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Genetic Design of Biologically Inspired Receptive
Fields for Neural Pattern Recognition

Claudio A. PerezMember, IEEECristian A. Salinas, Pablo A. Estéyédember, IEEEand Patricia M. Valenzuela

Abstract—This paper proposes a new method to design, through ceeds from the retina to the inferotemporal cortex in the visual
simulated evolution, biologically inspired receptive fields in feed pathways [2], [7], [41].
forward neural networks (NNs). The method is intended to en- A receptive field is the region of the sensor where an ad-

hance pattern recognition performance by creating new neural ar- equate stimulus elicits a response [8]. The receptive fields of
chitectures specifically tuned for a particular pattern recognition q P ) P

problem. It is proposed a combined neural architecture composed retinal ganglion cells in mammals are organized in center/sur-
of two networks in cascade: a feature extraction network (FEN) fol- round configurations [28]. The receptive fields from retinal and
lowed by a neural classifier. The FEN is composed of several layers |ateral geniculate nucleus (LGN) neurons have circular sym-
with receptive fields constructed by an additive superposition of ex- metry and they respond almost equally to all stimulus orienta-
citatory and inhibitory fields. A genetic algorithm (GA) is used to tions [50]. Hubel and Wiesel built a comprehensive picture of

select the receptive fields parameters to improve the classification . . . .
performance. The parameters are the receptive field size, orienta- th€ basic functional architecture of the visual cortex [27]. They

tion, and bias as well as the number of different receptive fields in defined “simple cells” as cells where it is possible to map the
each layer. Based on a random initial population where each indi- excitatory and inhibitory regions of the receptive field by moni-
vidual represents a different neural architecture, the GA creates toring the cell’s response to a spot of light. The receptive fields
new enhanced individuals. The method is applied to the problems ot gjyple cells were implemented by overlapping the receptive
of handwritten digit classification and face recognition. In both fields of ter/ d cells f LGN [25]. 1261, Simol I
problems, results show strong dependency between the NN clas- e SO, center/surroun C? sirom ,[ ],’[ ]. Simple cells
sification performance and the receptive fields architecture. The atthevisual cortex have oriented receptive fields, and hence they
GA selected parameters of the receptive fields that produced im- respond to stimuli in some orientations better than others being
provements in the classification performance on the test set up to excellent at detecting the presence of simple visual features such
90.8% for the problem of handwritten digit classification and up 55 Jines and edges of a particular orientation [50]. Orientation
to 84.2% for the face recognition problem. On the same test sets, selective receptive neurons are found throughout layers 2 and

results were compared advantageously to standard feed forward . ) . : .
multilayer perceptron (MLP) NNs where receptive fields are not 3 of the primary visual cortex and are relatively rare in the pri-

explicitly defined. The MLP reached a maximum classification per- mary inputs within layedC [41], [50].
formance of 84.9% and 77.5% in both problems, respectively. The receptive fields are also local in the two-dimensional
Index Terms—Face recognition, genetic algorithms (GAs), hand- (2-D)_ spatial frequency domain. The spatial contrast-sensitivity
written digit classification, neural pattern recognition, receptive functions of cortical neurons were measured and resulted to be
fields. narrower than those of retinal ganglion cells [9]. This localiza-
tion in 2-D space means that cells respond to a small band of
radial spatial frequencies and to a small band of orientations
[51]. The spatial frequency response characteristic of a cortical
A. Biological Receptive Fields simple cell can conveniently be described in terms of Gabor

HE MAMMALIAN visual cortex has evolved over mil- functions [29]. _ _ . _ _
T lions of years to perform pattern recognition tasks with re- “Complex cells” receive excitatory inputs from ne|ghbor!ng
markable precision [40]. In the visual system, neuroscientisignple cells receptive fields of similar preferred orientation.
have identified a hierarchical structure proceeding along mLWhgnevera I|ne'or e.dge stimulus of thg correct orientation falls
tiple parallel pathways through a number of anatomically d@uth[n the receptlve field of one of the S|'mple cells, t.he complex
fined layers. There is physiological evidence that neurons @&l is activated [26]. The receptive field properties become

spond to more complex patterns as the flow of information pr@fogressively more sophisticated as the flow of information
proceeds from the retina to the inferotemporal cortex [50].

Understanding of cortical visual areas is still in early phase
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sights about cortical image representation [39], [40]. It was al8) learning rules [54]. As we employ genetic algorithms (GAS)

shown that by using a learning algorithm to find sparse linety evolve the architecture of the receptive fields, we focus only

codes for natural scenes, a complete family of localized, odn architecture evolution.

ented, and bandpass receptive fields, similar to those found irEvolution of NN topological structures can be performed by a

the striate cortex, were developed [17], [39], [40]. direct encoding scheme where each connection in the architec-
ture is directly specified by its binary representation. Another

B. Receptive Fields in Artificial Neural Networks (ANNs)  alternative is to use an indirect encoding scheme, e.g., a set of

Fully connected feed forward neural networks (NNs) aIIO\R}jles (grammar) that can be applied to produce an NN architec-

connections between each unit of one layer and all units in tpiget[341‘ 'I;he_m?wect encotdltr.wg sc?tehme can ?rodme ntwore %(Zm'
previous layer without an explicit specification of the receptiv@aC genotypical representation of the neural architecture [54].

