
Pergamon 

0892-6875(01)ooo65-6 

Minerals Engineering, Vol. 14, No. 7, 689-700, 2001 pp. 
0 2001 Elsevier Science Ltd 

All rights reserved 
0892-6875/01/$ - see front matter 

GRINDABILITY SOFT-SENSORS BASED ON LITHOLOGICAL 
COMPOSITION AND ON-LINE MEASUREMENTS 

A. CASALI”, G. GONZALEZ¶, G. VALLEBUONA”, 
C. PEREZq and R. VARGAS+ 

’ Mining Eng. Dept., University of Chile, Av. Tupper 2069, Santiago, Chile. E-mail: acasali@cec.uchile.cl 

’ Electrical Eng. Dept., University of Chile Av. Tupper 2007, Santiago, Chile 

’ CODELCO-Chile, Andina Division, PO Box 6A, Los Andes, Chile 
(Received 31 January 2001; accepted I7 April 2001) 

ABSTRACT 

The grinding efficiency evaluation can be performed through the comparison of the operational 
work index with the ore work index Wi. In this work, the development of an ore grindability soft- 
sensor (ESTMOL) is presented. The ore work index is estimated on the basis of its lithological 
composition. Also addressed is the experimental development of a lithological composition sensor 
(ACOLITO) for ores on a conveyor belt. The lithological composition is determined from image 
analysis on samples obtained by a color video camera. Finally, a global operational work index for a 
complete grinding section is defined here, and its on-line estimation (PREDIMOL) is addressed, 
including the required soft-sensors to overcome the measurement problems. The experimental work 
is done with samples obtained from the CODELCO - And& grinding plant. All the sensors have 
given up to now good results. 0 2001 Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

The concept of operating work index, Wiop, has been used to evaluate the efficiency of a grinding, circuit 
(Rowland, 1973). Work indices obtained from operating data on any mill can be compared to grindability 
test results. The operating work index, Wiop, can be obtained using Bond’s equation by defining W as the 
specific energy being used (power draw / new feedrate), Fso and Pm as the actual feed and product 80% 
passing sizes, and Wi as the operating work index, Wiop. Once corrected for the particular application and 
equipment - related factors, Wiopc, can be compared on the same basis to grindability test results. This 
allows a direct comparison of grinding efficiency. Ideally Wi should be equal to Wiopc and grinding 
efficiency should be unity (Napier-Munn, 1996). However, results for ball mills in rod - ball mill circuits 
(Rowland, 1973) show variation of the ratio Wiopc/Wi from 0.78 to 1.29. A mill can be operating 
efficiently but because of the influences of classifier efficiency, ball size distribution, etc., this ratio can 
vary from 1. 

The operational work index can be used to evaluate the grinding operational efficiency or even to 
determine the optimal distribution of feed ore among parallel grinding sections. The efficiency evaluation 
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can be performed through the comparison of the operational work index with the ore work index Wi. 
Another option is to observe the trend exhibited by the operational work index. 

In the case of ore grindabilities, the usual practice is to determine the Bond work index, by testing ore samples 
in the laboratory. This is done occasionally through experimental campaigns, or at the most with a low 
frequency. In any case, the frequency at which this information is obtained does not allow the operational 
adaptation to a variable feed and is only suitable for performing off-line process analysis, with significant 
delays. 

The different rock types determine several important process parameters, such as the ore grindability. It could 
be possible then to estimate the ore work index, based on its lithological composition. The lithological 
composition of the ore fed to a grinding plant is only estimated off-line from the geological studies and mine 
planning, both are done with low periodicity (monthly). Since this information is variable and only referential, 
the real feed composition - at least on a day by day basis - is unknown. To overcome this problem, on-line 
sensors are required to determine the lithological composition of the ore. Most of the existing studies 
(Marschallinger, 1997; Oestreich, 1995) deal with the on-line determination of mineral composition, but 
have not attempted to determine on-line the ore lithological composition. The only exception is the work 
done by the authors of this paper (Casali, 2000; Perez, 1999). 

The determination of the operational work index requires the measurement of the feed and product size 
distribution, the fresh ore feedrate and the power draw. The on-line measurements of the fresh ore feedrate 
and the power draw are usually available. In some occasions also the product size measurement is 
available, but almost never the feed size. For this reason, the operational work index is determined only 
with occasional sampling campaigns and with time delays, which are an impediment for taking opportune 
corrective actions. A new approach to overcome this problem has been presented previously by the authors 
(Gonzalez, 2000). 

