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Abstract—In this paper, we report our extension of the use of
feature selection based on mutual information and feature fusion
to improve gender classification of face images. We compare the
results of fusing three groups of features, three spatial scales, and
four different mutual information measures to select features.
We also showed improved results by fusion of LBP features with
different radii and spatial scales, and the selection of features using
mutual information. As measures of mutual information we use
minimum redundancy and maximal relevance (mRMR), normal-
ized mutual information feature selection (NMIFS), conditional
mutual information feature selection (CMIFS), and conditional
mutual information maximization (CMIM). We tested the results
on four databases: FERET and UND, under controlled conditions,
the LFW database under unconstrained scenarios, and AR for
occlusions. It is shown that selection of features together with
fusion of LBP features significantly improved gender classification
accuracy compared to previously published results. We also show
a significant reduction in processing time because of the feature
selection, which makes real-time applications of gender classifica-
tion feasible.

Index Terms—Feature fusion, feature selection, gender classifi-
cation, local binary patterns, mutual information.

I. INTRODUCTION

H UMAN faces provide crucial information regarding
gender, age, and ethnicity, in addition to identity.

Several important fields for applications of gender classifica-
tion have been identified, such as biometric authentication,
surveillance and security systems, demographic information
collection, marketing research, real time electronic marketing,
criminology, augmented reality, and lately, new applications
in social networks using face recognition [1]–[4]. Gender
classification based on facial images is currently one of the
most challenging problems in image analysis research [5].
In image understanding, raw input data often has very high

dimensionality and a limited number of samples. In this area,
feature selection plays an important role in improving accuracy,
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efficiency and scalability of the object identification process.
Since relevant features are often unknown a priori in the real
world, irrelevant and redundant features may be introduced to
represent the domain [6]. However, using more features implies
increasing computational cost in the feature extraction process,
slowing down the classification process and also increasing the
time needed for training and validation, which may lead to clas-
sification over-fitting [7].
As is the case in most image analysis problems, with a lim-

ited amount of sample data, irrelevant features may obscure the
distributions of the small set of relevant features and confuse the
classifier [8]. It has been shown both theoretically and empiri-
cally that reducing the number of irrelevant or redundant fea-
tures significantly increases the learning efficiency of the clas-
sifier [6], [8]–[13].
The 2 most popular methods used to reduce the dimen-

sionality in gender classification according to our literature
review are: [5], [13] Principal component analysis (PCA) [14]
and linear discriminate analysis (LDA) [15]. PCA seeks to
find a set of mutually orthogonal basic functions that capture
the directions of maximum variance in the data and therefore
reduce noise in the data. LDA is used to derive a discriminative
transformation which maximizes the between-class scatter
while minimizing the within-class scatter [16]. The LBP [17]
transformation is used to extract features from facial expression
images because of its low computational cost and effective
texture description ability [18]. However, as more features are
extracted, some of them may become redundant or irrelevant
for classification [18]–[20].
Several studies have used feature selection in the face and

gesture recognition area. Frank et al. [21] proposed automatic
pixel selection for optimal facial expression recognition based
on PCA Eigenfaces. Choi et al. [22] proposed pixel selection for
optimal face recognition based on LDA discriminative position
(pixels) in face images using eigen-spaces.
Bekios et al. [5] revisited and compared various linear classi-

fication algorithms using LDA, PCA and ICA. These methods
can be very sensitive to illumination variations because they
use pixel intensity value directly. Moreover, both PCA and
LDA methods inherently assume the second order statistics of
Gaussian distributions. This assumption may not be met in the
case of real face recognition tasks [13].
Bing Li et al. [23], proposed a gender classification frame-

work, that utilizes 6 facial components: forehead, eyes, nose,
mouth, hair and clothing. The overall accuracy using a 5 five-
fold cross-validation method reached 88.5% and 91.9% on 682
and 2,185 images on 2 databases. In Xu et al. [24] a hybrid
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method using local features (10 features extracted with an Ac-
tive Appearance Model) and global features extracted with Ad-
aboost was proposed. The authors showed that better accuracy
can be obtained by fusing these features before classification.
The overall accuracy using 5 five-fold cross-validation on 1,000
images was 92.38%. In both methods the features had large vari-
ability and random selection. Recently in [25] we proposed a
method for feature selection based on information theory using
3 different mutual information measures with good preliminary
results in gender classification.
Battiti et al. [7] defined the feature reduction problem as

the process of selecting the most relevant features from an
initial set of features and proposed a greedy selection method
to solve it. Ideally, the problem can be solved by maximizing

, the joint (Mutual Information) between the
class and the subset of the selected features . However,
computing Shannon’s between high dimensional vectors is
impractical because the number of samples and the processing
time required become prohibitive. To overcome this problem
Battiti adopted an heuristic criterion for approximating the
ideal solution. Instead of calculating the joint between the
selected feature set and the class variable, only and

were computed, where and are individual
features. Battiti’s mutual information feature selector (MIFS)
selects the feature that maximizes the information about the
class, corrected by subtracting a quantity proportional to the

with the previously selected features. Since feature synergy
was not considered, MIFS and its variants estimated the feature
redundancy without regard to the corresponding classification
task. A complete literature review and comparison among best
gender classification methods was reported in Makinen and
Raisamo [26], [27].
Several classifiers have been used in gender classification

after feature extraction and selection. The classifiers that have
yielded highest gender classification accuracy were Adaboost,
multilayer neural network (NN), RBF networks and Support
vector machines (SVM) [28]. Moghaddam and Yang [29]
first reported the SVM with the Radial Basic Function kernel

as the best gender classifier. More recently,
Makinen and Raisamo [26] compared the performance of SVM
with other classifiers including NN [30] and Adaboost [31].
According to their published results, SVM achieved the highest
performance.
In [19], [20] Zhang et al. Applied principal geodesic analysis

