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Abstract — This work is part of a project to develop an expert system for automated
classification of the sleep/waking states in human infants; i.e. active or rapid-eye-
movement sleep (REM), quiet or non-REM sleep (NREM), including its four stages,
indeterminate sleep (IS) and wakefulness (WA). A model to identify these states,
introducing an objective formalisation in terms of the state variables characterising
the recorded patterns, is presented. The following digitally recorded physiological
events are taken into account to classify the sleep/waking states: predominant
background activity and the existence of sleep spindles in the electro-encephalo-
gram; existence of rapid eye movements in the electro-oculogram, and chin muscle
tone in the electromyogram. Methods to detect several of these parameters are
described. An expert system based on artificial ganglionar lattices is used to classify
the sleep/waking states, on an off-line minute-by-minute basis. Algorithms to detect
patterns automatically and an expert system to recognise sleep/waking states are
introduced, and several adjustments and tests using various real patients are carried
out. Results show an overall performance of 96.4% agreement with the expert on
validation data without artefacts, and 84.9% agreement on validation data with
artefacts. Moreover, results show a significant improvement in the classification
agreement due to the application of the expert system, and a discussion is carried
out to justify the difficulties of matching the expert's criteria for the interpretation of
characterising patterns.
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1 Introduction

CoMMON KNOWLEDGE allows a naive distinction between a
person being awake or asleep. However, sleep is not a unique
state. In healthy subjects, two distinct sleep states exist that
occur naturally and recur periodically in a predictable manner.
Through the ages, these states have been found to serve
different purposes in human physiology (RECHTSCHAFFEN
and KALES, 1968, CARSKADON and DEMENT, 1989,
GUILLEMINAULT, 1998).

Sleep/waking states are classified as wakefulness (WA);
active or rapid eye movement sleep (REM), and quiet or non-
REM sleep (NREM), as shown in Table 1. In tumn, NREM is
subdivided into four distinct stages. These states and stages
are defined by the concordance of overtly expressed beha-
vioural criteria and electronically recorded electrophysiolo-
gical parameters, using a Imin time frame. In the
electroencephalogram (EEG), the background predominance
of alpha (8-12 Hz), theta (3-7 Hz), and/or slow or fast delta
{0.2-3.0Hz) activity, and the presence or absence of sigma
(12— 14 Hz) spindles are measured. Other signals are also
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obtained, such as the presence or absence of rapid eye
movement (REM) in the electro-oculogram (EOG), and
presence or absence of chin muscle tone in the electromyo-
gram (EMG) (RECHTSCHAFFEN and KALES, [1968;
CARSKADON and DEMENT, 1989; GUILLEMINAULT, 1998).
All signals are obtained simultancously through long-term
polysomnographic recordings.

The states included in Table | can be called *well-defined’
sleep/waking states. However, during early human central
nervous system development, the sleep patterns expressed
both in physiological signals and behaviour are not yet fully
characterised, as in adults. For instance, there are no character-
istic alpha waves in the waking EEG activity during closed-eye
resting, and, besides, several sleep episodes lasting at least
1 min do not fit into any of the sleep/waking states described in

Table | Coarse characierization of sleep/waking states based on
signal patterns found in EEG, EQG and EMG activities. EEG during
WA wsually has many artefacts

State W MREM REM

I: EEG: predominant fast waves delta waves,  theta waves

background activity: sleep spindles

2: EOG: eye movements absence of REMs
REMs

3: EMG activity: tonicity unspecified no tonicity
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adults. This indicates that either a long transition between states
occurs, or that a less robust coalescence among variables exists
within a given state, thus introducing indeterminate sleep (15)
(ANDERS ef al., 1971; CURZI-DAscALOVA ef al., 1988; CurzZI-
DascaLova and MIRMIRAN, 1996; CURZI-DASCALOVA and
CHALLAMEL, 0000). This pscudo-state is present whenever a
combination of palterns does not fulfil the conditions of any
other state, for at least 1 min. The presence of IS is normal in
healthy infants; it diminishes with age (CURZI-DASCALOVA ef
al., 1988) and increases in pathological conditions (PEIRANO ef
al., 1989; 1990),

Infants younger than four months are not included in this
study: although the sleep spindles appear in normal infants at
aboul six weeks of post-term age, other elements required to
classify the NREM stages are not well established until that age
(FaGiout er al., 1995; PEIRANO et al, 1989; 1990; 1993; BES et
al., 1994).

