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Genetic Design of Biologically Inspired Receptive
Fields for Neural Pattern Recognition
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Abstract—This paper proposes a new method to design, through
simulated evolution, biologically inspired receptive fields in feed
forward neural networks (NNs). The method is intended to en-
hance pattern recognition performance by creating new neural ar-
chitectures specifically tuned for a particular pattern recognition
problem. It is proposed a combined neural architecture composed
of two networks in cascade: a feature extraction network (FEN) fol-
lowed by a neural classifier. The FEN is composed of several layers
with receptive fields constructed by an additive superposition of ex-
citatory and inhibitory fields. A genetic algorithm (GA) is used to
select the receptive fields parameters to improve the classification
performance. The parameters are the receptive field size, orienta-
tion, and bias as well as the number of different receptive fields in
each layer. Based on a random initial population where each indi-
vidual represents a different neural architecture, the GA creates
new enhanced individuals. The method is applied to the problems
of handwritten digit classification and face recognition. In both
problems, results show strong dependency between the NN clas-
sification performance and the receptive fields architecture. The
GA selected parameters of the receptive fields that produced im-
provements in the classification performance on the test set up to
90.8% for the problem of handwritten digit classification and up
to 84.2% for the face recognition problem. On the same test sets,
results were compared advantageously to standard feed forward
multilayer perceptron (MLP) NNs where receptive fields are not
explicitly defined. The MLP reached a maximum classification per-
formance of 84.9% and 77.5% in both problems, respectively.

Index Terms—Face recognition, genetic algorithms (GAs), hand-
written digit classification, neural pattern recognition, receptive
fields.

I. INTRODUCTION

A. Biological Receptive Fields

T HE MAMMALIAN visual cortex has evolved over mil-
lions of years to perform pattern recognition tasks with re-

markable precision [40]. In the visual system, neuroscientists
have identified a hierarchical structure proceeding along mul-
tiple parallel pathways through a number of anatomically de-
fined layers. There is physiological evidence that neurons re-
spond to more complex patterns as the flow of information pro-
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ceeds from the retina to the inferotemporal cortex in the visual
pathways [2], [7], [41].

A receptive field is the region of the sensor where an ad-
equate stimulus elicits a response [8]. The receptive fields of
retinal ganglion cells in mammals are organized in center/sur-
round configurations [28]. The receptive fields from retinal and
lateral geniculate nucleus (LGN) neurons have circular sym-
metry and they respond almost equally to all stimulus orienta-
tions [50]. Hubel and Wiesel built a comprehensive picture of
the basic functional architecture of the visual cortex [27]. They
defined “simple cells” as cells where it is possible to map the
excitatory and inhibitory regions of the receptive field by moni-
toring the cell’s response to a spot of light. The receptive fields
of simple cells were implemented by overlapping the receptive
fields of center/surround cells from LGN [25], [26]. Simple cells
at the visual cortex have oriented receptive fields, and hence they
respond to stimuli in some orientations better than others being
excellent at detecting the presence of simple visual features such
as lines and edges of a particular orientation [50]. Orientation
selective receptive neurons are found throughout layers 2 and
3 of the primary visual cortex and are relatively rare in the pri-
mary inputs within layer [41], [50].

The receptive fields are also local in the two-dimensional
(2-D) spatial frequency domain. The spatial contrast-sensitivity
functions of cortical neurons were measured and resulted to be
narrower than those of retinal ganglion cells [9]. This localiza-
tion in 2-D space means that cells respond to a small band of
radial spatial frequencies and to a small band of orientations
[51]. The spatial frequency response characteristic of a cortical
simple cell can conveniently be described in terms of Gabor
functions [29].

“Complex cells” receive excitatory inputs from neighboring
simple cells receptive fields of similar preferred orientation.
Whenever a line or edge stimulus of the correct orientation falls
within the receptive field of one of the simple cells, the complex
cell is activated [26]. The receptive field properties become
progressively more sophisticated as the flow of information
proceeds from the retina to the inferotemporal cortex [50].
Understanding of cortical visual areas is still in early phase
of scientific study and as the cortex is explored it is expected
to find neurons with new receptive field properties. It will be
necessary to characterize these receptive fields adequately to
understand their computational role in vision.

The spatial receptive fields of simple cells in mammalian
striate cortex have been described well physiologically and can
be characterized as being localized, oriented in space, and band-
pass in the frequency domain [39]. It has been shown that one
of the early vision tasks is to reduce the redundancy of the input
signals [3], [5]. Also, theories about efficient coding provide in-
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sights about cortical image representation [39], [40]. It was also
shown that by using a learning algorithm to find sparse linear
codes for natural scenes, a complete family of localized, ori-
ented, and bandpass receptive fields, similar to those found in
the striate cortex, were developed [17], [39], [40].