(PGA) on 2.5 facial images extracted from Max-Planck data-
base. This data base contains 100 female and 100 male images
obtained by laser scanned human head without hair. Each facial
needle-map is represented by a parameter vector, referred to as
PGA feature vector. It is not possible to compare ours result to
those [19], [20] since in this work we use only 2-D images.
In this paper, we focus on fusion and feature selection

methods based on mutual information as a measure of
relevance and redundancy among features, applied to gender
classification. We present 2 approaches for gender classification
that improve previously published results on the FERET [32],
UND [33] and LFW [34] dataset described in Makinen and
Raisamo [27], Perez et al. [25], Alexandre [35] and Shan [36].
We also determine accuracy in gender classification comparing

information fusion from different spatial scales, with informa-
tion fusion from different feature types on a single scale.
In Experiment 1, we use 3 different types of face features

to classify gender. We extract intensity, shape and texture fea-
tures using 3 different spatial scales. For the spatial scales we
used the same ones used in Alexandre [35] 20 20, 36 36
and 128 128 for the FERET database and the UND database.
In Experiment 2, an approach to gender classification based on
histograms of Uniform LBP features (LBPH) using a different
radii (1 to 8), 3 fusion scales and feature selection with
was proposed. We also tested our method using the AR [37]
face database to test robustness to occlusions (sunglasses and
scarves).

II. INFORMATION THEORY FEATURE SELECTION

In this section we introduce briefly some basic concepts and
notions from information theory that are used in the 4 feature se-
lection methods used in our study. Information theory provides
an intuitive tool for measuring the uncertainly of random vari-
ables and the information shared by them, in which entropy and
mutual information are 2 critical concepts.

A. Mutual Information

Entropy is a measure of the uncertainly of random vari-
ables. Let be (or represent) a discrete random variable. The
entropy of is defined as:

(1)

The mutual information, between two variables, and ,
is defined based on their joint probabilistic distribution
and the respective marginal probabilities and as:

(2)

We use mutual information to measure the level of “simi-
larity” between pixels. The concept of minimal redundancy, as
in (3), allows selection of pixel pairs that are maximally dissim-
ilar. When 2 features are highly dependent on each other, the
respective class-discriminating power would not change much
if one of them were to be removed. Therefore, the following
minimum redundancy condition can be added for se-
lecting mutually exclusive features.

(3)

where denotes the feature subset, is the number of fea-
tures in , and is used to represent the mutual in-
formation between and . represent the mutual
information between features and the class . In this work the
classes represent the gender for each image. Thus,
quantifies the relevance of features for the classification
task. Therefore, since the maximum relevance condition max-
imizes the total relevance of all features in , maximal rele-
vance is used to search for features that approximate
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the mean value of all mutual information values between indi-
vidual features and class .

(4)

The first feature is selected according to , for example, the
feature with the highest . Subsequent features are se-
lected incrementally in the feature set . If features are al-
ready selected from , and an additional feature is selected from

, then the two conditions are optimized: the min
operation (3) is interpreted as a minimum redundancy computa-
tion; the max operation is interpreted as the maximum relevance
(4).
1) Minimum Redundancy and Maximal Relevance (mRMR):

Two forms of combining relevance and redundancy operations
are used in [8], mutual information difference , and mu-
tual information quotient , thus the feature set
is obtained by optimizing and simultaneously. Op-
timization of both conditions requires combining them into a
single criterion function [8], [12] as:

(5)

where, measures the relevance of the fea-
ture to be added for the output class and the term

estimates the redundancy of the
feature with respect to the subset of previously selected

features .
2) Normalized Mutual Information Feature Selection

(NMIFS): Estevez et al. [9] proposed an improved version of
mRMR based on the normalized feature of mutual information;
the between 2 random variables is bounded above by the
minimum of their entropies. As the entropy of a feature could
vary greatly, this measure must be normalized before applying
it to a global set of features as

(6)

where, is the normalized by the minimum entropy of
both features, as defined in

(7)

3) Conditional Mutual Information Feature Selection
(CMIFS): In CMIFS [38], the feature subset is built up step
by step, by adding one feature at a time. It will not waste time
on unnecessary features by removing classification redundancy
features beforehand, and can detect both cooperation and re-
dundancy interaction of features (synergy). In addition, CMIFS
allows determination of the feature redundancy and this infor-
mation can be used to remove features improving classification
tasks. It can decrease the probability of mistaking important
features as redundant features in the searching process. Let be
the set of already-selected features, and the set of candidate
features, and is the class. The next feature in

to be selected is the one that makes maximum,
where and

(8)

4) Conditional Mutual Information Maximization (CMIM):
The CMIM [10], [39] approximates the relevance criterion, by
considering the between the candidate feature variable
and the class given each one of the variables in the set ,
separately. It allows preserving a certain trade-off between the
power prediction of with respect to the output and the inde-
pendence of candidate features with each single variable previ-
ously selected. CMIM considers that feature is relevant only
if it provides large amount of information about class and
this information is not contained in any of the variables already
selected.
One strategy to find an optimal subset , is to eval-

uate all possible subsets in of cardinality . However, this
process generates a combinatorial explosion of possible solu-
tion. To avoid an exhaustive search, a greedy selection begins
with the empty set of selected features and successively adds
feature one by one. For the first feature selection, set repre-
sents the initial set of features for empty set . After
the first iteration the set will not be empty set .

for
for .