field architectures as in the visual system. Several papers havgAS have been used to find near optimal training parameters

described the use of biological models of vision to solve pa?—n heocognitron models [33]. Also, the selectivity parameters

tern recognition problems [2], [11], [20], [32], [46]. Successfu?f the neocognitron were o_ptl_mlzed using GAs [55]. In other
applications have been performed in bandwidth compressi (?rl_<, GAs were used .to optimize the number of layers, number
image quality assessment, and image enhancement [18]. Sever |qq§n units, 'an”'”g rate, m_omentum, number of epqchs,
algorithms for image processing such as edge detection basedd initial set of weights values in a perceptron-type architec-

gradient operators and multiresolution architectures are ba o [45], [52]. In our literature review, we have not found any

on the visual system [32]. For example, a cortical column an?pplication of evolutionary algorithms to the specific design of

chitecture was used in a multilayer network to perform patteF(r‘?Cepti\.'e ﬁ?"ds o salve pattern recognition problems asit is pro-
recognition in speech and visual recognition [2]. The applicati(ﬂ?sed in this paper.
of the retinal “Mexican hat” filter yielded a high-pass image em-
phasizing contours and sharp changes in luminosity [11]. Fi- Purpose of the Present Study
thermore, it was shown that the retinal filter is optimized to In this paper a new method is proposed for automatic design
decorrelate the incoming luminosity signal based on its correlgf biologically inspired receptive fields in ANNs. The method,
tion function [3]. based on a GA, builds up an adequate receptive field architec-
According to the biological evidence described in the predre searching for the appropriate dimensions, orientation, and
vious section, multilayered NNs may be built to correspond tsias of center-surround receptive fields to maximize the clas-
the successive cortical maps with learning rules which enalgication performance of the network. The proposed NN ar-
them to learn many types of input—output transformations [Z}hitecture is composed of two combined networks connected
The basic structure of this model has been captured in a neuratascade. The first one, a feature extraction network (FEN),
model where each layer is composed of several ordered ens@a neural architecture with biologically inspired connectivity
bles of units called “planes” and a connectivity among layegsd receptive fields such as the neocognitron model [13]. The
enabling the appearance of simple and complex receptive fielgdgcond network is a fully connected MLP classifier [23], [30],
Examples of this type of neural architecture have been used47]. A GA is used to select parameters of the FEN receptive
[1], [12], [13], [38], and [51]. fields to improve the classification performance of the combined
In particular, biologically inspired receptive fields have beenetworks. The method designs a near optimum receptive field
used in the neocognitron model and its variations [13], [38], argdchitecture for a specific problem and therefore could be ap-
in modeling the visual cortex retinotopical and orientation maggied to several classification tasks. The method is expected to
[12]. One of the advantages of NNs with receptive fields is thahhance pattern recognition performance by an appropriate de-
the number of weights is efficiently reduced in relation to fullgign of the combined network architecture. In this paper, the
connected architectures [38]. method is applied to the problems of handwritten digit classifi-
The neocognitron was trained to recognize 24 simple patteigigion and face recognition. The results are compared to those
regardless where they appeared on ax1@6 element visual of fully connected MLP where no explicit receptive fields are
field. It was assumed that compléX cells from one cortical defined.
patch led to a pair of simpleS) and complex ') cell layers  The method is intended to adapt the receptive field basic ar-
[10]. Other areas were also organized in pair§ @ndC' units. chitecture of an ANN to create new models specifically tuned
In the neocognitron, the weights corresponding to units irfthefor a particular pattern recognition problem. Modeling the bi-
layers were adjusted by training but the basic architecture of ii®gical computations performed in the visual system is be-
receptive fields, the number of planes per layers and the numbend the scope of this paper. Preliminary results of the proposed
of total layers remained fixed [13]-[16], [31]. However, an autamethod applied to find the receptive fieldsandy dimensions
matic method to design or adjust the receptive field architecturea fixed neural architecture of two planes per layer were pre-
has not been found in the literature. sented in [42] and [44].

C. Evolutionary Neural Networks Il. METHODS

Evolutionary NNs refer to a special class of ANNs in which
evolution is an essential form of adaptation in addition té'
learning [54]. Evolution has been introduced in NNs in three Functionally, the NN architecture can be decomposed into
main levels: 1) connection weights; 2) architectures; aridio networks in cascade as illustrated in Fig. 1. The first one,

Combined Network Architecture
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output of units in aC-type plane and (2) the output of the units
of an S-type plane as follows:

Swf Sy;"

CF(i, 4) = > > S (m, n)hef(i—m, j—n) (1)

m=1 n=1
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whereC} (i, j) is the output of the unit in position,(j) in the
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Neural Classifier kth plane of théth layerC, SF (i, 7) is the output of the unit in
bete: et 1rem 1rem  1ren position ¢, 5) in the kth plane of theth layer S, hcF, andhsf
igits:  23x15 12x8 12x8 12x8 h . field iated t h ol tivel
Fuse: 112x92 112x92 112292 SCrdS are the receptive fields associated to each plane, respectively.
- — ) R, is the number of planes in layér prior to layersS;. SzF and
Feature Extraction Network Syy are ther andy dimensions, respectively, of ttigh plane

in thelth layerS. Cz;_; andCy;_, are the dimensions and
Fig. 1. Combined neural architecture composed of two networks in cascage:respectively, of the'th plane in the(l — 1)th layerC. The

a feature extraction network (FEN) followed by an MLP classifier. The FE'?hdexl represents |ayers 1 and 2 Eftype or C-type Iayers
is convolutional-type network composed of four layers with variable numb )

of planes per layer and a threshold function. A scale reduction is perform%[@e scale reduction performed in the plafig for the case of