B. Receptive Fields in Artificial Neural Networks (ANNs)

Fully connected feed forward neural networks (NNs) allow
connections between each unit of one layer and all units in the
previous layer without an explicit specification of the receptive
field architectures as in the visual system. Several papers have
described the use of biological models of vision to solve pat-
tern recognition problems [2], [11], [20], [32], [46]. Successful
applications have been performed in bandwidth compression,
image quality assessment, and image enhancement [18]. Several
algorithms for image processing such as edge detection based on
gradient operators and multiresolution architectures are based
on the visual system [32]. For example, a cortical column ar-
chitecture was used in a multilayer network to perform pattern
recognition in speech and visual recognition [2]. The application
of the retinal “Mexican hat” filter yielded a high-pass image em-
phasizing contours and sharp changes in luminosity [11]. Fur-
thermore, it was shown that the retinal filter is optimized to
decorrelate the incoming luminosity signal based on its correla-
tion function [3].

According to the biological evidence described in the pre-
vious section, multilayered NNs may be built to correspond to
the successive cortical maps with learning rules which enable
them to learn many types of input–output transformations [2].
The basic structure of this model has been captured in a neural
model where each layer is composed of several ordered ensem-
bles of units called “planes” and a connectivity among layers
enabling the appearance of simple and complex receptive fields.
Examples of this type of neural architecture have been used in
[1], [12], [13], [38], and [51].

In particular, biologically inspired receptive fields have been
used in the neocognitron model and its variations [13], [38], and
in modeling the visual cortex retinotopical and orientation maps
[12]. One of the advantages of NNs with receptive fields is that
the number of weights is efficiently reduced in relation to fully
connected architectures [38].

The neocognitron was trained to recognize 24 simple patterns
regardless where they appeared on a 1616 element visual
field. It was assumed that complex cells from one cortical
patch led to a pair of simple () and complex ( ) cell layers
[10]. Other areas were also organized in pairs ofand units.
In the neocognitron, the weights corresponding to units in the
layers were adjusted by training but the basic architecture of the
receptive fields, the number of planes per layers and the number
of total layers remained fixed [13]–[16], [31]. However, an auto-
matic method to design or adjust the receptive field architecture
has not been found in the literature.

C. Evolutionary Neural Networks

Evolutionary NNs refer to a special class of ANNs in which
evolution is an essential form of adaptation in addition to
learning [54]. Evolution has been introduced in NNs in three
main levels: 1) connection weights; 2) architectures; and

3) learning rules [54]. As we employ genetic algorithms (GAs)
to evolve the architecture of the receptive fields, we focus only
on architecture evolution.

Evolution of NN topological structures can be performed by a
direct encoding scheme where each connection in the architec-
ture is directly specified by its binary representation. Another
alternative is to use an indirect encoding scheme, e.g., a set of
rules (grammar) that can be applied to produce an NN architec-
ture [34]. The indirect encoding scheme can produce more com-
pact genotypical representation of the neural architecture [54].

GAs have been used to find near optimal training parameters
on neocognitron models [33]. Also, the selectivity parameters
of the neocognitron were optimized using GAs [55]. In other
work, GAs were used to optimize the number of layers, number
of hidden units, learning rate, momentum, number of epochs,
and initial set of weights values in a perceptron-type architec-
ture [45], [52]. In our literature review, we have not found any
application of evolutionary algorithms to the specific design of
receptive fields to solve pattern recognition problems as it is pro-
posed in this paper.

D. Purpose of the Present Study

In this paper a new method is proposed for automatic design
of biologically inspired receptive fields in ANNs. The method,
based on a GA, builds up an adequate receptive field architec-
ture searching for the appropriate dimensions, orientation, and
bias of center-surround receptive fields to maximize the clas-
sification performance of the network. The proposed NN ar-
chitecture is composed of two combined networks connected
in cascade. The first one, a feature extraction network (FEN),
is a neural architecture with biologically inspired connectivity
and receptive fields such as the neocognitron model [13]. The
second network is a fully connected MLP classifier [23], [30],
[47]. A GA is used to select parameters of the FEN receptive
fields to improve the classification performance of the combined
networks. The method designs a near optimum receptive field
architecture for a specific problem and therefore could be ap-
plied to several classification tasks. The method is expected to
enhance pattern recognition performance by an appropriate de-
sign of the combined network architecture. In this paper, the
method is applied to the problems of handwritten digit classifi-
cation and face recognition. The results are compared to those
of fully connected MLP where no explicit receptive fields are
defined.

The method is intended to adapt the receptive field basic ar-
chitecture of an ANN to create new models specifically tuned
for a particular pattern recognition problem. Modeling the bi-
ological computations performed in the visual system is be-
yond the scope of this paper. Preliminary results of the proposed
method applied to find the receptive fieldsand dimensions
in a fixed neural architecture of two planes per layer were pre-
sented in [42] and [44].

II. M ETHODS

A. Combined Network Architecture

Functionally, the NN architecture can be decomposed into
two networks in cascade as illustrated in Fig. 1. The first one,
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Fig. 1. Combined neural architecture composed of two networks in cascade:
a feature extraction network (FEN) followed by an MLP classifier. The FEN
is convolutional-type network composed of four layers with variable number
of planes per layer and a threshold function. A scale reduction is performed
between layersS and C for the handwritten classification problem and
betweenS andC for the face recognition problem. Dimensions of each
plane are specified for each problem (digits or faces). The neural classifier is
an MLP composed of two hidden layers of 40 or 100 hidden units each one for
the handwritten digit or the face recognition problem, respectively.

the FEN, is a hierarchical convolutional-type network [13], [38].
The feature extraction process is performed through successive
filtering of the input image by four hidden layers connected in
cascade. The second network is a neural classifier with an MLP
architecture.