(9)

III. DATABASES, FEATURE EXTRACTION AND FUSION

A. Dataset Experiment 1

Two internationally available face databases were used to
train and test the fusion and the feature selection methods
and to allow comparison of results with those previously pub-
lished [35]. The FERET database [32] contains gray scale im-
ages of 1,199 individuals with uniform illumination but with
different poses. As in Makinen and Raisamo [27], faces of one
image per person from the Fa and Fb subsets were used and du-
plications were eliminated. Therefore, 199 female and 212 male
images were used from the FERET database.
The second database was composed of UND images; more

specifically a set of images from Collection B (see Fig. 1).
The image filenames used for training and testing, and also the
window crop around the subjects faces are available as text
files on a web page as reported in [35]. It contains gray scale
images of 487 frontal face images with 186 female and 301
male images, collected and annotated by the researchers. To
compare our results with those in [35] 3 image sizes were used:
20 20, 36 36 and 128 128.
1) Feature Extraction and Fusion for Experiment 1: We used

3 different types of face features to classify gender.We extracted
intensity, shape and texture features using 3 different spatial
scales.
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Fig. 1. Examples of face images under unconstrained scenarios from the LFW
database (top two rows). Face images under controlled scenarios from the UND
database (bottom two rows).

The intensity feature for each pixel is the gray level of each
pixel. The shape feature is extracted from the edges histogram.
Vertical and horizontal edge maps were computed using the
masks and . Consider and to be the
vertical and horizontal edge values at any pixel, obtained by
convolution of the edge mask with the original image, respec-
tively. The edge map is found using and
the edge magnitude is given by . The edge map
is discretized at 18 degree intervals. Each pixel adds its mag-
nitude to the bin that corresponds to its edge directions .
For image windows, an image is represented by 20 real
values. Since there are 6 possible variants for the shape and tex-
ture features at 128 128 and 36 36, and 3 possible variants
at 20 20, given the different types of windows used in [35],
we chose only the best case for each image size. In all cases we
chose to use the variants with 50% overlay. For the 128 128,
images the window size is 16 16; for the 36 36 images the
window size is the 6 6, and for the 20 20 images the win-
dows size is 10 10.
For the texture feature we used the local binary patterns

(LBP) transformation. LBP is a gray-scale texture operator
which characterizes the spatial structure of the local image
texture. Given a central pixel in the image, a binary pattern
number is computed by comparing its value with those of its
neighbors. The original operator used a 3 3 window size
containing 9 values. Other LBP operators were generated by
changing the window size. LBP features were computed from
pixel intensities in a neighborhood.

(10)

where is the vicinity around , is the concatena-
tion operator, is the number of neighbors, and is the radius
of the neighborhood.
LBP was first introduced in [17] showing high discriminative

power in distinguishing texture features, and is widely used for
face analysis. Later, in [18], [40] the uniform local binary pat-
tern (ULBP) was introduced, extending the original LBP oper-
ator to a circular neighborhood with a different radius size and a
small subset of LBP patterns selected. In this work we use, ‘U2’
which refers to a uniform pattern. LBP is called uniform when
it contains at most 2 transitions from 0 to 1 or 1 to 0, which is

Fig. 2. Face image, divided into subregions with the corresponding concate-
nated LBP histogram.

considered to be a circular code. Thus the number of patterns is
reduced to 59 bins (see Fig. 2).
We propose an effective feature selection method to obtain a

reduced set of LBP features, using mutual information between
features and class labels [25]. LBP features are extracted from
all training and testing images. Then, the LBP features are orga-
nized in amatrix of size, where
is a dimensional LBP feature vector at the pixel posi-

tion. The mutual information is computed between
the class and the feature vector for and ob-
tain the selected feature index set by
applying different feature selection methods (mRMR, NMIFS,
CMIFS, CMIM), where is the number of LBP features vec-
tors, and the denotes the index of the selected LBP feature
vector at the pixel position. Also, the LBP features with radii
1–8 may represent redundant patterns and therefore, feature se-
lection by mutual information allows the selection of most rel-
evant features.
For Experiment 1, as in [35], the face image was divided into
overlapping blocks, and the LBP operator was applied to

each block using 8-connected neighbors and a radius of one.
Then, a histogram with 59 bins was created for each block. The
histograms were concatenated and the best features were se-
lected using mRMR, NMIFS, CMIFS and CMIM in the ranges
50–400 for image size 20 20, 50–1,296 for size 36 36, and
50–16,384 for size 128 128. For image windows, an image
is represented by 20 real values. After feature extraction,
we fused that information at the feature level by concatenating
the feature vectors from different sources into a single feature
vector that becomes the input to the feature selection methods,
and then the selected features become the inputs to the classi-
fier. The classifiers are trained both with the selected features
for each feature extraction method, and with the fused selected
features.
Fig. 3 shows the 7 combinations of features and spatial scales

we tested in Experiment 1. Fig. 3 shows that L1, L2 and L3
were obtained from vertical fusion of features at different spa-
tial scales (but with the same type of feature) while L4, L5 and
L6 show the horizontal fusion of features for different feature
types, but on the same spatial scale. Combination L7 includes
all scales and all features, and the features were selected with
mutual information methods. For each case we chose windows
with 50% overlap.
The best gender classification accuracy based on shape fea-

tures was published in [35], showing 96.26% accuracy in the
FERET database and 86.78% in the UND database. The best
results using the same size but different features yielded 95.33%
correct classification on the FERET database for 128 128 size
images, and 80.62% using 36 36 size images with the UND
database. Fusing the 3 types of features (intensity, shape and
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Fig. 3. Representation of the possible combinations of the three feature types
(intensities, shape, and texture) and the three different spatial scales (20 20,
36 36, and 128 128) for Experiment 1.

texture) and 3 sizes of images (20 20, 36 36, 128 128)
yielded the best score 99.07% on the FERET database and
91.19% for the UND database. However, many more inputs
for the 20 20, 36 36 and 128 128 scales were used.
By fusing the 3 scales and the 3 types of features, the total
number of inputs was increased nearly ninefold. The databases
were partitioned to have 80% training data and 20% testing
data. All results were obtained with fivefold cross-validation,
simulations using an SVM classifier with a Gaussian Kernel.