In this work, the experimental development of a lithological composition sensor (ACOLITO) for ores on a 
conveyor belt is presented. Also addressed is the development of an ore grindability soft-sensor (BSTMOL), 
where the ore work index is estimated on the basis of its lithological composition. Finally, a global 
operational work index for a complete grinding section is defined here, and its on-line estimation 
(PRBDIMOL) is addressed, including the required soft-sensors to overcome the measurement problems. 
The general procedure proposed to evaluate the grinding operational efficiency, which is based on the 
sensors developed in this work, is shown in Figure 1. 

CONVENTIONAL 
‘GRLNDING 

SECTION 

Fig. 1 Grinding efficiency estimation procedure. 
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LITHOLOGICAL COMPOSITION SENSOR VIA IMAGE ANALYSIS (ACOLITO) 

The experimental work has been done using ore samples taken from the CODELCO-Andina Copper Mine. 
The Andina ore is composed of several types of rocks that can be grouped in the seven lithological classes 
considered for this work (see Table 1). Sub-samples of the ore were obtained, each one consisting of a 
single class, weighing 50 Kg aprox. and having a particle size of 100% - 17.8 cm + 3.8 cm (- 7” + 1H”). 
Color digital images were then obtained with a conventional CCD-NTSC camera and a frame grabber. 

TABLE 1 Lithological classes 

Class Lithology 
1 Turmaline Breccia, BxT 
2 Other Breccias, BxTo 
3 Porphyritic Dykes, PDL 
4 Dacitic Diatreme, CHDA 
5 Granodiorites, GDCC 
6 Andesite, AN 
7 Riolotic Diatreme, CHRiol 

Two databases were constructed. One of them corresponding to single class images, of 760 digital images, 
each one showing between 20 and 40 rocks, in BMP format and 640 x 480 pixels. Another database, of 900 
digital images, was constructed with mixed classes images. All images were segmented to produce a total 
of 5936 isolated rocks in the first database and 5205 in the second one. Both databases were separated 
randomly to generate the training and testing sets, as shown in Table 2. 

TABLE 2 Training and testing vectors per lithological class 

Lithological class 

BxT 
BxTo 
PDL 

CHDA 
GDCC 

AN 
CHRiol 

Single class images 

Training Testing vectors 
vectors 

637 319 
586 294 
460 230 
638 320 
505 253 
522 261 
607 304 

Mixed classes images 

Training Testing vecta 
vectors 

458 916 
201 402 
170 340 
132 264 
406 812 
287 574 
81 162 

I I I I 

Total 3955 1981 1735 3470 

The identification method (see Figure 2) assigns each rock to a lithological class. This method consists of 
two main stages: (i) the feature extraction stage and (ii) the classification stage. 

lassifica,tion 
Results 

Fig. 2 Lithological classification flowsheet. 
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Feature extraction stage 

The feature extraction stage consists of a sequence of image acquisition, digital preprocessing and 
segmentation of each image (see Figure 3) to isolate individual rocks in a sample. Several algorithms to 
extract features from each rock are then applied. A total of 667 features were measured for each rock, 
including geometric, texture and color measurements. 

From the binary image, several geometric features are obtained such as area, perimeter, area perimeter 
ratio, elongation ratio, mean radius, mean radius variance, mean radius variance to mean radius ratio, 
inertial moment to squared mean radius ratio, diameter deviation, areal shape factor, rugosity, angularity, 
angularity deviation and curvatures. Angularity, for example, is defined as the average angle of the 
successive tangents to each rock, as it is shown in Figure 4. 

Fig.3 Segmentation sequence: (a) initial image, (b) low pass filtering, (c) binarization, (d) noise filtering, 
(e) erosion, (f) segmentation and (g) final image. 

Fig. 4 Successive tangents to measure rock angularity. 
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Texture features and color measurements were also obtained using each one of the 4 components of the 
color image: R, G, B and luminance, some of such measurements were texture from Laplacian operators (as 
an example, see Figure 5), texture from grid analysis, energy, contrast, entropy, homogeneity, histogram 
mode, mean intensity, intensity standard deviation, intensity standard deviation to mean intensity ratio, 
mode intensity, width of the histogram at different thresholds, third and fourth order geometrical moments, 
geometric center deviation (only for R, G and B components) and inertial moment to squared mean radius 
ratio. Some of these measurements were also obtained from the normalised R, G, and B components. 
Finally, using simultaneously the R, G and B components, the color of each segmented rock is determined. 