Visual evaluation of long-term polysomnographic record-
ings requires well-trained personnel and is extremely time-
consuming; thus it is an expensive procedure. Furthermore,
afier an intense and highly focused concentration period, it
could become less accurate. To facilitate the classification of

‘ese slates, it is convenient to have an expert system (ES)
“=capable of identifying the sleep/waking states, based on
invariant and objective criteria. Furthermore, the automated
procedure noticeably decreases the global cost of such a task.
The need for an automated system for analysis and classifica-
tion of sleep states has been recognised by different authors
(COLLURA et al., 1993; HARPER ef al., 1987; PARK et al., 1990,
SMITH, 1986; BESSET, 1998; Tarmi, 1998). Different
approaches have been attempted. BANKMAMN ef al. (1992)
presented a procedure considering only cardio-respiratory
signals. Experimental automated sleep analysis systems in
rats were described in RONCAGLIOLO and VivaLDn (1991)
and VIVALDI ef al. (1984). In a different approach, JANSEN
and DAWANT (1989) introduced the use of an ES to analyse
EEG signals based on numerical routines and symbolic
information. It describes a detailed application in a few cases
{feasibility study), suggesting a rather complex solution.

2 Methodological basis
The classification of sleep states is divided into two stages:

“a) detecting specific patterns in the EEG, EOG and EMG
signals of digital polysomnographic recordings

{b) identifying the corresponding sleep/waking state using the
temporal concordance of these basic patterns and other
criteria, lasting at least a minute.

2.1 Faiterns to recognise sleep/waking siates

The raw data are taken from digital polysomnographic
recordings obtained in normal infants during their naturally
occurring  naps, under  spontaneous  (non-induced)
sleep/waking cycles, usually spanning about 3—4h. These
recordings were performed at the Sleep Laboratory of the
Instituto de Mutricion vy Tecnologia de Alimentos (INTA) of
Universidad de Chile. The data are stored in magnetic or laser
media by multiplexing digitised signals of EEG, EOG and
EMG and other activities at 250 sampless~'. The patterns for
sleep/waking state classification are searched in a moving
window spanning 1 min of data.

The data acquisition operation is complex. Usually the infant
sleeps on his/her mother’s lap. The monitored signals have low
power and cannot be isolated from physiological and ambient
noise. Body movements of the infant and the mother add to the
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signal noise. Artefacts including movement signals and any
other interfering signals such as EEG presence in the EOG
channel, are present in the polysomnographic recording.

Mot all data available in recordings obtained from infants at
INTA are useful: a significant number of these had to be
discarded or only partially used, either because the recording
was faulty, the scales to apply to the data were missing, or the
expert classification was incomplete. A case typical of this last
point was that, in some recordings, the EEG predominant
background activity was characterised either as theta or delta,
but not as slow delta. The useful data were divided to have
tuning, testing and validation data sets.

2.1.1 Preprocessing: The EEG and EOG channels are
smoothed by a 15Hz lowpass filter to simulate the needle
recording limitations on the polygraph, which correspond to
the information available to the human expert during visual
evaluation. The significant frequency band in the EMG is 30-
50 Hz; therefore a 10th-order Yulewalk 100 Hz lowpass filter
is used to reduce noise.

2.1.2 EEG detection of background activity and sleep spin-
dles: The EEG provides a considerably noisy signal that is
analysed to find the predominant background activity and to
detect sleep spindles. Each of these steps is described here ina
more detailed way. The EEG recording comprises five bipolar
derivations (FP1-C3, C3-01, FP2-C4, C4-02 and C3-C4).
According to expert knowledge, the posterior derivations (C-
Q) are preferred for background activity, and the anterior
derivations (FP-C) are preferred for sleep-spindle detection.