B. Dataset Experiment 2

In this experiment, we used the recently built public database
Labeled Faces, in the Wild (LFW) [34] to investigate gender
classification of real world face images under unconstrained
scenarios. This public database enables future benchmarks
and assessment (http://vis-www.cs.umass.edu/lfw/). LFW, a
database for studying the problem of unconstrained face recog-
nition, contains 13,233 face color photographs of 5,749 subjects
collected from the web. LFW is composed of real life faces,
with varying facial expressions, illumination changes, head
pose variations, occlusions and use of make-up, including poor
image quality. Thus, gender recognition in real life is much
more challenging than gender recognition of faces captured in
constrained environments. All the images were aligned with
commercial software [36], see Fig. 4. Examples are shown in
Fig. 1. As in [36], we chose 7,443 face images, 2,943 females
and 4,500 males and manually labeled the ground truth for
gender of each face. The images in the FERET database and
the UND database are of good quality, under controlled condi-
tions, while in the LFW, quality varies significantly. We also
compared our results with those reported in [36] where they
used 7,443 images of 64 46 pixels.
1) Feature Extraction and Fusion For Experiment 2: An ap-

proach to gender recognition based on histograms of LBP fea-
tures (LBPH) with different radii and 3 scales had been pro-
posed [36]. Results using SVM raw pixels with the dimension
of 2,944 and standard LBP with the dimension of 2,478 reached
91.27% and 93.38%, respectively. The best gender classifica-
tion accuracy achieved, applying SVM with boosted multiscale
LBP features with 500 selected LBPH bins in LFW databases
was 94.81%. However, the total number of inputs increased
nearly a hundredfold by using 8 different radii, 3 scales, shifting
and scaling steps of 12, 18, and 24 pixels vertically and 10,
15, and 20 horizontally. In this way, additional subwindows,
could be obtained from each image

. The histograms were concatenated and
the best features were selected using Adaboost for image size

Fig. 4. Diagram showing the fusion of selected LBPH features selection in
Experiment 2. The number in circles indicate the test number.

64 46 as in [36]. Each face image can be seen as a compo-
sition of micro-patterns which can be described effectively by
LBP. The LBP histograms are always extracted from local re-
gions. However, not all bins in the LBP histograms are discrim-
inative for facial representation [25].
We assessed and investigated the gender recognition perfor-

mance using LBPH fusion and feature selection methods for
different subwindows shifted and scaled separately in steps of
12 pixels vertically and 10 pixels horizontally for the first scale,
18 vertical and 15 horizontal pixels for the second scale and
24 20 for the last scale. Finally, fusion was performed among
the best results of each feature selection method for the 3 scales.
In experiment 2, we performed four tests for each of the three

spatial scales (see Fig. 4): 12 10 18 15 and 24 20. For
Test (1) the inputs (raw pixel intensity) to the SVM classifier
were selected by the four feature selection methods (mRMR,
NMIFS, CMIFS and CMIM). For Test (2) the inputs to the
SVM classifier were histograms of LBPH(8, 2) were also
selected by the four feature selection methods. For test (3)
the inputs to the SVM classifier were a concatenation of 500
features extracted from each of the 8 radii LBP (LBP (8, 1)
to LBP (8, 8)). Therefore, the resulting concatenated vector
was 4,000 for each
face image. Then, feature selection was applied using mRMR,
NMIFS, CMIFS and CMIM. For Test (4) the inputs to the SVM
classifier were a concatenation of features 8 radii LBP (LBP(8,
1) to LBP (8, 8)) which resulted in a total of 19, 824 features

for each face image. Then,
feature selection was applied using mRMR, NMIFS, CMIFS
and CMIM.
Because computational time that depends directly on the

number of inputs to the classifier is an important factor in most
real-time applications involving face processing, we computed
the time to compare different methods.
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TABLE I
GENDER CLASSIFICATION EXPERIMENTAL RESULTS ON THE FERET DATABASE.
THE FIRST COLUMN SHOWS THE TYPE OF FEATURE USED INCLUDING FUSION
OF DIFFERENT FEATURE TYPES AND SPATIAL SCALES. THE SECOND COLUMN
SHOWS PREVIOUS RESULTS WITH NO FEATURE SELECTION. COLUMNS 3–6
SHOW OUR RESULTS WITH FEATURE SELECTION AND FEATURE FUSION

TABLE II
GENDER CLASSIFICATION EXPERIMENTAL RESULTS ON THE UND DATABASE.
THE FIRST COLUMN SHOWS THE TYPE OF FEATURE USED INCLUDING FUSION
OF DIFFERENT FEATURE TYPES AND SPATIAL SCALES. THE SECOND COLUMN
SHOWS PREVIOUS RESULTS WITH NO FEATURE SELECTION. COLUMNS 3–6
SHOW OUR RESULTS WITH FEATURE SELECTION AND FEATURE FUSION

IV. EXPERIMENTS AND RESULTS

A. Results—Experiment 1

Tables I and II compare our results with those previously pub-
lished [35] for different image sizes on the FERET and UND
databases. Results represent the average of the gender classifica-
tion performance of 5 cross-validations with a random partition
of the database. The first column of Table I shows the method
used; the second column shows the results of the best classifica-
tion rates published in [35] for the SVM classifier using 3 image
sizes: 20 20, 36 36 and 128 128; and, in parenthesis, the
feature vector size. Columns 3–6 show the results using our pro-
posed feature selection methods: mRMR, NMIFS, CMIFS and
CMIM, respectively. Each row shows the average classification
rate for 5 simulations, standard deviation and, in parenthesis, the
number of selected features for each method.
The results obtained on the FERET and UND databases with

our methods are better than those previously published [35]. It
should be emphasized that the gender classification results im-
proved significantly, and the number of input features was re-
duced drastically, which has important implications for real time

