 86.

LMG–EJS–BTH–BIP1a 99.5 100 88.8 87.
LMG–EJS–BTH–BIP1b 99.8 99.5 89.2 86.

LMG–EJS–BTH–BIP2 99.6 100 88.2 86.

a Results extracted from original source.
partitions of the gallery and test were performed (p1, p2, p3 and
p4), as shown in Table 7. Results are in the range between 99.1% and
99.8%. In Table 7 p0 corresponds to the partition used in [32]. As
shown in Table 7, similar results were obtained with LMG–EJS–
BIP–BTH. With the partition formed by 2 images in the gallery and
63 images per subject in the test, results were 99.9% for LMG and
99.8% for LMG–EJS–BIP–BTH.

Table 8 shows the test results over the AR database for the LMG
method and methods in [32]. It can be observed that highest scores
are reached by the LMG–EJS–BIP–BTH method.

In the original LMG paper [43], the authors explain that Gabor
filters are robust to illumination changes because the filters can
detect spatial frequencies independently from amplitude, i.e.,
Gabor filters tend to extract higher frequency components. This
argument is strengthened by the finding that most illumination
changes in images are contained in the low spatial frequency
domain [60]. In the case of the discrete cosine transform (DCT)
method for illumination compensation, low frequencies are filtered
out to improve face recognition under illumination changes
[60,61]. Furthermore, each Gabor feature in the test image is
compared locally with the corresponding Gabor feature in the
gallery which provides additional robustness to illumination
changes, gesticulations and partial occlusions [40]. The high
accuracy obtained in face recognition results with our proposed
method is not an isolated finding. Several previous publications
have reached good results employing Gabor filters with illumina-
tion changes and gesticulations [38–41,62], and therefore our
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ds combined and compared to the best results published up to date in the literature

raining set Train2.

Number of errors

p2 Fb Fc Dup1 Dup2 Total

5 6 1 108 48 163

8 4 1 97 38 140

8 5 1 95 38 139

9 2 1 80 33 116

3 6 0 86 32 124

3 6 0 88 32 126

3 10 1 91 32 134

6 6 0 81 29 116

8 2 1 78 31 112

3 5 0 85 32 122



Table 7
Results of face recognition with illumination changes on the Extended Yale B

database.

Accuracy (%)

p0 p1 p2 p3 p4

SRC [32] 98.1 – – – –

LMG – 99.3 99.8 99.6 99.1

LMG–EJS–BIP–BTH – 99.4 99.4 99.5 99.5

Table 8
Results of face recognition with illumination changes and occlusion with sunglasses

and scarves on the AR database.

Accuracy (%)

Normal Sunglasses Scarves

LGBPHS [37] – 80 98

SRC [32] 95.7 97.5 93.5

LMG 98.6 97.7 97.2

LMG–EJS–BIP–BTH 99.1 98.0 99.0

Table 9
Results of face recognition on the subsets with pose variation bd, be, bf and bg of the

FERET database.

Accuracy (%)

bd be bf bg

LMG 81.0 97.0 98.0 79.5
LMG–EJS–BIP–BTH 93.5 98.5 98.0 91.5
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results are an improvement in accordance with those previously
reported results.

3.4.2. Face recognition with occlusions results

Table 8 shows the test results on the AR face database for
occlusions with sunglasses and scarves. In both types of occlusions,
the LMG–EJS–BIP–BTH method reached slightly higher results than
other previously published for the AR database.

3.4.3. Recognition with pose variation results

We tested the LMG and LMG–EJS–BIP–BTH methods with the
subsets bd, be, bf and bg of the FERET database. Table 9 shows the
results of face recognition for small pose variations. Results range
from 91.5% to 98.5% for the different FERET subsets.

In the Methods Section 2.1, we explained that in the LMG
method [43], the first step toward face recognition is face localiza-
tion, normalization and alignment. As in [43], we use the eyes for
face alignment both in the gallery and in the test set. The normal-
ized image has the eyes fixed at positions (67, 125) and (135, 125)
within a 203�251 pixels image [43]. We use the ground truth
marks in the eyes for alignment. In the past few years, several
methods for accurate eye localization have been developed with
accuracy over 99% for faces with small pose variations [8,11].
Therefore, face alignment is not a major issue for small pose
variations. In cases of larger pose variation, other fiducial points,
e.g., nose, mouth corners, eye corners, etc., may be used for
alignment.

Our results have been compared with other six papers based on
Gabor features that reach results over 95% on Fb and over 90% on Fc
of the FERET database [37–41,43], which shows that our results
correspond to an improvement respect to previous publications. As
LMG [43], most face recognition methods show good performance
to small pose variations (�151) [5,63]. Recognition rate falls to 80%
for the LMG method applied to faces with poses around 251.
Nevertheless, by incorporating our paper proposed EJS jet selection,
recognition rate are around 91–93%. The EJS selection is shown in
Fig. 7 and by comparison to the original LMG jet location shown in
Fig. 2, it can be observed that the EJS selection is confined to the
central part of the face where matching among jets is better for
slight pose rotations. As explained in Section 2, face images are
aligned with the eye position and normalized in size. Therefore, jets
from similar regions are compared for the test and gallery images.
Fig. 10(a) shows on the first column, the frontal gallery image and
from the second up to the fifth column, face poses for �251, �151,
151 and 251, for the same subject. Fig. 10(a) shows for the frontal
gallery image two rows with test images for spatial frequencies l2

and l4 (2 of the 5ls). Over the test images the EJS jet positions are
shown as a bright dot. Fig. 10(a) also shows the jets scores above a
threshold of 0.85 as a bright square over each jet position for the
test images and the gallery image. In case that most jets yield high
scores, the face will be covered with bright squares. It can be
observed that most jet scores are very high for face poses at �151
and 151 and that high scores decrease slightly for face poses at
�251 and 251. Fig. 10(a) may help to explain our results of 98%
matching for poses between �151 and 151, and the fall to 91% for
poses at �251 and 251. Fig. 10(b) shows the results of comparing
the test images to a different subject in the gallery. It can be
observed that a significant number of jet scores are below the
threshold 0.85 and therefore, the voting process will yield the
correct face recognition for this subject. It has to be emphasized
that we use this arbitrary score of 0.85 only to illustrate the jets
matching process.
3.5. Face verification results