between layersS; and C; for the handwritten classification problem andthe handwritten digit classification problem andigin the face
betweensS, and C, for the face recognition problem. Dimensions of eac'fecognition problem is represented in

plane are specified for each problem (digits or faces). The neural classifier IS
an MLP composed of two hidden layers of 40 or 100 hidden units each one for

k k
the handwritten digit or the face recognition problem, respectively. Sz1 Sy

Ck@i, j) = Z Z S¥(m, n) - hek (20 —m, 2§ —n). (3)
m=1 n=1

the FEN, is a hierarchical convolutional-type network [13], [38]. ) ) )
The feature extraction process is performed through successiié scale reduction has an effect on the computational time re-
filtering of the input image by four hidden layers connected ifuiréd to convolve the receptive fields and the images. From
cascade. The second network is a neural classifier with an MHpS Point of view, itis preferred to choose the scale reductionin
architecture. C, as it was done in the handwritten digit problem. Neverthe-
1) The Feature Extraction Network (FENYhe FEN is a €SS, human face classification depends on spatial information
neural architecture with biologically inspired connectivity and! the range 8-13 cycles/face [37] and therefore higher spatial
receptive fields such as the neocognitron model. The FENTRSOlUtion is required. By performing the scale reductio@’in
organized in four alternateg- andC-type layers following the the feature extraction is performed at higher spatial resolution
notation used by Fukushima [13]. As shown in Fig. 1, the modi the face recognition problem. Besides, this feature extraction
consists of layers, Cy, S, andCs, where each layer is com- is feasible within reasonable computational time since the face
posed of several planes. As in the neocognitrofi;gpe layer _database has only 160 training patterns. Tr_le output _of every unit
contains units with receptive fields over units belonging to ' the FEN goes through a threshold function [14] given by

single plane of the previous layer, i.e., a unit af'etype layer e ifr>0
b(z) = { ’ T =

is only connected to units within the same plane of the previous 0. ifx <0. (4)

layer. AnS-type layer contains units connected to other units in
different planes of the previous layer. The number of planes in a3) Receptive Field ConstructionEven though the FEN ar-
C-type layer is the same as the number of planes in the previalstecture is based on the neocognitron model, the receptive
S-type layer. Each unit within a plane shares the same receptiids are built in a complete different manner determining ge-
field parameters (size, rotation and bias) with the other unitgtically their geometry, orientation, and bias. As illustrated in
in the same plane. Therefore, the number of different receptivg. 2, each receptive field consists of an additive superposition
fields depends on the total number of planes presentin all layesétwo separate fields: an excitatory and an inhibitory field, both
Unlike the neocognitron model, in our model the number obtated in a specific angle. All weights are equal within each ex-
planes in thes-type layers is variable and it is selected by simieitatory or inhibitory field. The sum of all weights within each
lated evolution. As in the neocognitron model, a scale reductiercitatory field is 1 and this sum is1 for each inhibitory field.
is located between layet; andC; and is performed by sub- The influence of the inhibitory field over the complete recep-
sampling all planes in layer';. The scale reduction decreasesive field may be attenuated by a parameter named®Biaich
the number of weights required in the network. takes values in the interval [0,1]. The bias adds low-pass filtering
2) Receptive Field Spatial FilteringThe input imageC, characteristics to the receptive field [53]. Thus, each receptive
in Fig. 1 is propagated through the layers of the FEN and field is determined by six parameters: thandy dimensions in
each plane discrete convolution takes place between the imagels of the excitatory fieldy ... andy...., and of the inhibitory
and the receptive field of that plane. Equation (1) describes theld, x;,, andy;,.; the orientation angle;; and the biasp.
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Fig. 2. Receptive field creation. (a) Determinationradindy dimensions of the excitatory and inhibitory components of the receptive field. Rotation incangle
Additive superposition of the receptive field components including aBig®) Coding of the neural architecture into a binary string. It is shown a coding example
for the receptive field of one plane and the coding of the number of planes in layers 1 Arfé} Znd N P, respectively.

Fig. 2(a) shows the three basic steps in the receptive field con- TABLE |
struction: selection O-i:ezcy Yewer Tinh, andyinh dimensions, MLP NEURAL CLASSIFIER TRAINING PARAMETERS
rotation of the receptive field in angte and addition of the ex- Parameter Value
citatory part, inhibitory part and bias of the receptive field. The = Number of hidden layers 2
analytical expression for the receptive field is given by Units in the first hidden layer 40
Units in the second hidden layer 40
Wi, ) = K%y alis §)+ (L= B)RE, L (,j) (5)  Remse of ifalrandom weights o
wherehg™ s the excitatory component of the recep- %Zﬁf;;“;;ochs ;)(')%
tive fleld of d|mension31:mC by y... and orientation angle,
o n.o 18 the inhibitory component of dimensions,.,

BY Yinn and orientation angle. Equations (6) and (7) show the[30]. The neural classifier was trained by backpropagation with
restrictions on the intensity for both components of the recefpomentum for a fixed number of epochs [21], [47]. The chosen

tive field h°*¢ andh'™", respectively parameters for the MLP architecture have been determined in
o Yene previous research for the same pattern recognition problems
Z Z pexe (4, 1) =1 VZener Yower @ (6) [43]—.[45]. The number of units in eaqh hlngn layer was de-
prr it Teac)Yere, @ termined to beV;, = 40 for the handwritten digit problem and
e Ny, = 100 for the face recognition problem. These numbers of