Fig.5 Granodiorite texture from Laplacian operators: (a) initial image, (b) edge detection, (c) edge 
detection at 20% threshold and (d) edge detection at 50% threshold. 

Classification stage 

The classification stage is performed using a neural network. The neural classifier is composed of N input 
units, 20 hidden units and 7 output units. Each output corresponds to one of the lithological classes. The N 
value depends on the number of features selected for evaluation. As an example, the architecture of an N - 
20 - 7 neural network is presented in Figure 6. 

The output from each neuron is a sigmoidal function of the weighted sum of its entries. The neural 
classifier is trained, adjusting the weight factors wi, using the R-Prop algorithm (Hannan, 1997). The rule to 
update the weights is given by the following equation: 

AWi (t> = Si(t) sign (Gi (t)) - E wi(t) 

with 
if Gi(t) Gi(t-1) > 0 

otherwise 

where: Gi is the error gradient, 4 is the learning step magnitude of weight i, at is the accelerating factor of 
the learning step (~1~ > l), CLZ is the breaking factor of the learning step (0 c o2 < l), and E is the attenuating 
factor (0 < E c 1). The values of these parameters used for the neural classifier training were: czl = 1.25, o2 
= 0.5 and a = 0.0001. 
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Fig.6 Neural network architecture 

A genetic algorithm is used to select the set of features, which optimizes the classification performance of 
the neural network, while minimizing the number of selected features (number of inputs to the classifier). A 
standard genetic algorithm (Ming-Yeong, 1997; Perez, 1997) is used. A vector with 1s or OS is generated 
for all the inputs to the neural classifier. A “1” codes a feature selected as input to the neural classifier and a 
“0” codes a feature that is not selected as input. 

The genetic algorithm uses a population of 20 couples of individuals. The four steps of the genetic 
algorithm are as follows: (a) Generation of the initial population by randomly assigning 1s or OS to each of 
the inputs to the neural classifier. (b) Training each network by back propagation with the set of training 
patterns and evaluating with the testing set. (c) The fitness value (fitness average) for a given network is 
calculated using equation 2. (d) The evolutive stage is composed of proportional selection, two-point 
crossover and mutation operators, applied to the chromosomes of the input population to produce a new 
generation of individuals. 

NW m.m?ss(x) = c(x) -a - 
&UX 

Where: Fitness(x) is the fitness of individual X, i.e. the fitness of a particular set of selected features, c(x) is 
the correct classification rate for individual x on the testing set, a is a proportional parameter in the 
penalising factor which penalises large number of inputs (small value between 0 and O.l), N(X) is the 
selected number of inputs to the classifier (number of features) taken from the total number of features, 
N,,,,, for individual x. 

An intermediate population, Y, is created by crossover between each individual x and another individual 
chosen randomly. Each bit in the string of the new individual is generated by copying with probability 0.33, 
in the first parent, the corresponding bit from the second parent (Perez, 1999). 

Each bit in all individuals of the population Y is mutated with a small probability (Perez, 1997). The 
probability of mutation is dependent on the entropy of that bit in the population. 

Table 3 shows the percentages of correct classification obtained, in 5 different tests, with the lithological 
sensor. Test 1 considers features extracted from the whole image while tests 2 to 5 consider features 
extracted from segmented rocks. For example in test 1 (single class images), 70 inputs were selected after 
16 generations by the genetic algorithm obtaining a 91.3 % of correct classification. The others tests were 
made with: mixed classes images (test 2), mixed and single classes images (tests 3 and 5) and single classes 
images (test 4). In the cases of tests 4 and 5, an additional feature, the color vector, was considered. 
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TABLE 3 Lithological classification results 

Test Generations Selected features 

1 16 70 
2 100 35 
3 100 88 
4 80 252 

Correct classification 
ISI 
91.3 
76.3 
61.1 
79.8 

Figure 7 shows the classification performance for the testing set 1, using the selected 70 inputs. 

Fig.7 Lithological sensor classification performance. Test 1: 70 genetically selected inputs. 