TABLE III
RESULT TO TEST CROSS DATABASE PERFORMANCE FOR GENDER
CLASSIFICATION ON THE LFW DATABASE FOR THE BEST RESULTS
FROM THE FERET AND UND DATABASES. COLUMNS SHOW THE

BEST RESULTS OBTAINED FOR L3 TEST WITH 4 MEASURES AND
IN PARENTHESIS IS SHOWN THE NUMBER OF FEATURES. THE BEST

RESULT WAS REACHED WITH mRMR AND 600 FEATURES

implementation of the proposed method. This topic is discussed
in the computational time section of the paper. The method with
the best result (L3) was tested with the LFW database, and the
results showed that the fused features reached better result than
those previously published [36] (see Table III).
As expected, our results show lower classification perfor-

mance on the UND database compared to those on the FERET
because images in the UND database vary in quality, pose, illu-
mination and partial occlusion.
We performed 7 tests, named L1 to L7. L1 is represented by

a vector with the fusion of features from pixel intensities from
different spatial scales. L2 is represented by a vector with the
fusion of features from the shapes from different spatial scales.
L3 is represented by a vector with the fusion of textures fea-
tures (LBP) from different spatial scales. The 3 spatial scales
were 20 20, 36 36 and 128 128. L4 is represented by a
vector with the fusion of 3 features (intensity, shape and texture)
for size 20 20. L5, L6 are represented by vectors with the fu-
sion of the same 3 previous features but for sizes 36 36 and
128 128, respectively. L7 is represented by a vector with the
fusion of 3 scales (20 20, 36 36, and 128 128) and 3 types
of features (intensity, shape and texture). 2 tests were performed
for L7. The first one, considers the concatenation of features for
each of the selection methods from L1 to L6 (the concatena-
tion of mRMR for L1 to L6, the concatenation of NMIFS for
L1 to L6, concatenation of CMIFS L1 to L6 and the concatena-
tion of CMIM L1 to L6), named “All-L7”. The second test, was
named “Best Fea”, where the fusion of the best methods from
L1 to L6 (i.e., those methods that reached the highest scores). In
this test, L1 reached 95.8%with 11,700 features, L2 89.9%with
450 features, L3 98.7% with 1,200 features, L4 93.8% with 750
features, L5 95.1% with 3,800 features, and L6 reached 97.8%
with 1,000 features. The total of selected features adds 18,900
features.
It can be observed in Table I that for L1 the CMIM feature

selection method reached the best classification performance of
95.82% with only 11,700 features which is 60% of the vector
size required with no selection. In the case of L2, the best feature
selection method was CMIFS achieving 89.95% with only 450
features, which is 50% of the vector size with no selection. For
L2 the highest classification rate published in [35] was 96.26%,
however, in our simulation of this method we reached 89.95%

. In the case of L3 the best method was mRMR achieving
98.76% with only 1,200 features which is only 1.7% of the orig-
inal vector size. In the case of L4 and L5, the best classification
performance was 93.82% with 750 features, and 95.06% with
3,800 features, both with the CMIM feature selection method.
The number of selected features corresponded to 41% and 35%
of the vector sizes with no selection, respectively. In the case
of L6 the best result was 97.83% which was reached with the
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Fig. 5. Comparison of feature vector size for each of the methods from L1 to
L7 and the complete set of features used in [35] for the FERET database.

CMIM feature selection method with 1,000 features, 3% of the
vector size with no feature selection. The best gender classifi-
cation rate reached 97.53% with 21,550 features which is only
46% of the vector size with all. The maximum classification rate
was 99.13% on the FERET database. The total number of se-
lected features was 18,900 which is 42% of the total number of
features.
Fig. 5 shows a histogram comparing the vector sizes for all

cases of feature selection and feature fusion (L1–L7), and the
case of no feature selection for the FERET database.
Table II shows the results of gender classification with the

UND database. In Experiment 2, the best result for L1 using the
CMIM feature selection method reached 87.82% with 1,200
features equivalent to 6% of the original vector size with no
selection. In the case of L2, L3, L4, L5, and L6 the best results
were reached with the NMIFS feature selection, (77.19%),
CMIM (92.05%), CMIM (86.85%), CMIM (90.35%), and
CMIFS (92.10%), respectively. The number of selected fea-
tures was: 1,150, 2,200, 500, 2,150, and 7,900, respectively,
which were 6%, 29%, 27%, 2% and 23% of the original vector
sizes. In “All-L7” the best result was achieved with CMIFS
reaching a classification performance of 92.1% with 13,000
selected features which is 27.75% of the vector size with no
selection. The classification rate for “Best fea” was 94.01%
with 14,200 selected features, 30% of the vector size with no
selection.
Table III shows the result of best fusion (L3) for gender classi-

fication with LFW database. The result for L3 using mRMR fea-
ture selection method reached 95.60% with 600 features equiv-
alent to 2.9% of the 20,950. This result is better than the best
one obtained in [36], where gender classification reached only
94.81% with 500 features.
Fig. 6 shows examples of selected features for the best results

obtained for Experiment 1, with the feature selection method
mRMR. Two images (male and female) are shown from the
FERET database for the L3 feature fusion with 1,200 selected
features. The features were selected from the LBP histogram
using 3 different image sizes (20 20, 36 36 and 128 128).
Each square shows the selected area and the increasing intensity

Fig. 6. Two images, male and female, from the FERET database. The squares
represent 1,200 selected features from L3 using mRMR which reached the best
results for Experiment 1. The fusion considers three scales for image sizes:
20 20, 36 36, and 128 128. The squares’ intensities moving towards
black represent an increasing number of bins selected in that area.