Jyinh ) hidden units were selected based on results of training several
d2h (4, 5) ==1 " Y@in, Yinh: @ (1) M p models for different number of hidden units and selecting
the smallest number with highest classification performance.
The result of the application of the receptive fields over the inpiihe training parameters are summarized in Table I.
image is a nonlinear filtering process performed by each planes) Databases:The method was applied to the handwritten
in the FEN. As parameters..., Yeze, Tink, Yinn, @, and B digit classification and to the face recognition problems. In the
in (5) determine the spatial configuration of the receptive fielfirst application, a database composed of 3674 handwritten
these parameters also determine the equivalent spatial filterdigits from university students was partitioned into three sets.
performed by the FEN. The partition separates randomly digits from different persons

4) Neural Classifier: As shown in Fig. 1, the second net-but leaves all digits from the same person in a single partition.
work in cascade, the neural classifier, is an MLP architectufderefore, from the generalization point of view this form of
[23] composed of two hidden layers and a number of outpytartition represents one of the most difficult possible cases.
equal to the number of classes of the pattern recognitidie training set was composed of 1837 handwritten digits, the
problem. For the handwritten digit classification the number eflidation and test sets were composed of 918 and 919 digits,
outputs is 10. In the case of the face recognition problem thespectively. The handwritten database contains digits that are
number of outputs is 40 since there are 40 different subjectst normalized in size as shown in Fig. 3(a). Each handwritten
in the database. The maximum value among the outputsdifit is composed of 15 23 pixels, with two levels (binary)
the neural classifier determines the class for the input patteyer pixel. This database is available in [22].

Tinh, Yinh;

=1 j=1
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TABLE I
6251380845 13307245849 §320013324 FEN PARAMETERS ENCODED IN THE SPECIFIED NUMBER OF BITS. THE TABLE
zggf‘;’ ;&E: 2 ;z;% ggZé;z ;?gggggégi ALSO SHOWS THEMAXIMUM AND MINIMUM VALUE OF EACH PARAMETER
460992a68E £385939192 1533654503 AND THE MINIMUM STEP OFCHANGE BETWEEN THOSEVALUES
96/%9416%5 4355356189 641292985\ — -
3532855504 2655358043 1580508242 Parameter Number of | Minimum Maximum Step
1223453025 9634541772 §2245408¢9 bits Value Value
Bee3525413 051353183% 4D53346156 % 3 1 3 1
19568/%013 #SAT727614 40104394629 3 3 1 3 1
(319405619 4426081464 B634645¢89 xf 3 T 3 1
Vi 3 1 8 1
Training Validation Test o (degrees) 3 0 157.5 22.5
(a) Bias 7 0 1 0.0079
NP, 3 1 8 1
NP, 3 1 8 1

knowledge, GAs emerge as an appropriate tool to find a suitable
configuration for the receptive fields [42], [44].

1) Coding: The proposed network architecture can be en-
coded into a binary string [24], [36]. Table Il shows the FEN
parameters encoded by the GA. The number of planes in layers
S1 andS, are defined by the paramete¥s?; and N P», respec-
tively. According to the number of layers and number of planes
per layer used in previous convolutional models [13], [38] the
maximum number of planes per layerSp and.S; was set to 8,
and the total number of layers in the network was 4. Therefore,

there may be a total of 32 different receptive fields. Besides,
Treining o Tt each receptive field is defined by six parameters: excitatory and

inhibitory z, y dimensions, rotation, and biasB. Two global

Fig. 3. Samples from the training, validation and test sets from the (parameters were needed additionally to encydg andN P;.
handwritten digit and (b) face databases. An example of string coding for one plane and for the number
of planes per layer is shown in Fig. 2(b). The total number of

The second database is the face database from AT&T Laigrameters in a single FEN is 194 x 32 + 2). The number
oratories Cambridge, where there are ten different imagesabfbits assigned to each parameter defines the number of dif-
each of 40 distinct subjects. The size of each image is 922 ferent values that each parameter may take, e.g., three bits take
pixels, with 256 gray levels per pixel. For some subjects, %8 = 8 values. As shown in Table Il each receptive field is en-
images were taken at different times, varying the lighting, facigpded by 22 bits, therefore 704 bits are required to encode the
expressions (open/closed eyes, smiling/not smiling) and fack receptive fields. Additionally, six bits are required to encode
details (glasses/no glasses). All the images were taken agairi§anumber of planes ifi; andS,. Therefore, the total number
dark homogeneous background with the subjects in an uprigbt bits required per architecture is 710.
frontal position (with tolerance for some side movement) [49]. 2) Fitness: Each individual in a given population of the GA
The face database was also partitioned randomly into three segpresents a specific network architecture that must be ranked
160 faces for training, 120 for validation and 120 for testingiccording to its performance in the pattern recognition task. All
This leaves for each individual in the database four faces fafchitectures in the population are trained with the training set.
training, three for validation, and three for test. Some cases uring training, the classification performance in the validation
clude individuals with and without glasses in different partitioset was also computed. Then, each individual was assigned a
sets, which represent a difficult problem. fitness that was equal to the maximum recognition rate reached

Samples for each partition on both databases are showrbjnthe combined network in the validation set.