1) The Feature Extraction Network (FEN):The FEN is a
neural architecture with biologically inspired connectivity and
receptive fields such as the neocognitron model. The FEN is
organized in four alternated- and -type layers following the
notation used by Fukushima [13]. As shown in Fig. 1, the model
consists of layers , , , and , where each layer is com-
posed of several planes. As in the neocognitron, a-type layer
contains units with receptive fields over units belonging to a
single plane of the previous layer, i.e., a unit of a-type layer
is only connected to units within the same plane of the previous
layer. An -type layer contains units connected to other units in
different planes of the previous layer. The number of planes in a

-type layer is the same as the number of planes in the previous
-type layer. Each unit within a plane shares the same receptive

field parameters (size, rotation and bias) with the other units
in the same plane. Therefore, the number of different receptive
fields depends on the total number of planes present in all layers.
Unlike the neocognitron model, in our model the number of
planes in the -type layers is variable and it is selected by simu-
lated evolution. As in the neocognitron model, a scale reduction
is located between layer and and is performed by sub-
sampling all planes in layer . The scale reduction decreases
the number of weights required in the network.

2) Receptive Field Spatial Filtering:The input image
in Fig. 1 is propagated through the layers of the FEN and in
each plane discrete convolution takes place between the image
and the receptive field of that plane. Equation (1) describes the

output of units in a -type plane and (2) the output of the units
of an -type plane as follows:

(1)

(2)

where is the output of the unit in position ( ) in the
th plane of theth layer , is the output of the unit in

position ( ) in the th plane of theth layer , , and
are the receptive fields associated to each plane, respectively.

is the number of planes in layerprior to layer . and
are the and dimensions, respectively, of theth plane

in the th layer . and are the dimensions and
, respectively, of the th plane in the th layer . The

index represents layers 1 and 2 of-type or -type layers.
The scale reduction performed in the planefor the case of
the handwritten digit classification problem and inin the face
recognition problem is represented in

(3)

The scale reduction has an effect on the computational time re-
quired to convolve the receptive fields and the images. From
this point of view, it is preferred to choose the scale reduction in

as it was done in the handwritten digit problem. Neverthe-
less, human face classification depends on spatial information
in the range 8–13 cycles/face [37] and therefore higher spatial
resolution is required. By performing the scale reduction in,
the feature extraction is performed at higher spatial resolution
in the face recognition problem. Besides, this feature extraction
is feasible within reasonable computational time since the face
database has only 160 training patterns. The output of every unit
in the FEN goes through a threshold function [14] given by

if
if

(4)

3) Receptive Field Construction:Even though the FEN ar-
chitecture is based on the neocognitron model, the receptive
fields are built in a complete different manner determining ge-
netically their geometry, orientation, and bias. As illustrated in
Fig. 2, each receptive field consists of an additive superposition
of two separate fields: an excitatory and an inhibitory field, both
rotated in a specific angle. All weights are equal within each ex-
citatory or inhibitory field. The sum of all weights within each
excitatory field is 1 and this sum is1 for each inhibitory field.
The influence of the inhibitory field over the complete recep-
tive field may be attenuated by a parameter named biaswhich
takes values in the interval [0,1]. The bias adds low-pass filtering
characteristics to the receptive field [53]. Thus, each receptive
field is determined by six parameters: theand dimensions in
pixels of the excitatory field, and , and of the inhibitory
field, and ; the orientation angle ; and the bias, .
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Fig. 2. Receptive field creation. (a) Determination ofx andy dimensions of the excitatory and inhibitory components of the receptive field. Rotation in angle�.
Additive superposition of the receptive field components including a biasB. (b) Coding of the neural architecture into a binary string. It is shown a coding example
for the receptive field of one plane and the coding of the number of planes in layers 1 and 2,NP andNP , respectively.

Fig. 2(a) shows the three basic steps in the receptive field con-
struction: selection of , , , and dimensions,
rotation of the receptive field in angle, and addition of the ex-
citatory part, inhibitory part and bias of the receptive field. The
analytical expression for the receptive field is given by

(5)

where is the excitatory component of the recep-
tive field of dimensions by and orientation angle ,

is the inhibitory component of dimensions
by and orientation angle. Equations (6) and (7) show the
restrictions on the intensity for both components of the recep-
tive field and , respectively

(6)

(7)

The result of the application of the receptive fields over the input
image is a nonlinear filtering process performed by each plane
in the FEN. As parameters , , , , , and
in (5) determine the spatial configuration of the receptive field,
these parameters also determine the equivalent spatial filtering
performed by the FEN.