The predominant background activity refers to the predomi-
nant frequency present in the EEG spectrum. For the purpose
of this study, the frequency ranges of interest are the slow delta
and the theta bands. Several signal analysis techniques were
tested to model the expert classification criteria. A zero-
crossing detection strategy gave the best results to detect
slow-delta predominance, and a fast Fourier transform (FFT)
was better to detect theta predominance in each successive
temporal window. The size of the temporal window is one page
(corresponding to the expert analysis on paper register) and
lasts 305 or 205, depending on the register protocol.

A slow delta wave is defined by frequencies up to 2 Hz and,
in addition, a peak-to-peak amplitude of at least 75 V. The
baseline is obtained as the average of all samples in the page.
Consecutive zero-crossings define the period and thus the wave
frequency. Slow delta wave predominance was initially estab-
lished whenever it existed in at least 20% of the page.
However, to enhance the agreement with the expert classifica-
tion, experimental results later raised the threshold to 38% of
slow delta wave presence to establish predominance. Body
movements can cause false slow delta waves in the EEG
channels, particularly in WA, To avoid these, the power of
the body movement in the strongest channel of the two
available in the polysomnographic recording is monitored
simultaneously, and slow delta wave detection is suspended
if the body movement power surpasses a given threshold,
empirically determined.

Theta waves lie in the frequency range of 3—7 Hz. To detect
these, a relative power index is calculated from the fast fourier

‘transform (FFT) of the EEG signal, to obtain the amount of

power within the window of 3-7 Hz with respect to the total
power. After the computation of this index for the whole
recording, two thresholds were determined: one to detect the
presence of theta activity, depending on relative power ampli-
tudes, and another to assert theta wave predominance within a
page, which depends on time. The ‘presence’ threshold is
expressed as a percentage between the highest and lowest
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physiological relative theta power index obtained, and was set
at 38% in this work. The ‘predominance’ of theta waves was
established whenever the *presence” would surpass a threshold
of 30% in a page.

A sleep spindle is a sequence of fast (sigma) EEG waves
lasting more than 0.5 5 and with a magnitude above 10pV. In
normal adulls, sigma activity lies within the range 12~ 14 He.
However, in infants, a range of 10-15Hz is considered
adequate (Louis ef al., 1992). The sleep spindles are usually
mounted on other slower waves with larger amplitudes in the
EEG, which make inadequate the previous signal-analysis
methods. The procedure to determine the presence of sleep
spindles is decomposed into the following steps:

(i) To verify whether there is a 10-15 Hz wave, the instan-
taneous slope of the signal is monitored. The slope is
determined by obtaining a straight line adjusted by the
least square error method using five consecutive samples.
A sign change in this slope identifies a peak. The current
period is given by the time elapsed between three con-
secutive sign changes in the slope (i.c. two consecutive
peaks of the same sign).

(i) sigma wave sequence has peak-to-peak magnitudes higher
than 10 pV and shows at least limited symmetry, given by
a nse to decay time ratio within 0.2-5.0.

(ili) A sleep spindle occurs whenever a sigma wave sequence
lasts at least 0.5s.

2.1.3 Detection of REMs in the EOG: The EOG is a single-
channel signal that shows the small potential difference
between the front and the back of the eye (the comea is
positive with respect to the retina). As the eye moves, the
position of the cornea and the retina change relative to the
fixed position of the electrodes, and the corresponding change
in potential is registered. Thus the EOG activity is inspected 1o
detect REM patterns, which are isolated pulses in the EOG,
oceurring within a duration range and exceeding thresholds of
amplitude and power, as specified in the following criteria:

(@) The baseline is obtained using the same technique in this
EOG channel as for the slow-delta waves in the EEG. Two
conseculive zero-crossings determine the pulse duration,
and the pulse amplitude is given by the maximum differ-
ence between samples in this interval and the baseline.

ib) An REM pulse candidate is acceptable if it lies between
0.06 and 0.5s.