Fig. 7. Two images, male and female, from UND database are shown. Feature
fusion L6 with 7,900 features selected using CMIFS achieved the best results
for Experiment 1. The fusion considers three features: intensity, shape, and tex-
ture for image size of 128 128. The figure shows the selected features from
(a) intensity images, (b) shape image, and (c) texture image. In this example for
L6, none of the texture features were selected.

towards black represents the number of bins that were selected
in this area. If the area was not selected, no square is shown.
Fig. 7 shows examples of selected features for the best re-

sults obtained in Experiment 1 with the feature selection method
CMIFS. Fig. 7 shows 2 images (male and female) from the
UND database for the L6 feature fusion with 7,900 selected
features. The method fused selected features from the inten-
sity histogram, shape and texture (LBP) in 3 images of size
128 128. The white pixels in (a) represent the selected pixels
from the intensity features; the squares in (b) represent the se-
lected areas from shape features where darker indicates a higher
number of selected bins. If the area was not selected, no square
appears. Fig. 7(c) shows the best result of feature fusion for the
UND database with the CMIFS method using only 7,900 fea-
tures from the total of 34,159. For this best case, non of the fea-
tures from Fig. 7(c) were selected. If we increase the number
of selected features, features from Fig. 7(c) will be selected, but
this increment will not improve the gender classification rate for
method L6.
Feature selection is performed using the detected face within

a rectangle in sizes 20 20, 36 36 and 128 128. These im-
ages have diverse backgrounds and in particular when com-
paring faces with long hair and short hair these features con-
tribute to differentiate between men and women. The same may
occur with different hairstyles that may help to differentiate
gender. Also in the feature selection it is important the synergy
among different features.
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TABLE IV
RESULT OF GENDER CLASSIFICATION RATES ON THE LFW DATABASE, FOR CASES L1–L7 FOR DIFFERENT LBP FEATURES AND SPATIAL SCALE. THE FIRST FOUR
ROWS SHOW RESULTS PREVIOUSLY PUBLISHED. COLUMNS 4–7 SHOW RESULTS OF GENDER CLASSIFICATIONS WITH FEATURE SELECTION mRMR, NMIFS,

CMIFS, AND CMIM, AND, IN PARENTHESIS, THE TOTAL NUMBER OF SELECTED FEATURES IS SHOWN

B. Results—Experiment 2

In the first 4 rows Table IV shows the gender classification re-
sults previously published for different image sizes on the LFW
database. In rows 5–17 Table IV shows our results with feature
selection based on and SVM classifiers (Experiment 2). Re-
sults represent the average of 5 cross-validations with a random
partition maintaining the database ratio between male and fe-
male. The first column shows the method used, and the second
column shows the vector size. The third column shows the best
classification rates published in [36] for SVM classifiers using
LBP features with an image size of 64 46 pixels, and, in paren-
thesis, the number of selected features. Columns 4–7 show the

results of the same classifiers but using our proposed feature se-
lection methods mRMR, NMIFS, CMIFS and CMIM for 3 dif-
ferent spatial resolutions 12 10, 18 15 and 24 20. Each
row shows the average classification rate for 5 simulations, the
standard deviation, and in parenthesis, the number of selected
features for each model.
We summarize the results of SVM with raw pixels in the first

row, Standard LBP (8, 2) features in the second row, and the
Union of multiresolution of the LBP feature for different radii
in the third and fourth rows. The row Raw Fea in Table IV repre-
sents the feature selection of the raw image (1 2,944), LBP 8,
2 represents the feature selection using LBP over the raw image
(1 2,478). Boost Fea represents the 500 best features from
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Fig. 8. Two original images, male and female, from the LFW database. The
selected pixels for 300, 500, 1,000, 1,400, and 1,900 pixels are shown in white
using: (a) mRMR, (b) NMIFS, (c) CMIFS, and (d) CMIM for Experiment 2.

each LBP vector with different radii from 1–8
and finally Boost Fusion represents the best features

for each LBPH vector with different radii
.

The best result for scale 12 10 was 96.73% for CMIM fea-
ture selection with 3,050 features; this represents only 0.89% of
the original vector size. The best result for scale 18 15 was
95.94% for the CMIFS feature selection with 3,200 features,
which represents only 0.93% of the vector size with no feature
selection. The best result for scale 24 20 was 96.89% for the
CMIM feature selection method with 4,150 features which rep-
resents only 1.21% of the vector size with no selection. Results
from each of these scales separately (12 10, 18 15, 24 20)
achieved better results than those published in [35]. The fusion
of features from these 3 scales, improved even more the classifi-
cation performance to 98.01% with only 10,400 features which
is only 3.04% of the vector size with no selection.
Fig. 8 shows examples of selected pixels obtained in Ex-

periment 2 with the feature selection methods, (a) mRMR, (b)
NMIFS, (c) CMIFS and (d) CMIM. Fig. 8 shows 2 images one
male and one female from the LFW database for 300, 500, 1,000
and 1,900 selected pixels are shown in white for the same size,
64 46.
Fig. 9 shows examples of selected features obtained in Exper-

iment 2, with feature selectionmethods, (a) mRMR, (b) NMIFS,
(c) CMIFS and (d) CMIM. Fig. 9 shows 2 images, one male
and one female from the LFW database, with 300, 500, 1,000
and 1,900 selected features on size 64 46 images. The square
shows the selected area, and the black intensity increase in the
number of bins selected in that area. If the area was not selected,
the square is white.