4) Neural Classifier: As shown in Fig. 1, the second net-
work in cascade, the neural classifier, is an MLP architecture
[23] composed of two hidden layers and a number of outputs
equal to the number of classes of the pattern recognition
problem. For the handwritten digit classification the number of
outputs is 10. In the case of the face recognition problem the
number of outputs is 40 since there are 40 different subjects
in the database. The maximum value among the outputs of
the neural classifier determines the class for the input pattern

TABLE I
MLP NEURAL CLASSIFIER TRAINING PARAMETERS

[30]. The neural classifier was trained by backpropagation with
momentum for a fixed number of epochs [21], [47]. The chosen
parameters for the MLP architecture have been determined in
previous research for the same pattern recognition problems
[43]–[45]. The number of units in each hidden layer was de-
termined to be for the handwritten digit problem and

for the face recognition problem. These numbers of
hidden units were selected based on results of training several
MLP models for different number of hidden units and selecting
the smallest number with highest classification performance.
The training parameters are summarized in Table I.

5) Databases:The method was applied to the handwritten
digit classification and to the face recognition problems. In the
first application, a database composed of 3674 handwritten
digits from university students was partitioned into three sets.
The partition separates randomly digits from different persons
but leaves all digits from the same person in a single partition.
Therefore, from the generalization point of view this form of
partition represents one of the most difficult possible cases.
The training set was composed of 1837 handwritten digits, the
validation and test sets were composed of 918 and 919 digits,
respectively. The handwritten database contains digits that are
not normalized in size as shown in Fig. 3(a). Each handwritten
digit is composed of 15 23 pixels, with two levels (binary)
per pixel. This database is available in [22].
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Fig. 3. Samples from the training, validation and test sets from the (a)
handwritten digit and (b) face databases.

The second database is the face database from AT&T Lab-
oratories Cambridge, where there are ten different images of
each of 40 distinct subjects. The size of each image is 92112
pixels, with 256 gray levels per pixel. For some subjects, the
images were taken at different times, varying the lighting, facial
expressions (open/closed eyes, smiling/not smiling) and facial
details (glasses/no glasses). All the images were taken against a
dark homogeneous background with the subjects in an upright,
frontal position (with tolerance for some side movement) [49].
The face database was also partitioned randomly into three sets:
160 faces for training, 120 for validation and 120 for testing.
This leaves for each individual in the database four faces for
training, three for validation, and three for test. Some cases in-
clude individuals with and without glasses in different partition
sets, which represent a difficult problem.

Samples for each partition on both databases are shown in
Fig. 3. The training set is used to train each individual in the
GA. The validation set is used to determine the fitness of each
individual in the population and therefore to generate the next
population according to the GA as it is explained in Section II-B.
The generalization performance of each individual is measured
on the test set [52].

B. Genetic Algorithm

The optimum size, orientation and bias of the receptive fields
as well as the number of different receptive fields to maximize
the classification performance of the network are not known.
Given the problem high dimensionality and the lack ofa priori

TABLE II
FEN PARAMETERSENCODED IN THESPECIFIEDNUMBER OF BITS. THE TABLE

ALSO SHOWS THEMAXIMUM AND MINIMUM VALUE OF EACH PARAMETER

AND THE MINIMUM STEP OFCHANGE BETWEENTHOSEVALUES

knowledge, GAs emerge as an appropriate tool to find a suitable
configuration for the receptive fields [42], [44].

1) Coding: The proposed network architecture can be en-
coded into a binary string [24], [36]. Table II shows the FEN
parameters encoded by the GA. The number of planes in layers

and are defined by the parameters and , respec-
tively. According to the number of layers and number of planes
per layer used in previous convolutional models [13], [38] the
maximum number of planes per layer in and was set to 8,
and the total number of layers in the network was 4. Therefore,
there may be a total of 32 different receptive fields. Besides,
each receptive field is defined by six parameters: excitatory and
inhibitory , dimensions, rotation , and bias . Two global
parameters were needed additionally to encode and .
An example of string coding for one plane and for the number
of planes per layer is shown in Fig. 2(b). The total number of
parameters in a single FEN is 194 . The number
of bits assigned to each parameter defines the number of dif-
ferent values that each parameter may take, e.g., three bits take

values. As shown in Table II each receptive field is en-
coded by 22 bits, therefore 704 bits are required to encode the
32 receptive fields. Additionally, six bits are required to encode
the number of planes in and . Therefore, the total number
of bits required per architecture is 710.

2) Fitness: Each individual in a given population of the GA
represents a specific network architecture that must be ranked
according to its performance in the pattern recognition task. All
architectures in the population are trained with the training set.
During training, the classification performance in the validation
set was also computed. Then, each individual was assigned a
fitness that was equal to the maximum recognition rate reached
by the combined network in the validation set.

The fitness measurement is a number in the interval [0,1] rep-
resenting the range 0% to 100% recognition in the validation set.
As the weights of the classifier are initialized randomly at the be-
ginning of the training process, the fitness measurement varies
from one starting point to another. From the computational point
of view, the best choice is to select the minimum number of eval-
uations for each individual in the GA. As a tradeoff, three evalu-
ations were chosen for each individual in the GA. This approach
to reduce the computational cost in GAs has been employed pre-
viously [6]. In Section III, a discussion regarding the statistical
significance of this choice is given. The final fitness assigned
to the individual is the average of the three evaluations. If the
same individual appears more than three times during the sim-
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TABLE III
SUMMARY OF THE PARAMETERS FOR THEGA

ulation, it will inherit the fitness of the first three appearances.
Therefore, the fitness of each individual and its three first evalu-
ations must be stored. This helps to reduce computations at the
expense of memory space.