Fig. 3. The training set is used to train each individual in the The fithess measurementis a number in the interval [0,1] rep-
GA. The validation set is used to determine the fithess of eatgsenting the range 0% to 100% recognition in the validation set.
individual in the population and therefore to generate the neéks the weights of the classifier are initialized randomly at the be-

population according to the GA as itis explained in Section |I-Blinning of the training process, the fitness measurement varies

The generalization performance of each individual is measur&@m one starting point to another. From the computational point
on the test set [52]. of view, the best choice is to select the minimum number of eval-

uations for each individual in the GA. As a tradeoff, three evalu-
ations were chosen for each individual in the GA. This approach
to reduce the computational costin GAs has been employed pre-
The optimum size, orientation and bias of the receptive fieldsously [6]. In Section Ill, a discussion regarding the statistical
as well as the number of different receptive fields to maximizggnificance of this choice is given. The final fithess assigned
the classification performance of the network are not knowto the individual is the average of the three evaluations. If the
Given the problem high dimensionality and the laclagdriori  same individual appears more than three times during the sim-

B. Genetic Algorithm
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TABLE Il the population was chosen to be relatively small (20), to avoid

SUMMARY OF THE PARAMETERS FOR THEGA longer computational time due to population size [33], [52],

No. of individuals per population (N) 20 [55]. Furthermore, it is expected to reach significantly higher

No. of evaluation per individual 3 classification results with a larger training set but simulation

Crossover probability (Perassover) 0.5 time would not be appropriate for our available computer re-
Mutation probability (Puutation) 0.0001 pprop P

sources (based on Pentium 111-450 MHz computers). In the case
of the face recognition problem, the training database considers
ulation, it will inherit the fitness of the first three appearancesnly 160 training images, but the input weights are 10 304 for
Therefore, the fitness of each individual and its three first evalaach 92x 112 pixel image. The training time takes several min-
ations must be stored. This helps to reduce computations at tites per individual, therefore, a population of 20 individuals was
expense of memory space. also chosen for this problem.

3) Selection and SamplingThe genetic algorithm uses pro- In both problems, part of the simulations results were ob-
portional selection [19], [36] to assign an individual of the curtained in a computer laboratory with a network of 20 PCs to
rent generation a probabilit§); to be chosen as an individual ofcompute in parallel the individuals of one population and one

the next generation as follows: PC to control the GA. As the computational performance of PCs
doubles roughly every two years, the proposed method would
P, = Nfi (8) requireinthe future less extensive computer resources. Once the
S fa method is applied and the GA has determined the FEN architec-
k=1 ture, the combined architecture, FENMLP classifier can be

. ) o . implemented in a simple PC to perform classification online.
wheref; is the fitness of the individual of the population and P P P

N is the number of individuals in the population. Therefor

the expected offspring of individualfor the next generation iseC' Multilayer Perceptron Model (MLP)
defined by A multilayer perceptron model (MLP) neural classifier

without predefined receptive fields served as a reference to
N;,=N-P,. (9) compare results with our method. An MLP was directly trained
with the training set and results were measured on the validation
However,V; is a real number that must be converted to an igmd test sets for different number of hidden units. Because of the
teger number. This conversion is performed using the stochagfisights random initialization, ten simulations were performed
universal sampling method [36], [19], which assumes that thg each different number of hidden units. In the case of the
population is laid out in random order as in a pie graph. Eaglindwritten recognition problem, the input layer was composed
individual is assigned a space on the pie graph proportionalgp 345 units, and the output layer was of ten units, one for
its fitness. Then, an outer roulette wheel is placed around t8gch digit 0, ..., 9). Consequently, the basic configuration of
pie with V equally spaced pointers. A single spin of the rouletigye two-hidden-layer network is 345V, : Ny, : 10, whereN,,
wheel picks allV- members of the new population. The resultingepresents the number of hidden units in each of the two hidden
sampling is optimal combining zero bias, minimum spread, afglers. In the case of the face recognition problem, there are
O(n) time complexity [4], [19]. 10304 (92x 112) input units and 40 output units (40 subjects in
4) Crossover and MutationCrossover and mutation arethe database). The basic configuration of the two-hidden-layer
performed on each population after the selection process. \ipp is 10304 N}, : N}, 1 40. In both problems, the output of

avoid positional bias, uniform crossover was used [35], [48]. Bach unit of the MLP is mathematically expressed as
uniform crossover, two parents are randomly selected and for

each bit position, an information exchange is produced with _
a probability P..ossover- ThiS means that each bit is inherited flnet;) =
independently of the other bits present in the parent strings. The
probability of bit interchange between two individuals musiherenet; is the weighted sum of the outputsof all the units
be selected according to the equilibrium between exploratignthe preceding layer (inputs in the first layer), afiés a sig-
and exploitation [36]. Each pair of parent strings generatesridal activation function used as threshold. The weights
pair of siblings. The mutation operator [36] consists of randodenote the connection strength between ipitthe preceding
changes in the bits of the binary string. The probability déyer, and unitj of the current layer. Besides, each unit has a
mutation Pnutation is NOrmally small; however, it also dependsias bias;, allowing a shift in the relative position of the sig-
on the equilibrium between exploration and exploitatiormoidal function along theet; axis.
Table Il shows the probabilities used in all our experiments.

5) Computational Cost:The proposed method is intensive . RESULTS
in computations since an NN has to be trained for each dif- ) -
ferent configuration of receptive field parameters. Even fora Multilayer Perceptron Neural Classifier
rather small handwritten digit training database of 1837 exam-In this subsection, we show the results obtained with an MLP
ples, the computational time for one individual of the populatiomeural classifier alone in the problems of handwritten digit clas-
takes several minutes in a Pentium 111-450 MHz computer undsification and face recognition. These results will serve as a ref-
Linux operating system. Therefore, the number of individuals grence to compare with the results of our proposed model.