C. Computational Time

Table V, shows the computational time required to classify
one image for the best results in Experiments 1 and 2 consid-
ering different fusion strategies, L1–L7, and using the feature
selection methods, mRMR, NMIFS, CMIFS, and CMIM. The
first column shows the best methods; the second column shows
the feature vector size without selection; the third column shows

Fig. 9. Two original images, male and female, from the LFW database. Se-
lected features from the LBPH(8, 2) histogram with 300, 500, 1,000, 1,400, and
1,900 features are shown for (a) mRMR, (b) NMIFS, (c) CMIFS, and (d) CMIM
for Experiment 2. The darker the square, the larger the number of bins selected
for the histogram.

TABLE V
RESULTS OF THE COMPUTATIONAL TIME REQUIRED TO CLASSIFY ONE IMAGE
FROM THE SPECIFIED DATABASE, FOR THE METHODS WITH BEST GENDER
CLASSIFICATION PERFORMANCE. TIME WAS MEASURED USING MATLAB

ON A 2.5-GHz I7 PC WITH 8 GB OF MEMORY

the feature vector size with selection; column 4 shows the com-
putation time required for all features without feature selection;
and columns 5–8 show the computational time required for the
different feature selection methods.
For Experiment 1, the best result was reached with 1,200 fea-

tures (of 20,945) and the feature selection method, mRMR that
required 1.6 ms for L3 on the FERET database. Also in Experi-
ment 1 the best result was reached with 7,900 features of 34,159
for the feature selection method, CMIFS that required 5.9 ms
for L6 on the UND database. For Experiment 2, the best result
was reached with 3,050 features (of 19,824) and the feature se-
lection method CMIM required 7 ms on the LFW database for
Boosted fusion with subwindow sizes of 12 10 pixels. Rows
5, 6 and 7, show the computational time required for the best
fusion method considering all features with the FERET, UND
and LFW databases.
The computational time employed for “Best fea” (Fusion of

all features L1 to L6) for FERET and UND was 14 ms with
18,900 features and 12 ms with 14,200 features. The compu-
tational time needed for “Fusion Best” (Fusion of the best for
LFW) was 11 ms with 10,400 features.
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TABLE VI
GENDER CLASSIFICATION EXPERIMENTAL RESULTS ON THE AR FACE
DATABASE INCLUDING OCCLUSIONS (SUNGLASSES AND SCARVES). THE

FIRST COLUMN SHOWS THE FOUR BEST FUSION SOLUTIONS FOUND FOR THE
LFW DATABASE AND NOW TESTED FOR THE AR DATABASE. THE SECOND
COLUMN SHOWS THE VECTOR SIZE. THE THIRD–SIXTH COLUMNS SHOW THE

RESULTS OF GENDER CLASSIFICATION FOR THE FOUR FEATURE SELECTION
METHODS (mRMR, NMIFS, CMIFS, AND CMIM). IN PARENTHESIS IS
SHOWN THE SELECTED NUMBER OF FEATURES. THE HIGHEST SCORES

ARE HIGHLIGHTED IN BOLD

In this work we used the database Labeled Faces in the Wild
which contains labeled face photographs with a wide range of
conditions typically encountered in everyday life. The database
exhibits “natural” variability in factors such as pose, lighting,
race, accessories, occlusions, and background. The described
experimental method was designed to make our research con-
sistent and comparable with previously published results. We
added an experiment with the AR face database [37] which in-
cludes occlusions with sunglasses and scarves. It contains im-
ages of 126 individuals (70men and 56 women). Images include
frontal faces with different facial expressions, illumination con-
ditions and occlusion (sunglasses and scarves). In our test we
used session 1, with 667 images (333 male and 334 female) in-
cluding 200 face images with sunglasses and 200 images with
scarves and 267 frontal images. For our model we used the same
parameters selected for the LFW database to test our methods
in the AR database using a scale 24 20. The 4 tests performed
were: Raw_fea, LBP (8, 2), Boosted_Fea and Boosted_Fusion
for the 4 feature selection methods (mRMR, NMIFS, CMIFS
and CMIM).
Table VI shows the gender classification results obtained

for the AR face database including occlusions (sunglasses and
scarves). The tested fusion methods were the same that resulted
with the highest scores in the LFW database and are shown in
the first column of Table VI. In columns 3–6 of Table VI, it can
be observed that the best results were obtained with the CMIM
feature selection method reaching the highest score of 96.4%
correct gender classification rate in this database including
occlusions with sunglasses and scarves.
The computational time required for the best gender classifi-

cation methods was measured using Matlab on a 2.5 GHz I7 PC
with 8 GB of memory. Computational time shown in Table V
can be further reduced by implementing the methods in C and
using parallel computation.

D. Statistical Analysis

We used the ANOVA (analysis of variance) multicomparison
test [41] to determine whether or not differences among results
were statistically significant. We compared the results of the
different methods with fusion and feature selection using
versus the results without feature selection (Raw data).

TABLE VII
BEST RESULT OF GENDER CLASSIFICATION RATES PUBLISHED ON THE FERET,
UND, AND LFW DATABASE, COMPARED WITH THE OUR PROPOSED METHODS.
THE FIRST FOUR ROWS SHOW PREVIOUSLY PUBLISHED RESULTS. COLUMN
2 SHOWS THE GENDER CLASSIFICATIONS AND COLUMN 3 SHOWS THE