3) Selection and Sampling:The genetic algorithm uses pro-
portional selection [19], [36] to assign an individual of the cur-
rent generation a probability to be chosen as an individual of
the next generation as follows:

(8)

where is the fitness of the individualof the population and
is the number of individuals in the population. Therefore,

the expected offspring of individualfor the next generation is
defined by

(9)

However, is a real number that must be converted to an in-
teger number. This conversion is performed using the stochastic
universal sampling method [36], [19], which assumes that the
population is laid out in random order as in a pie graph. Each
individual is assigned a space on the pie graph proportional to
its fitness. Then, an outer roulette wheel is placed around the
pie with equally spaced pointers. A single spin of the roulette
wheel picks all members of the new population. The resulting
sampling is optimal combining zero bias, minimum spread, and

time complexity [4], [19].
4) Crossover and Mutation:Crossover and mutation are

performed on each population after the selection process. To
avoid positional bias, uniform crossover was used [35], [48]. In
uniform crossover, two parents are randomly selected and for
each bit position, an information exchange is produced with
a probability . This means that each bit is inherited
independently of the other bits present in the parent strings. The
probability of bit interchange between two individuals must
be selected according to the equilibrium between exploration
and exploitation [36]. Each pair of parent strings generates a
pair of siblings. The mutation operator [36] consists of random
changes in the bits of the binary string. The probability of
mutation is normally small; however, it also depends
on the equilibrium between exploration and exploitation.
Table III shows the probabilities used in all our experiments.

5) Computational Cost:The proposed method is intensive
in computations since an NN has to be trained for each dif-
ferent configuration of receptive field parameters. Even for a
rather small handwritten digit training database of 1837 exam-
ples, the computational time for one individual of the population
takes several minutes in a Pentium III-450 MHz computer under
Linux operating system. Therefore, the number of individuals in

the population was chosen to be relatively small (20), to avoid
longer computational time due to population size [33], [52],
[55]. Furthermore, it is expected to reach significantly higher
classification results with a larger training set but simulation
time would not be appropriate for our available computer re-
sources (based on Pentium III-450 MHz computers). In the case
of the face recognition problem, the training database considers
only 160 training images, but the input weights are 10 304 for
each 92 112 pixel image. The training time takes several min-
utes per individual, therefore, a population of 20 individuals was
also chosen for this problem.

In both problems, part of the simulations results were ob-
tained in a computer laboratory with a network of 20 PCs to
compute in parallel the individuals of one population and one
PC to control the GA. As the computational performance of PCs
doubles roughly every two years, the proposed method would
require in the future less extensive computer resources. Once the
method is applied and the GA has determined the FEN architec-
ture, the combined architecture, FENMLP classifier can be
implemented in a simple PC to perform classification online.

C. Multilayer Perceptron Model (MLP)

A multilayer perceptron model (MLP) neural classifier
without predefined receptive fields served as a reference to
compare results with our method. An MLP was directly trained
with the training set and results were measured on the validation
and test sets for different number of hidden units. Because of the
weights random initialization, ten simulations were performed
for each different number of hidden units. In the case of the
handwritten recognition problem, the input layer was composed
of 345 units, and the output layer was of ten units, one for
each digit ( ). Consequently, the basic configuration of
the two-hidden-layer network is 345 : : : 10, where
represents the number of hidden units in each of the two hidden
layers. In the case of the face recognition problem, there are
10 304 (92 112) input units and 40 output units (40 subjects in
the database). The basic configuration of the two-hidden-layer
MLP is 10 304 : : : 40. In both problems, the output of
each unit of the MLP is mathematically expressed as

(10)

where is the weighted sum of the outputsof all the units
in the preceding layer (inputs in the first layer), andis a sig-
moidal activation function used as threshold. The weights
denote the connection strength between unitof the preceding
layer, and unit of the current layer. Besides, each unit has a
bias , allowing a shift in the relative position of the sig-
moidal function along the axis.

III. RESULTS

A. Multilayer Perceptron Neural Classifier

In this subsection, we show the results obtained with an MLP
neural classifier alone in the problems of handwritten digit clas-
sification and face recognition. These results will serve as a ref-
erence to compare with the results of our proposed model.
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Fig. 4. Percentage of the (a) validation and (b) test patterns correctly classified by a two-hidden-layer MLP as a function of the number of hidden units, for the
handwritten digit classification problem. Percentage of the (c) validation and (d) test patterns correctly classified by a two-hidden-layer MLP asa function of the
number of hidden units, for the face recognition problem. Average and standard deviation for ten simulations with different weight initializations.