Transformation from areal to weight distribution 

The lithological compositions were determined on a two dimensions basis (plane) and the information is 
required on a three dimensions (volumetric or weight) basis. In this work, a simple transformation from 
areal to weight distribution method was used. 

Starting from the well known procedure that allows the transformation from surface to weight distribution 
and considering the relation between surface and projected area, it can be shown that the transformation 
from areal (projected) distribution to weight distribution can be expressed as follows, 

where, for rocks belonging to lithology “j”: 

f3j = mass fraction. 

= ratio between volume and surface area shape factors. 

S 

0 Ai= 
ratio between surface and projected area. 

0’ density. 
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cTi = 
f2j = 

area1 weighted average diameter. 

area1 (projected) fraction. 

From the Heywood shape factors equations (Kelly, 1982), it is possible to express the ratio between the 
volume and surface area shape factors as follows: 

Gj Re & + C2j (a,,))‘3 V& + 1) 

( > (RFiF'3 + & a Vue j 
(4) 

where, for each lithology j: R, = length / breadth (elongation ratio), R, = breadth / thickness (flatness ratio) 

and avUej = equidimensional volume shape factor. C, and C, are constants to be adjusted. 

This new procedure was tested with a composite (known lithological composition) disposed randomly on a 
multi layer. The required measurements were made and the transformation method applied. The results are 
shown in Table 4. 

TABLE 4 Experimental and estimated mass fractions 

Lithological 
Class 
BxT 

BxTo 
PDL 

CHDA 
GDCC 

AN 
CHRiol 

Total 

Mass fraction Estimated 

f3i [%I f3i [%I 
9.8 6.8 
17.0 14.8 
17.2 17.6 
14.3 16.9 
14.5 13.5 
11.4 16.4 
15.8 14.0 

100.0 100.0 

The associated error, for n = 7 lithologies, can be estimated from the sum of the squared residues (SSR = 
50.0) using equation 5. For this testing set, the resulting error is smaller than 3%. 

WORK INDEXES SOFT-SENSORS 

(5) 

Ore grindability soft-sensor (ESTMOL) 

The information supplied by the lithological composition sensor, i.e., the fraction of each lithological class in 
the composite,, may now be used as an input to the ore grindability soft-sensor which estimates the ore work 
index (Wi). To determine the model for this soft-sensor, both the structure (equation 6) and its parameters 
are determined using data, corresponding to the ore work index and the lithological composition per month, 
obtained from the Andina mine plan for a period of 46 months. 

Wi = 4 f, + b2 .f2 + b3 f3 + h f5 + b5 f6 + 4, (6) 

This model is of the moving average type, where the inputs are given by the weight fraction, fj, of each 
lithological class “j”. The parameters { bj) of this model were determined using stepwise regression for data 
sets of Wi and fj in a moving window of 12 months. Figure 8 shows the prediction obtained using equation 
6 for month 13 following each 12 months data set. 
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Fig.8 Experimentally determined and estimated (ESTMOL) work indexes. 

Operational work index soft-sensor (PREDIMOL) 

Figure 9 shows a schematic diagram of one of the grinding circuits of Andina plant, from which the data 
for this paper has been obtained. 

Fig.9 Two stages grinding circuit flowsheet. 

In Figure 9, MF is the steady state ore flowrate. F so, Kg0 and Pso are the feed, intermediate and product 80% 
passing sizes respectively. 

The operational work indexes: WioR for the rod mill and Wiosj for each ball mill section, are given by 
(Rowland, 1973): 

PR and PBj are the power draws for the rod mill and for each ball mill j (i = 1, 2,3), respectively. CR and CB 
are particular application and equipment-related factors, depending on the geometry of the mills, the type of 
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grinding and the size reduction range (constant for a given application). For the grinding plant treated here, 
CR= 1.236 and Cs = 0.922. 

A global operational work index Wi, has been defined (Gonzalez, 2000) for the plant shown in Fig. 1, 
assuming an equivalent unitary ball mill circuit (i.e., having one ball mill), as follows, 

Wiof = 4 ’ (8) 

ll.O2MFC,, L - b- -- 1 1 80 40 

where PT is the total power drawn by the four mills and Css = 0.857 (Gonzalez, 2000). 

Of the four variables that determine the global operational work index (equation 8), the power draw PT is 
the sum of reliable on-line electrical measurements. The on-line measurement of the plant throughput, MF, 
is very important for assessing the plant performance, so it is usually a high availability exact and precise 
measurement. 

