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Adding g-filters to self-organising neural networks for unsupervised
sequence processing is proposed. The proposed g-context model is
applied to self-organising maps and neural gas networks. The
g-context model is a generalisation that includes as a particular
example the previously published merge-context model. The results
show that the g-context model outperforms the merge-context model
in terms of temporal quantisation error and state-space representation.

Introduction: Self-organising feature maps (SOMs) [1] have been used
extensively for clustering and data visualisation of static data. Recently,
SOMs have been extended to sequence processing by using recurrent
connections and temporal or spatial context representations; see [2] for
a review. Engineering applications include the analysis of temporally
or spatially connected data, such as DNA chains, biomedical signals,
speech and image processing, and time series in general. In the merge
SOM (MSOM) model [3], each neuron is associated with a weight
vector and a context vector. The merge context model can be combined
with neural gas (NG) [4], creating the merge neural gas (MNG) model
[5]. In this Letter, adding g-filters [6] to self-organising neural networks
for unsupervised sequence processing is proposed. The g-context model
is applied to extend SOM and NG networks.

Method: We describe our method using the NG network model.
A reference vector wi [ <d is associated with the ith neuron, for
i = 1, · · · ,M , where d is the dimensionality of the input space and M
is the number of neurons. A set of g-filter vector contexts
C = {ci

1, ci
2, · · · , ci

K } is added to each ith neuron, where ci
k [ <d for

k = 1, · · · ,K; i = 1, · · · ,M , and K is the highest order g-filter. When
a data vector x(n) is presented to the network at time n, the best matching
unit (BMU), In, is determined by computing the closest neuron accord-
ing to the following recursive distance criterion or distortion error:

di(n) = a0‖x(n) − wi‖2 +
∑K
k=1

ak‖Ck (n) − ci
k‖2 (1)

where the parameters ak , for k = 0, · · · ,K, control the contribution of
reference and context vectors. Because the context construction is recur-
sive, setting a0 . a1 . · · · . aK . 0 is recommended. The K descrip-
tors of the current context, Ck (n), are recursively computed as the linear
combination of the contexts of the kth and (k 2 1)th order g-filter associ-
ated with the BMU obtained at the previous time step, In−1, i.e.

Ck (n) = bcIn−1
k + (1 − b) cIn−1

k−1 ∀k = 1, · · · ,K (2)

where cIn−1
0 = wIn−1 , and the initial conditions cI0

k , ∀k = 1, · · · ,K, are set
randomly. The parameter b [ (0, 1) provides a mechanism to decouple
depth, D, and resolution, R, from the filter order. Depth indicates how far
into the past the memory stores information. Resolution indicates the
degree to which the information relative to the individual elements of
the sequence is preserved. The mean memory depth for a g-filter of
order K is D = K/(1 − b), and its resolution is R = 1 − b [6]. By
increasing K, we can achieve a greater depth without compromising res-
olution. It is easy to verify that for K ¼ 1 in (2), i.e. when only a single
g-filter stage is used, the merge context model used in MSOM [3] and
MNG [5] is recovered.

When an input vector x is presented, we determine the BMU, the
second closest neuron, and so on. The ranking index associated with
each ith neuron is denoted as ri [ {0, · · · ,M − 1}. The neighbourhood
function is defined in input space as hl(ri) = exp (−ri/l)
∀i = 1, · · · ,M , where l defines the neighbourhood size. The cost func-
tion for the g-NG model is defined as:

Eg−ng(w, c1, · · · , cK , l) =

1

2H(l)

∑M
i=1

∫

V

P(x)hl(ri) di(x,wi, ci
1, · · · , ci

K ) dx
(3)

where V # <d is the input space, P(x) is the probability distribution of
data vectors over the manifold V; hl is the neighbourhood function; di is
the distortion error, and H(l) is a normalisation factor, H(l) =
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∑M
i=1hl(ri). When ak = 0, ∀k = 1, · · · ,K, in (1), the g-NG cost func-

tion (3) reduces to the original NG cost function [4]. Minimising (3)
by stochastic gradient descent we obtain the following update rules for
reference and context vectors:

Dwi = 1w(n)hl(ki)(x(n) − wi)
Dci

k = 1c(n)hl(ki)(Ck (n) − ci
k )

(4)

where the learning rates 1w, 1c, as well as l, decrease monotonically
from an initial value, v0, to a final value, vf , as v (n) = v0(vf /v0)n/nmax ,
where nmax is the maximum number of iterations.