Fig. 4 shows the percentage of the validation and test pat-
terns that are correctly classified by a two-hidden-layer MLP, as
a function of the number of units in each hidden layer. As each
network was trained for ten random starting weight sets, the av-
erage recognition rate and the standard deviation are shown in
Fig. 4(a) and (b) for the validation and test set in the handwritten
recognition problem, respectively. Fig. 4(c) and (d) shows the
results for the validation and test sets for the face recognition
problem. In all cases, it can be observed that the classification
performance increases as a function of the number of hidden
units for a small number of hidden units and then does not
change significantly for a large number of hidden units. Ac-
cording to the ANOVA test, no statistically significant changes

in classification performance were reached on the test set above
40 units in the hidden layers for the handwritten recognition
problem and above 100 units in the face recognition problem.
Among all number of hidden units, the best classification per-
formance on the test set, computed as the average of ten simu-
lations, for the handwritten digit problem reached 84.9% for an
80-hidden-unit MLP. The best recognition performance on the
test set for the face recognition problem reached 77.5% for a
110-hidden-unit MLP.

B. Genetic Selection of FEN Architecture

1) Handwritten Digit Classification Problem:
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Fig. 5. Fitness for receptive field parameters and variable number of planes for 145 generations for the handwritten digit classification. Fitness of the best network
(top), average fitness of the population (middle), and worst network (bottom) as a function of the generation number. (a) Validation set. (b) Test set.

Fig. 6. Ranked classification performance by fitness including all GA individuals on the (a) validation set and (b) test set for the handwritten digitclassification
problem. The dashed line represents the best classification performance obtained by an MLP alone on the same database.

The results of the genetic selection of the FEN parameters
for the problem of handwritten digit classification are presented
in this subsection. A neural architecture with variable recep-
tive field parameters and variable number of planes per layer
was employed. Fig. 5 plots the best (top), average (middle), and
worst (bottom) fitness for each population as a function of the
generation number. Fig. 5(a) corresponds to the validation set
and Fig. 5(b) to the test set. A total of 145 generations of 20 in-
dividuals each were computed. It can be observed that the clas-
sification performance of the system improved as the genetic
algorithm selected appropriate parameters for the size, orienta-
tion and bias of the receptive fields as well as a proper number
of planes per layer. The classification performance of the best
individual on the validation set, as a function of the genera-
tion number, improved from 81.6% at the starting generation to
91.3%. The classification performance of the best individual on
the test set, as a function of the generation number, improved
from 81.3% to 90.8%. Therefore, the fitness of the best indi-
vidual improved 9.7 and 9.5 percentage points in the valida-
tion and test sets, respectively. The horizontal dashed lines in

Fig. 5(a) and (b) represent the best classification performance
of 85.3% and 84.9%, reached by the best MLP architecture over
the same validation and test sets, respectively.

Fig. 6(a) and (b) shows the classification performance of all
individuals in the 145 generations ranked according to their fit-
ness. These figures show that the difference between the clas-
sification performance of the best ranked individual and the
worst one, changed between 91.3% and 14.1% (77.2 percentage
points) in the 145 generations for the validation set and be-
tween 90.8% and 14.6% (76.2 percentage points) in the test set.
In Fig. 6(a) and (b), the dashed line represents the best classi-
fication performance obtained by a two-hidden-layer MLP on
the same validation and test sets. It can be observed that there
are over 1200 individuals ranked with fitness above that of the
two-hidden-layer MLP model. Therefore, a proper design of the
receptive field architecture yields better classification perfor-
mance than that of the MLP model alone. These results empha-
size the significance of an appropriate receptive field design be-
cause a proper selection of receptive fields yields significantly
better classification results than other choices.
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Fig. 7. (a) Architecture of the FEN for the best network in the problem of handwritten classification. Each column contains the number of different receptive
fields in one layer: one receptive field in the first layer and five at the output layer. The gray levels represent the spatial configuration of the receptive fields. The
background gray represents 0 and darker levels represent negative weights (inhibitory). (b) Spatial frequency filtering characteristics of each receptive field in the
FEN (Gray scale: white is 1 and black is 0).

In the problem of handwritten digit classification, the GA se-
lected as the best individual an FEN receptive field architecture
composed of six planes of 12 8 units in the output layer and
one plane in the input layer. The FEN applied to each input pat-
tern can be interpreted as a nonlinear transformation from the 23

15 input image to produce six planes of 128 units. After
the FEN, a neural classifier with 40 units in each of the two
hidden layers requires a total of 612 8 40 40 40
40 10 25 040 adjustable weights (biases are not counted).
Without the FEN, a two-hidden-layer MLP architecture with 61
hidden units contains 15 23 61 61 61 61 10
25 376 adjustable weights which is comparable to the number
of adjustable weights of the best network selected by the GA.
Nevertheless, the MLP alone reaches only a maximum recogni-
tion rate of 84.9% with equivalent number of adjustable weights
in the test set. Therefore, the FEN provides an improvement in
classification performance of 5.9 percentage points relative to
an MLP in the test set.

For the best individual in this simulation, Fig. 7(a) shows
the layer type and the number of receptive fields in each layer.
Fig. 7(a) also shows the receptive field spatial configurations
in gray level. The white and black tones represent the max-
imum and minimum values, respectively, and the background
gray level represents the value 0. Fig. 7(b) shows the spatial
frequency filtering characteristics of each receptive field: white
tone represents value 1 and black tone represents value 0. In
Fig. 7(b), the reference for the spatial frequency coordinate
system is at the center of each image, i.e., low frequencies are
represented at the center and higher frequencies toward the
edges.