Table 10 shows the DCF value for different face recognition
methods: Eigenfaces [14], KLT [64], DCT [16] and WHT [18],
including the result for our method. Our results, LMG-verif, are
better than those published in [18]. In Table 10 our result is
compared to eigenfaces, KLT, DCT and WHT for the same database
[18].
3.6. Computational time for jet selection

Jet selection has two important results, the first one, is to
improve recognition rate and the second, to reduce computational
time. Improving jet selection produces two important results: an
increased recognition rate and reduced computational time. If
fewer jets are computed, the computational time decreases.
Table 11 shows, on the first column, the total number of jets used
(4172) and the number of jets of four different jet selections. On the
second column is the ration between the number of jets using the
jet selection and the total number of jets. The third column shows
the ratio between the computational time employed in each
selection over the time employed with all the jets. It can be
observed that a 45% reduction of computational time was obtained
for the first two selections. The computational time required for the
total number of 4172 jets is 48 ms on a PC with an Intel Quad Core-
2.66 GHz CPU, 2 GB RAM using C++ under Windows XP SP2 with
multithreading. For a jet selection of 1909 jets the computational
time is 27 ms and for a jet selection of 2577 jets 30 ms. The
measured computational time allows real-time processing which is
necessary for many applications.



Fig. 10. Illustration of jet scores for the test images and gallery image from (a) the same person and (b) closest subject in the gallery. Jet positions from the EJS are shown as a

bright point on the test images for two spatial frequencies l2 and l4. Jet scores above a threshold of 0.85 are shown as a bright square over each jet position. (a) Most jet scores

are very high for face poses at �151 and 151 and high scores decrease slightly for face poses at �251 and 251. (b) Results of comparing the test images to a different subject in the

gallery. A significant number of jet scores are below the threshold 0.85 and therefore, the voting process will yield the correct face recognition with higher scores of (a).

Table 10
Minimum verification error result for the ORL face database using the DCF cost

function for different methods including our LMG-verif.

Transform Min(DCF) (%)

Eigenfacesa 6.99

KLTa 5.24

DCTa 5.23

WHTa 6.05

LMG-verif 4.93

a Results extracted from [18].

Table 11
Shows, on the first column, the total number of jets and the number of jets for four

different jet selections. The second column shows the ratio between the total

number of jets and each of the four jet selections. The third column shows the ratio of

the computational time employed between the total number of jets and each of the

four jet selections.

Method Number of

jets

Ratio between no. of

jets

Ratio between

computational time

Base 4172 1 1

Selection_1 2094 0.50 0.55

Selection_2 2111 0.51 0.55

Selection_3 3367 0.81 0.80

Selection_4 2186 0.52 0.58
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4. Conclusions

Face recognition is an important topic for surveillance, man-
machine interfaces and selective marketing. Several recent studies
have shown the predominance of local matching approaches in face
recognition results. Real-time implementation of local matching
methods is possible but it is important to reduce the number of
computations by reducing the number of points used for computa-
tion. We propose several methodological enhancements to the
local matching Gabor method and show results that improve face
recognition rate to achieve the highest scores for facial recognition
published to date in the literature.
Results of the methodological improvements proposed in this
paper show that it is possible to improve face recognition rate by
selecting jets with genetic, GSJ, or entropy, EJS, based methods.
Both methods, GSJ and EJS, produce more significant improvements
in the subset Dup1 (up to 34 month difference) and Dup2 (at least
18 month difference) where images from the same person were
taken further apart in time. The largest improvement by a single
proposed method was with entropy jet selection (LMG–EJS2) that
reduced the total number of errors in face recognition from 163 to
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125, a 23% improvement. The use of fewer jets has also important
impact in real-time implementation of these methods.

Both proposed methods BIP and BTH produced more significant
improvements in the subsets Dup1 and Dup2 where images from
the same person were taken further apart in time. By using the BTH
method, the total number of errors decreased from 163 to 142
(a 12.9% error reduction) and for BIP the total number of errors
decreased from 163 to 147 (a 9.8% error reduction).

It was shown that it is possible to obtain even better results by
combination of the proposed methods in cascade. There are several
alternatives available to combine the methods. For example, LMG–
EJS–BTH reached only 116 errors (a 28% error reduction), LMG–EJS–
BTH–BIP reached 112 errors (a 31% error reduction).

We also tested the proposed method under illumination
changes, occlusions with sunglasses and scarves and for small
pose variations. Results on two different face databases (AR and
Extended Yale B) with significant illumination changes showed
over 90% recognition rate. The combination LMG–EJS–BTH–BIP
reached 98% and 99% recognition rate in images with sunglasses
and scarves from the AR database, respectively. The proposed
method reached 93.5% recognition on faces with small pose
variation of 251 rotation and 98.5% with 15% rotation in the FERET
database.
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