Fpnpe— net; = Z wj;0; + bias;  (10)
o—net; .
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Fig. 4. Percentage of the (a) validation and (b) test patterns correctly classified by a two-hidden-layer MLP as a function of the number of sjddethanit
handwritten digit classification problem. Percentage of the (c) validation and (d) test patterns correctly classified by a two-hidden-layerfitid®ias of the
number of hidden units, for the face recognition problem. Average and standard deviation for ten simulations with different weight initializations

Fig. 4 shows the percentage of the validation and test pat-classification performance were reached on the test set above
terns that are correctly classified by a two-hidden-layer MLP, 49 units in the hidden layers for the handwritten recognition
a function of the number of units in each hidden layer. As eaginoblem and above 100 units in the face recognition problem.
network was trained for ten random starting weight sets, the admong all number of hidden units, the best classification per-
erage recognition rate and the standard deviation are showridrmance on the test set, computed as the average of ten simu-
Fig. 4(a) and (b) for the validation and test set in the handwrittéations, for the handwritten digit problem reached 84.9% for an
recognition problem, respectively. Fig. 4(c) and (d) shows tt88-hidden-unit MLP. The best recognition performance on the
results for the validation and test sets for the face recognititest set for the face recognition problem reached 77.5% for a
problem. In all cases, it can be observed that the classificatibh0O-hidden-unit MLP.
performance increases as a function of the number of hidden
units for a small number of hidden units and then does ngt
change significantly for a large number of hidden units. Ac-’
cording to the ANOVA test, no statistically significant changes 1) Handwritten Digit Classification Problem:

Genetic Selection of FEN Architecture
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Fig. 5. Fitness for receptive field parameters and variable number of planes for 145 generations for the handwritten digit classificatiofitHe nestsnetwork
(top), average fitness of the population (middle), and worst network (bottom) as a function of the generation number. (a) Validation set. (b) Test set
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Fig. 6. Ranked classification performance by fitness including all GA individuals on the (a) validation set and (b) test set for the handwriteessiiggtion
problem. The dashed line represents the best classification performance obtained by an MLP alone on the same database.

The results of the genetic selection of the FEN parametdfigy. 5(a) and (b) represent the best classification performance
for the problem of handwritten digit classification are presentext 85.3% and 84.9%, reached by the best MLP architecture over
in this subsection. A neural architecture with variable recefhie same validation and test sets, respectively.
tive field parameters and variable number of planes per layerFig. 6(a) and (b) shows the classification performance of all
was employed. Fig. 5 plots the best (top), average (middle), andividuals in the 145 generations ranked according to their fit-
worst (bottom) fithess for each population as a function of threess. These figures show that the difference between the clas-
generation number. Fig. 5(a) corresponds to the validation sdication performance of the best ranked individual and the
and Fig. 5(b) to the test set. A total of 145 generations of 20 imorst one, changed between 91.3% and 14.1% (77.2 percentage
dividuals each were computed. It can be observed that the clpsints) in the 145 generations for the validation set and be-
sification performance of the system improved as the genetieeen 90.8% and 14.6% (76.2 percentage points) in the test set.
algorithm selected appropriate parameters for the size, oriertafig. 6(a) and (b), the dashed line represents the best classi-
tion and bias of the receptive fields as well as a proper numbeation performance obtained by a two-hidden-layer MLP on
of planes per layer. The classification performance of the beéke same validation and test sets. It can be observed that there
individual on the validation set, as a function of the generare over 1200 individuals ranked with fithess above that of the
tion number, improved from 81.6% at the starting generation teéo-hidden-layer MLP model. Therefore, a proper design of the
91.3%. The classification performance of the best individual oaceptive field architecture yields better classification perfor-
the test set, as a function of the generation number, improuweadnce than that of the MLP model alone. These results empha-
from 81.3% to 90.8%. Therefore, the fitness of the best indsize the significance of an appropriate receptive field design be-
vidual improved 9.7 and 9.5 percentage points in the valideause a proper selection of receptive fields yields significantly
tion and test sets, respectively. The horizontal dashed linesbigiter classification results than other choices.
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() (b)

Fig. 7. (a) Architecture of the FEN for the best network in the problem of handwritten classification. Each column contains the number of diéfptiest rec
fields in one layer: one receptive field in the first layer and five at the output layer. The gray levels represent the spatial configuration pfitlecfisdds. The
background gray represents 0 and darker levels represent negative weights (inhibitory). (b) Spatial frequency filtering characteristieseyiteactetd in the
FEN (Gray scale: white is 1 and black is 0).

In the problem of handwritten digit classification, the GA sePlanesS;, S21, andSsg are mainly smoothing filters with dif-
lected as the best individual an FEN receptive field architectuierent cutoff frequencies. The larger the excitatory part of the re-
composed of six planes of 22 8 units in the output layer and ceptive field, the larger the smoothing effect on the inputimage.
one plane in the input layer. The FEN applied to each input pdthis effect can be observed in Fig. 7(b) where the spatial fre-
tern can be interpreted as a nonlinear transformation from the@Bncy characteristic of the respective receptive fields are repre-
x 15 input image to produce six planes of €28 units. After sented. In Fig. 7(b), the spatial frequency response of ffane
the FEN, a neural classifier with 40 units in each of the twshows that only high frequencies at the edge of the graph will be
hidden layers requires a total 0f612 x 8 x 40+ 40 x 40+ filtered and therefore, a small smoothing effect will be produced
40 x 10 = 25040 adjustable weights (biases are not countetdy this plane. Nevertheless, the spatial frequency response of
Without the FEN, a two-hidden-layer MLP architecture with 6plane S, shows that mainly low frequencies at the center will
hidden units contains 1% 23 x 61 4+ 61x 61+ 61 x 10= pass, thus with a strong low-pass spatial frequency result. Planes
25 376 adjustable weights which is comparable to the numbgs; and.S,, are mainly line detectors in the horizontal and ver-
of adjustable weights of the best network selected by the Gtcal directions, respectively. It also can be observed that filters
Nevertheless, the MLP alone reaches only a maximum recogsiich asS»3 andS», are orthogonal line detectors. The same for
tion rate of 84.9% with equivalent number of adjustable weighpdanesC»3 andC54. The planeSs; performs edge detection in
in the test set. Therefore, the FEN provides an improvementliB3. The threshold function (4) applied after each plane gen-
classification performance of 5.9 percentage points relative éoates additional nonlinear filtering effects. Interpreted from a
an MLP in the test set. filtering point of view, the FEN extracts different features from