Some of the receptive fields shown in Fig. 7(a) can be in-
terpreted in terms of their main spatial filtering characteristics.

Planes , , and are mainly smoothing filters with dif-
ferent cutoff frequencies. The larger the excitatory part of the re-
ceptive field, the larger the smoothing effect on the input image.
This effect can be observed in Fig. 7(b) where the spatial fre-
quency characteristic of the respective receptive fields are repre-
sented. In Fig. 7(b), the spatial frequency response of plane
shows that only high frequencies at the edge of the graph will be
filtered and therefore, a small smoothing effect will be produced
by this plane. Nevertheless, the spatial frequency response of
plane shows that mainly low frequencies at the center will
pass, thus with a strong low-pass spatial frequency result. Planes

and are mainly line detectors in the horizontal and ver-
tical directions, respectively. It also can be observed that filters
such as and are orthogonal line detectors. The same for
planes and . The plane performs edge detection in
135 . The threshold function (4) applied after each plane gen-
erates additional nonlinear filtering effects. Interpreted from a
filtering point of view, the FEN extracts different features from
the original image that improve the classification performance
of the combined network.

2) Face Classification Problem:The genetic selection of
the receptive fields parameters for the face recognition problem
are now presented. Fig. 8 shows the best (top) and average
(bottom) fitness for each population as a function of the gener-
ation number. Fig. 8(a) is for the validation set and Fig. 8(b) for
the test set. A total of 89 generations of 20 individuals each one
were computed. The horizontal dashed line in Fig. 8(a), 84.2%
and Fig. 8(b), 77.5%, represent the best classification results
reached by the two-hidden-layer MLP alone on the validation
and test sets, respectively. It can be observed that the GA
selected several combination of the receptive field parameters
(size, orientation, bias, and number of planes per layer) that
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Fig. 8. Fitness for receptive field parameters and variable number of planes for 89 generations for the face recognition problem. Fitness of the best network (top)
and average fitness of the population (bottom) as a function of the generation number. (a) Validation set. (b) Test set.

Fig. 9. Ranked classification performance by fitness including all individuals on the (a) validation set and (b) test set for the face recognition problem. The dashed
line represents the best classification performance obtained by an MLP alone on the same database.

yielded better results than those reached by the MLP. The
GA keeps a record of each individual and its fitness in every
generation. Each individual in the GA encodes a receptive
field architecture in a binary string. Therefore, as long as some
of the individuals have reached classification performances
above the MLP model, the receptive field architecture is known
independently of the point where the GA is stopped. In fact,
Fig. 9(a) and (b) shows the solutions ranked according to their
fitness and it is found that several perform better than the
MLP model. The GA found an individual with classification
performance of 91.1% on the validation set when the best result
at the starting generation was 86.6%. The best fitness found by
the GA on the test set in the 89 generations was 84.2% and the
best individual at the starting generation was 80.6%.

Fig. 9(a) and (b) shows the classification performance of
the best individuals in the 89 generations ranked according to

their fitness. These figures show that the difference between
the classification performance for all ranked individuals ranged
between 84.2% and 6% for the test set. It is also observed
that there are several configurations of the FEN network
that yield better results than the best solution reached by a
two-hidden-layer MLP alone on the test set (77.5%). As in
the handwritten recognition problem, these results show the
significance of an appropriate receptive field design. In the face
recognition problem, the receptive field spatial configuration
for the best individual in the test set is shown in Fig. 10.
The receptive fields are shown in gray levels in Fig. 10(a).
White and black tones represent maximum and minimum
values, respectively, and the background gray level represent
value 0. Fig. 10(b) shows the spatial frequency characteristics
of each receptive field (white represents value 1 and black
tone represents value 0). The first two layers of the FEN are
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Fig. 10. (a) Architecture of the FEN for the best network in the face recognition problem. Each column contains the number of different receptive fields in one
layer: two receptive fields in the first layer and three at the output layer. The gray levels represent the spatial configuration of the receptive fields. The background
gray represents 0, darker levels represent negative weights (inhibitory) and lighter levels represent positive values (excitatory). (b) Spatial frequency filtering
characteristics of each receptive field in the FEN (Gray scale: white is 1 and black is 0).

composed of two input -type planes followed by two -type
planes. Then, the next two layers are composed of three-type
planes followed by three -type planes. As in the case of the
handwritten classification problem, the FEN can be interpreted
as a nonlinear transformation from the 92112 input image to
a three plane image of 46 56 pixels. After the FEN an MLP
neural classifier with 100 hidden units requires 346 56
100 100 100 100 40 786 800 adjustable weights. A
two-hidden-layer MLP with 75 hidden units has 92112 75

75 75 75 40 781 425 adjustable weights, a number
similar to that of the combined network selected by the GA.
Nevertheless, the classification performance is significantly
lower since the MLP reaches a maximum of 77.5% with 110
hidden units. In Fig. 10(a), the genetically evolved receptive
fields, , and are selective in orientation and show
excitatory center and inhibitory surround. Receptive fields,

, and have inhibitory center and excitatory surround
and and are oriented in 45 and 135, respectively.
Receptive field is a spatial low-pass filter with a large
excitatory component and its spatial frequency response can be
observed in in Fig. 10(b).