Temporal quantisation error (TQE) [7] is used to assess the represen-
tation of temporal dependencies in the map. The quantisation error of a
neuron corresponds to the standard deviation associated with its recep-
tive field. The TQE of the entire map for t time-steps back into the
past is defined as the average quantisation error measured over all
neurons. Recurrence plots are useful tools for visualising recurrences
of dynamical systems in the phase space [8]. A recurrence matrix is
defined where the ijth component is one if the states of the system at
times i and j are similar up to an error 1, otherwise the corresponding
entry in the matrix is zero. The parameter 1 is fixed so that the recurrence
rate is 0.02 [8]. The g-NG model can be interpreted as a quantised recon-
struction of the phase space in the K + 1 dimensional space by defining
the vector r (t) = [wIn , cIn

1 , · · · , cIn
K ].

g-NG algorithm:

1. Initialise randomly reference vectors wi and context vectors
ci

k , i = 1, · · · ,M ; k = 1, · · · ,K.

2. Present input vector, x(n), to the network
3. Calculate context descriptors Ck (n) using (2)
4. Find the BMU, In, using (1)
5. Update reference and context vectors using (4).
6. Set n � n + 1
7. If n , L go back to step 2, where L is the cardinality of the data set.

The g-context model can easily be added to SOM, by replacing the
neighbourhood function hl(ki) in (4) by a neighbourhood function
defined in the 2D output grid, typically a Gaussian centred in the
winner unit i∗, hs(dG(i, i∗)) = exp(−dG(i, i∗)/s(n)), where dG is
the Manhattan distance, and s is the neighbourhood size; see [9] for
more details on g-SOM.

Experiments were carried out with two data sets: Mackey-Glass time
series [3] and Rössler’s chaotic system [8]. Parameter b in (2) was varied
from 0.1 to 0.9 with 0.1 steps. Likewise, the number of filter stages, K,
was varied from 1 to 9. The number of neurons for both SOM (square
grid) and NG variants was set to M = 0.1L where L is the length of
the time series. Training is done in two stages lasting 100 epochs
each. In the first stage, the parameters are set to a0 = 0.5 and
ak = 0.5/K, ∀k = 1, · · · ,K in (1). This is done to favour a good con-
vergence of the reference vectors in the first stage. In the second training
stage, the parameters are set to ak = (K + 1 − k)/A,∀k = 0, · · · ,K,
where A is determined by imposing the constraint

∑
kak = 1. The

initial and final values of parameters l, 1w, 1c were set as follows:
l0 = 0.1M , lf = 0.01, 1w0 = 0.3, 1wf = 0.001, 1c0 = 0.3, 1cf =
0.001. s was set in the same way as l. 1w was fixed to 0.001 during
the second training phase.

0.25

0.20

0.15

te
m

po
ra

l q
ua

nt
is

at
io

n 
er

ro
r

0.10

0.05

0
0 5 10 15

time steps into past

20 25

SOM

MSOM (β=0.6)
γSOM (k=6,β=0.1)

NG

30

Fig. 1 Temporal quantisation error against time-steps into past for Mackey-
Glass time series, using SOM, NG, MSOM and g -SOM
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Figs. 1 and 2 illustrate the TQE as a function of the time-steps into the
past for the Mackey-Glass time series, with L ¼ 1000. Fig. 1 shows that
g-SOM obtained a much lower TQE than both SOM and MSOM; in
addition, NG obtained a lower TQE than SOM. Fig. 2 shows that
g-NG with K . 1 obtained a lower TQE than MNG (K ¼ 1). In addition
MNG and g-NG obtained, respectively, similar TQEs to MSOM and
g-SOM. For the 3D Rössler’s chaotic system, we draw 4000 points
from the first principal component. Fig. 3 illustrates the recurrence
plot obtained with the g-NG state-space reconstruction from the 1D
Rössler time series. The latter produces an error of 3.74% when com-
pared point to point with the recurrence plot of the original 3D
Rössler system. In contrast, the error using NG is 6.85%, and using
MNG is 5.31%.
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Fig. 2 Temporal quantisation error against time-steps into past for Mackey-
Glass time series, using MNG, and g-NG with different b and K parameters
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Fig. 3 Recurrence plot for g-NG state-space reconstruction from 1D Rössler
time series
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Conclusion: Adding g-filters to neurons allows extending self-
organising neural networks to deal with unsupervised sequence proces-
sing. The proposed g-context yielded significantly fewer temporal quan-
tisation errors and better state-space representations than merge context
models. Potential engineering applications of the proposed model
include time series analysis, spatio-temporal maps, and the visualisation
of temporally or spatially connected data.
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