For the best individual in this simulation, Fig. 7(a) showthe original image that improve the classification performance
the layer type and the number of receptive fields in each layef.the combined network.

Fig. 7(a) also shows the receptive field spatial configurations2) Face Classification ProblemThe genetic selection of

in gray level. The white and black tones represent the make receptive fields parameters for the face recognition problem
imum and minimum values, respectively, and the backgrouade now presented. Fig. 8 shows the best (top) and average
gray level represents the value 0. Fig. 7(b) shows the spatiabttom) fitness for each population as a function of the gener-
frequency filtering characteristics of each receptive field: whition number. Fig. 8(a) is for the validation set and Fig. 8(b) for
tone represents value 1 and black tone represents value Othimtest set. A total of 89 generations of 20 individuals each one
Fig. 7(b), the reference for the spatial frequency coordinateere computed. The horizontal dashed line in Fig. 8(a), 84.2%
system is at the center of each image, i.e., low frequencies arel Fig. 8(b), 77.5%, represent the best classification results
represented at the center and higher frequencies toward thached by the two-hidden-layer MLP alone on the validation
edges. and test sets, respectively. It can be observed that the GA

Some of the receptive fields shown in Fig. 7(a) can be iiselected several combination of the receptive field parameters
terpreted in terms of their main spatial filtering characteristicésize, orientation, bias, and number of planes per layer) that
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Fig. 8. Fitness for receptive field parameters and variable number of planes for 89 generations for the face recognition problem. Fitness efitbediéspn
and average fitness of the population (bottom) as a function of the generation number. (a) Validation set. (b) Test set.
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Fig. 9. Ranked classification performance by fitness including all individuals on the (a) validation set and (b) test set for the face recopleitioTpedashed
line represents the best classification performance obtained by an MLP alone on the same database.

yielded better results than those reached by the MLP. Ttieir fitness. These figures show that the difference between
GA keeps a record of each individual and its fitness in evetlie classification performance for all ranked individuals ranged
generation. Each individual in the GA encodes a receptibetween 84.2% and 6% for the test set. It is also observed
field architecture in a binary string. Therefore, as long as sorttet there are several configurations of the FEN network
of the individuals have reached classification performancdsat yield better results than the best solution reached by a
above the MLP model, the receptive field architecture is knowwo-hidden-layer MLP alone on the test set (77.5%). As in
independently of the point where the GA is stopped. In fadhe handwritten recognition problem, these results show the
Fig. 9(a) and (b) shows the solutions ranked according to thsignificance of an appropriate receptive field design. In the face
fitness and it is found that several perform better than tlecognition problem, the receptive field spatial configuration
MLP model. The GA found an individual with classificationfor the best individual in the test set is shown in Fig. 10.
performance of 91.1% on the validation set when the best resTifte receptive fields are shown in gray levels in Fig. 10(a).
at the starting generation was 86.6%. The best fithess found\Wite and black tones represent maximum and minimum
the GA on the test set in the 89 generations was 84.2% and tladues, respectively, and the background gray level represent
best individual at the starting generation was 80.6%. value 0. Fig. 10(b) shows the spatial frequency characteristics
Fig. 9(a) and (b) shows the classification performance of each receptive field (white represents value 1 and black
the best individuals in the 89 generations ranked accordingttme represents value 0). The first two layers of the FEN are
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Fig. 10. (a) Architecture of the FEN for the best network in the face recognition problem. Each column contains the number of different receptivenield
layer: two receptive fields in the first layer and three at the output layer. The gray levels represent the spatial configuration of the redeplie figlckground
gray represents 0, darker levels represent negative weights (inhibitory) and lighter levels represent positive values (excitatory). (t8gBpatisl fiitering
characteristics of each receptive field in the FEN (Gray scale: white is 1 and black is 0).

composed of two inpu$-type planes followed by tw¢’-type TABLE IV
planes. Then, the next two layers are composed of thirgpe RECOGNITION PERFORMANCE ON THETEST SET FOR THE FULLY
. CONNECTED MLP MODEL AND THE COMBINED NETWORK,
planes followed by thre€'-type planes. As in the case of the FEN + MLP CLASSIFIER MODEL
handwritten classification problem, the FEN can be interpreted
as a nonlinear transformation from the 92112 input image to Problem F““yﬁ‘;’;':;f;‘; MLP | F EN*”f,f/’ ]C“‘ss‘ﬁ"
. . (] ()
a three plane image of 46 56 pixels. After the FEN an MLP  Tandwritten Digit Recopnition 849 908
neural classifier with 100 hidden units requires 316 x 56 x Face Recognition 77 842