In some cases a sensor for measuring Pa0 is installed in a plant, even though its measurement may not have 
the availability of the power and ore flow measurements. But the corresponding sensor for measuring 
particle size at the feed end of the grinding plant is not available. In either case then it becomes necessary to 
infer FRO always and to infer Pa0 whenever the particle size sensor fails, it is removed for maintenance, or 
simply because it is not installed. Soft-sensors for inferring particle size at hydrocyclone overflow have 
been reported in the literature (Casali, 1998). 

In order to determine the requirements of the soft-sensors that must be used to infer these variables, the 
sensitivities (Swr and Swp) of the operational work index Wi, with respect to Fso and Pa0 have been found 
(Gonzalez, 2000) taking partial derivatives of equation 8. These sensitivities were evaluated using data 
collected from the Andina grinding plant (Figure 9) and the following results were obtained: SwF = 
-0.1084, Swp = 0.608 and Swr/ SWF = -5.61, showing a much higher sensitivity with respect to Pa0 than to 

F8@ 

An analysis of the plant data during a period of 46 months shows the statistics for Fso and PRO given in 
Table 5. 

TABLE 5 Statistics for Fso and Pso over a 46 months period 

ho 
p80 

Average 

h.d 
9,774 

310 

Standard deviation 

bl 
379 
45 

For a change of FsO corresponding to three times its standard deviation, around its average value, can be 
found (Gonzalez, 2000) that Wiog changes in around 1.26%, i.e., quite small. As a result, the soft-sensor 
for Fgo, is the simplest of all, since it will be equal to the average of Fso during the period considered. Then 
the average of Fso will be used in following periods when it is not measured, supposing it remains fairly 
fixed, until new laboratory measurements are obtained and the average value may be updated. 

For changes of Pgo corresponding to three standard deviations, around its average value, can be found 
(Gonzalez, 2000) that Wiog changes in around 29.4%. This is a rather large change, so that the average PgO 
may not be an adequate estimator of Pa0 and a more complex soft-sensor is needed. 

For the design of a soft-sensor for Pso only the very reliable measurements Pr (power draft of the mills), 
and MF (the feed ore flow) have been used. This reliability criterion restricts the candidate measurements 
as opposed to the soft-sensors determined by (Casali, 1998). The resulting soft-sensor is given by 



Grindability soft-sensors based on lithological composition and on-line measurements 699 

P,,est (0 = a, + a, MF(t) + a2 P?(t) (9) 

Figure 10 shows a test of the prediction capabilities of this soft-sensor. 

0 5 10 15 20 25 30 35 40 45 50 
Montln 

Fig. 10 Soft-sensor for Pso compared with actual Pso. 

Then for the determination of Wios, the measurement of Pso (if it is available) or the soft-sensor prediction 
can be used. In Figure 11 a test of the prediction capability for Wios is shown using the fixed value 
(average) for Fso and Psaest given by the soft-sensor. 

12.5; ; 
I 

10 15 20 25 30 35 40 45 50 

Months 

Fig.1 1 Actual operational work index Wios and its estimated value W,sest using the average Fsc and the 
Pso soft-sensor. 

CONCLUSIONS 

The lithological composition sensor (ACOLITO) developed to estimate the lithology of the ore on a belt 
conveyor has given up to now good results. The image analysis with the segmentation and the feature 
extraction process, followed by the classification stage using a neural network has shown a good 
performance. The genetic algorithm proved to be an excellent tool for reducing the number of inputs to the 
classifier, without significant losses in the correct classification results. 
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The results obtained with the ore grindability soft-sensor (ESTMOL), using mine plan data, have shown 
that it is possible to obtain a good estimate of the work index based on its lithological composition. 

A global operational work index for a grinding plant has been defined using Bond’s equation applied to the 
total feed, total product and total mills power draft of a grinding plant. Based on this, an operational work 
index soft-sensor (PREDIMOL) was developed. 

A sensitivity analysis showed that the operational work index had a small sensitivity with respect to Fso, so 
that its average value could be used with good results. On the other hand, the sensitivity of the operational 
work index with respect to Psa was not small. Therefore a soft-sensor for Psa had to be developed and it has 
given good results. It has been further shown that PREDIMOL soft-sensor gives an acceptable estimation 
of the global operational work index. 
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