The choice of three evaluations for each individual in the
GA is a tradeoff between statistical significance and computa-
tional time employed. After ten simulations for different starting
weight sets, the standard deviation for the MLP neural classifier
is 2.5% in the handwritten digit classification problem and 2.3%
in the face recognition problem, as shown in Fig. 4. These values
correspond to 40 and 100 hidden units as used in cascade with
the FEN in each problem, respectively. Considering these stan-
dard deviations, differences between recognition rates obtained
with three evaluations are statistically significant with high level
of confidence ( ) when the averages differ in approx-
imately 3.6% in the range for averages around 80–91%. In the
two problems treated in this paper, the difference between per-
formance of each individual at the starting generation and the
best fitness found by the GA is statistically significant. Further-
more, to evaluate the method it is used an independent test set
that is different from the validation set used by the GA to eval-
uate the fitness of each individual.

Results of the handwritten digit classification and face recog-
nition are summarized in Table IV for the test set. The recogni-

TABLE IV
RECOGNITION PERFORMANCE ON THETEST SET FOR THEFULLY

CONNECTED MLP MODEL AND THE COMBINED NETWORK,
FEN+ MLP CLASSIFIER MODEL

tion performance is shown for the fully connected MLP model
alone and the combined network (FEN MLP neural clas-
sifier). Improvements in classification performance by intro-
ducing the FEN network are 5.9 and 6.7 percentage points in
each problem, respectively.

IV. CONCLUSIONS

This paper presented a new method for automatic design of
biologically inspired receptive fields in feed forward NNs to en-
hance pattern recognition performance. It is proposed a neural
architecture composed of two networks in cascade: an FEN fol-
lowed by an MLP neural classifier. A GA was used to select
the parameters of the FEN to improve the classification perfor-
mance of the combined architecture. The GA optimized the size,
orientation, and bias of biologically inspired receptive fields as
well as the number of planes per layer in the FEN. The method
was applied to the problems of handwritten digit classification
and face recognition. Rather small databases were used in both
problems to avoid excessive computational time, although re-
sults are expected to improve with larger databases.

Results of fully connected MLP NNs for different number
of hidden units were presented as a reference to compare re-
sults of the proposed model. On the handwritten digit classifi-
cation problem, results show that no further improvements were
obtained by increasing the number of hidden units above 40.
The best results for a two-hidden-layer MLP of 80 hidden units
reached 85.3% on the validation set and 84.9% on the test set.

For the proposed combined model (FENMLP), after a
genetic search through 145 generations, the selected architec-
ture reached 90.8% of classification performance on the test set
for the handwritten digit classification problem. This result is
significantly better than the 84.9% obtained by fully connected
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MLP model on the same test set. By ranking the classification
performance of all the combined models with receptive fields
selected by the GA, a strong dependency was found between
the combined NN performance and the receptive field configu-
ration (dimensions, orientation, bias and number of planes per
layer). Differences between 90.8% and 14.6% of classification
performance were found on the test set depending on the recep-
tive field configuration of the FEN. As shown in Fig. 6, more
than 1200 of the combined models performed better than the
fully connected MLP model.

For the face recognition problem, the two-hidden-layer MLP
model reached the best classification performance of 84.2%
for the validation set and 77.5% for the test set. The results of
the genetic selection of the FEN parameters reached a correct
face recognition performance of 91.1% on the validation set
and 84.2% on the test set. These results are significantly better
than those reached by the fully connected MLP model on the
same sets. Results of the ranked classification performance (see
Fig. 9) on the face recognition problem after the genetic search
for the FEN parameters show that the main improvements are
due to the receptive field configuration. Results are compared
among models with different receptive field configuration and
to those of a fully connected NN where receptive fields are not
explicitly defined.

It is possible to interpret the filtering effect of some of the re-
ceptive fields selected for the FEN. Some of them show spatial
direction selectivity or spatial frequency selectivity. The FEN
network can be interpreted as a nonlinear transformation over
the input data producing a better separation among classes. It
would be useful to study in the future the common character-
istics of the receptive fields among the combined models that
yielded best classification performance results.

This paper introduced a method for an automatic design of
the receptive fields basic architecture and applied the method
to improve the classification performance of two pattern recog-
nition problems in 2-D. Modeling the biological architecture
of the visual system is beyond the scope of this paper. Nev-
ertheless, the proposed method makes use of the knowledge
about the biological receptive field architecture to incorporate
receptive fields into artificial neural models to create new ar-
chitectures specifically tuned for a particular pattern recogni-
tion problem. Possible future developments include evolving
more complex neural architectures to improve pattern recogni-
tion performance. The model should incorporate complex re-
ceptive fields as those found in the visual cortex to include cur-
vature, corners and end-stopped line detectors. It would also be
interesting to include the concept of modular specialization in
the evolving model.
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