100+ 100 x 100+ 100 x 40= 786 800 adjustable weights. A

twc;—5h|dc;§n—la73ger '\gfléliv;nggldg-entugrs hag ?]tZlZ X 75b tion performance is shown for the fully connected MLP model
+ i Xt t—; i ?th - bi da ]l:\z akeV\I/emz ds,ba r;;lije lone and the combined network (FEN MLP neural clas-
simriar 1o that of the combined hetwork selected by the ifier). Improvements in classification performance by intro-

lower Since the MLP reaches a maximum of 77.5% wih 1{ELCNd the FEN network are 5.9 and 6.7 percentage poins in
wer si Ximu 270 Wi ach problem, respectively.

hidden units. In Fig. 10(a), the genetically evolved receptive
fields, Sy;, and Sy, are selective in orientation and show
excitatory center and inhibitory surround. Receptive fiefgds
C11, and C1» have inhibitory center and excitatory surround This paper presented a new method for automatic design of
and S;; and Cy, are oriented in 45and 135, respectively. biologically inspired receptive fields in feed forward NNs to en-
Receptive fieldCs; is a spatial low-pass filter with a largehance pattern recognition performance. It is proposed a neural
excitatory component and its spatial frequency response carapehitecture composed of two networks in cascade: an FEN fol-
observed inC5; in Fig. 10(b). lowed by an MLP neural classifier. A GA was used to select
The choice of three evaluations for each individual in théhe parameters of the FEN to improve the classification perfor-
GA is a tradeoff between statistical significance and computaance of the combined architecture. The GA optimized the size,
tional time employed. After ten simulations for different startingrientation, and bias of biologically inspired receptive fields as
weight sets, the standard deviation for the MLP neural classifieell as the number of planes per layer in the FEN. The method
is 2.5% in the handwritten digit classification problem and 2.3%as applied to the problems of handwritten digit classification
in the face recognition problem, as shown in Fig. 4. These valuesd face recognition. Rather small databases were used in both
correspond to 40 and 100 hidden units as used in cascade \pithblems to avoid excessive computational time, although re-
the FEN in each problem, respectively. Considering these stanits are expected to improve with larger databases.
dard deviations, differences between recognition rates obtainedesults of fully connected MLP NNs for different number
with three evaluations are statistically significant with high levedf hidden units were presented as a reference to compare re-
of confidence § < 0.05) when the averages differ in approx-sults of the proposed model. On the handwritten digit classifi-
imately 3.6% in the range for averages around 80-91%. In tbation problem, results show that no further improvements were
two problems treated in this paper, the difference between pebtained by increasing the number of hidden units above 40.
formance of each individual at the starting generation and tfi@e best results for a two-hidden-layer MLP of 80 hidden units
best fitness found by the GA is statistically significant. Furthereached 85.3% on the validation set and 84.9% on the test set.
more, to evaluate the method it is used an independent test sétor the proposed combined model (FENMLP), after a
that is different from the validation set used by the GA to evaienetic search through 145 generations, the selected architec-
uate the fitness of each individual. ture reached 90.8% of classification performance on the test set
Results of the handwritten digit classification and face recofpr the handwritten digit classification problem. This result is
nition are summarized in Table IV for the test set. The recogrsignificantly better than the 84.9% obtained by fully connected

IV. CONCLUSIONS
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MLP model on the same test set. By ranking the classification[2]
performance of all the combined models with receptive fields
selected by the GA, a strong dependency was found between
the combined NN performance and the receptive field configu-[3]
ration (dimensions, orientation, bias and number of planes peh]
layer). Differences between 90.8% and 14.6% of classification
performance were found on the test set depending on the recep-
tive field configuration of the FEN. As shown in Fig. 6, more [5]
than 1200 of the combined models performed better than the
fully connected MLP model. [6]

For the face recognition problem, the two-hidden-layer MLP
model reached the best classification performance of 84.2%-
for the validation set and 77.5% for the test set. The results of
the genetic selection of the FEN parameters reached a correct
face recognition performance of 91.1% on the validation set
and 84.2% on the test set. These results are significantly bettep]
than those reached by the fully connected MLP model on the
same sets. Results of the ranked classification performance (sgg]
Fig. 9) on the face recognition problem after the genetic search
for the FEN parameters show that the main improvements ar
due to the receptive field configuration. Results are compare
among models with different receptive field configuration and[12]
to those of a fully connected NN where receptive fields are not
explicitly defined. [13

Itis possible to interpret the filtering effect of some of the re-
ceptive fields selected for the FEN. Some of them show spatiat4!
direction selectivity or spatial frequency selectivity. The FEN
network can be interpreted as a nonlinear transformation overs]
the input data producing a better separation among classes. It
would be useful to study in the future the common charactery g
istics of the receptive fields among the combined models that
yielded best classification performance results.

This paper introduced a method for an automatic design o[fw]
the receptive fields basic architecture and applied the methdds]
to improve the classification performance of two pattern recogf1 S
nition problems in 2-D. Modeling the biological architecture
of the visual system is beyond the scope of this paper. Nev-
ertheless, the proposed method makes use of the knowled
about the biological receptive field architecture to incorporat
receptive fields into artificial neural models to create new ar-
chitectures specifically tuned for a particular pattern recognil?1]
tion problem. Possible future developments include evolving
more complex neural architectures to improve pattern recogni22]
tion performance. The model should incorporate complex re[-23]
ceptive fields as those found in the visual cortex to include cur-
vature, corners and end-stopped line detectors. It would also be
interesting to include the concept of modular specialization if24]
the evolving model. [25]
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