TOTAL NUMBER OF SELECTED FEATURES. ROWS 5–11 SHOW
THE RESULTS OF OUR PROPOSED METHODS

The results in [35] were deterministic because only 1 partition
of the database was employed. We replicated the result of [35]
and use a fivefold cross-validation method with the same group
of images. By using cross-validation method, we can compare
the statistical significance of the results using the ANOVA test.
In Table I, the ANOVA showed that L1, L3, L4, L5, L6 have

means that are significantly different for the FERET database
considering L1 to L7. In all cases was smaller than 1.51e-06

which is highly statistically significant. The best re-
sult was obtained withmRMRL3 fusion with 1,200 features fol-
lowed by L7, L6, L5, L1, L4. Only for L2 our results were lower
than those published in [35] (96.26%). In this other 6 methods
(L1–L7), our results were significantly better than those previ-
ously published. Result indicate that when combining and se-
lecting only shape features, feature selection does not improve
gender classification results.
In Table II, the ANOVA showed that L1, L3, L4, L5, L6, L7

have means that are significantly different for the UND database
considering L1 to L7. In all cases was lower than 0.001 which
is highly statistically significant. The best result was obtained
with L6 fusion with 7,900 features followed by L3, L5, L1, and
L4. Again the L2 (shape features) yielded the lowest classifica-
tion result.
In Table IV, regarding the LFW database, the ANOVA

showed that Boosted fusion 12 10, LBP(8, 2) 18 15,
Boosted fusion 18 15, LBP(8, 2) 24 20 and Boosted fusion
24 20 have means that are significantly different compared
to Raw data (without selection). In all cases was lower than

which is highly statistically significant. The best re-
sult was obtained with Boosted fusion 24 20 with 96.89% and
4,150 feature selection, followed by Boosted fusion 18 15,
LBP(8, 2) 24 20, LBP(8, 2) 18 15, and Boosted Fusion
12 10. The Raw Fea 12 10 had the lowest classification
result.
After analyzing the results, it was concluded that feature se-

lection and fusion improved the performance of gender classifi-
cation significantly in the 3 databases FERET, UND and LFW,
see Table VII. Also, comparing results among the 3 databases,
it can be stated that results on the FERET are, in general, better
than those obtained in the UND and LFW databases, because
the face quality is better in the FERET database compared to
the other 2 databases. The fusion using LBP features yielded
the best results on both experiments allowing the representation
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of the data in a lower dimensional space and in shorter compu-
tational time. These results are significantly better than all those
previously published (see, Table VII).

V. CONCLUSION

A new method for gender classification of faces is proposed
using feature selection based on mutual information and fusion
of intensity, shape and texture features, as well as different
spatial scales. Four different measures of MI: mRMR, NMIFS,
CMIFS, and CMIM, were employed to select features. The
method was assessed using unconstrained face images from
the LFW database and on face images taken under controlled
conditions such as those in the FERET and UND databases.
In Experiment 1, the best performance was obtained with the

fusion of 18,900 selected features (Best_Fea) reaching a classi-
fication rate of 99.13% on the FERET database. This is the best
result reported to date for gender classification on the FERET
database.
For the UND database, the best gender classification perfor-

mance was obtained with the fusion of 14,200 selected features
(Best_Fea) reaching a classification rate of 94.01%. This is the
best result reported to the present for gender classification on
the UND database.
In Experiment 2, the best performance was obtained with the

fusion of 10,400 features from 3 different spatial scales (Best
Fusion) obtaining a classification rate of 98.01%. This is the
also the best result reported so far for gender classification on
the LFW database.
The 4 selection methods used in this work, mRMR, NMIFS,

CMIFS and CMIM quantify the features relevance and redun-
dancy which is used in feature selection. These methods pro-
vide tools to select features with low redundancy and high rel-
evance for the classification task (male, female). In this form,
the problem dimensionality can be reduced improving classifi-
cation rate and shortening the computational time required for
feature extraction/classification as our results show. In the pres-
ence of a very large number of features (tens of thousands),
it is common to find a large number of features that do not
contribute to the classification process because they are irrel-
evant or redundant with respect to a particular the class [42],
[43]. The feature selection methods used in this paper act as
filters eliminating most of the features with low relevance or
high redundancy and provide an efficient approach in terms of
the computational time required for gender classification [19],
[25]. These methods are considered effective for feature selec-
tion, especially when a large number of features are processed
[8]. In our model, the process of training the SVM classifier was
achieved more efficiently and effectively eliminating a signif-
icant number of features with low relevance and high redun-
dancy. The selected features were independent of the classifier
training method. Our approach does not remove all redundant
features because they usually have similar rankings. In partic-
ular, since faces are relatively symmetrical several redundant
features may arise with similar scores and therefore not all re-
dundant features will be eliminated. Fusion of different type of
features at different scales (intensity, shape and texture), provide
a complementary form of considering a group of features more
relevant than the same features acting independently. Levels of

relevance can be defined in terms of those features that provide
the highest information with respect to class C (male, female)
and this information does not exist in other pairs of features.
Fusion allows replacing features with weak relevance by other
features (Intensity, Shape or texture) without loss of informa-
tion.
Our results show that gender classification can be signif-

icantly improved by feature selection using different spatial
scales, and by fusion of the selected intensity, shape and texture
features. We performed experiments for different spatial scales
and feature types in order to compare our results to those
previously published. Our results show that for each spatial
scale and for each feature type, feature selection improves
results. Our results also show that feature fusion at the feature
level, i.e., concatenating selected features at the classifier input,
also improves gender classification compared to cases with no
feature fusion. Combination of our results including feature
selection and fusion for different spatial scales and feature
types, yielded the highest performances published to date on
the 3 standard databases.
These results also show that improvements were greater by

fusing features from different scales, even when using a single
type of feature, than those obtained by fusing different features
on a single scale. Nevertheless, the highest gender classifica-
tion performance was obtained by fusing features from different
scales and types previously selected by the MI methods.
Another important result of the proposed feature selection

method based on is that, depending on the image size, the
total number of features was reduced 70% on the FERET data-
base, 73% on the UND and 90% on the LFW database. There-
fore, computational time is significantly reduced which makes
real time applications of gender classification feasible.
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