(c) REM signals are not periodic, but interfering periodic
signals from other sources can show in the EOG and
must be identified and eliminated. To eliminate trains of
pulses, two parameters that consider the amplitude and the
energy of the signal are defined. The duration and ampli-
tude of five consecutive REM pulse candidates are held in
a moving window. As the pulses are defined by the zero-
crossings, consecutive pulses have allernate signs. In each
analysis, the three pulses of the same sign are considered,
i.e. pulses 1 (left), 3 (centre) and 5 (right). The REM pulse
candidate is pulse 3 in the array.

{df) The amplitude parameter is calculated as

REM — Pa = 2* AMP,/(Ka + AMP,;+ AMP,)

where AMP_ 15 the amplitude of the central lobe (REM
candidate), Ka is a non-zero constant to avoid divisions by
zero, AMP; is the amplitude of the lobe to the left, and
AMP, is the amplitude of the lobe to the right of the central
lobe {with the same sign). Thus an REM signal will have a
high REM-Pa value.
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{¢) The energy contained in the signal window is considered
in the energy parameter

REM — Pe = (RMS, + RMS, + RMS,)/
(Ke + RMS, + RMS,)

REM = Pe combines the RMS value of the central
window containing the REM candidate (RMS,) and the
RMS values of equal-width windows to the left and right
side of it. Windows of 1 s duration are considered.

() After the computation of REM-Pa, REM-Pe and their
product (REM — Pa*REM — Pe) is complete for the
whole recording, a second run is performed to determine
physiological maximum and minimum values of the pro-
duct.

(g) Thus, any REM candidate is eliminated whenever the
product (REM — Pa*REM — Pe) does not surpass a
fixed threshold. In this work, the threshold was set to
50%, including pages with saturations, which optimised
the agreement with the expert.

i(#) False REM pulses can appear on the EOG recording
owing to EEG activity or to artefacts seen as saturations
on the EEG. The EEG electrode output closest to the EOG
electrode is analysed, in a 1 5 window corresponding to an
REM candidate (peak value), and further REM candidates
are eliminated if
o over 40% of EEG samples are saturations
o orthe RMSofthe EEG surpasses aspecified threshold (set

to 40% in this work, including pages with saturations).

2.1.4 Detection of chin muscle tone in the EMG: The EMG
algorithm detects differences in the tonic chin EMG activity
measuring the mean square value of the signal. The log
function is used to compress the dynamic range of the
samples. The window considered for the computation is
relatively small, i.e. 128 samples (about 0.5 ). The algorithm
to detect EMG activity is as follows:

(i) A baseline is determined by computing BL=
exp((1/N) ¥ log(x,)), where x;, are the samples of the
EMG signal, and & is the number of samples within the
window,

(i1) The logarithm of the mean square value (LMSV) is
calculated as

IMSV = log(3_(x, — BLY)100/N

(iii}) After the computation of LMSV is complete for the whole
recording, a second run is performed to determine the
maximum LMSVy; and minimum LMSV,, values.

(iv) The threshold to validate muscle tone presence is set as a
percentage of the difference LMSVy; — LMSV,,, such that
it optimises the agreement with the expert. In this work,
the percentage was fixed at 30%.

2.2 Further criteria for classifying sleep/waking siates

The time frame for an ‘observation window” is given by the
usual procedure established by experts, i.e. making a visual
assessment of each page of recording, which is typically
0.5 min long. However, the minimum time frame to establish
a sleep/waking state is given by a window defined as | min
long, equivalent to two consecutive observation windows or
two pages. This is another significant consideration for
adequate classifier performance, as some of the patterns
appear only sporadically. For example, REMs or sleep spindles
can be left out of a shorter window, but included in a window
with a | min span. Therefore the use of shorter periods of time
for classification would cause an incremental loss of temporal
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concordance of patterns that define a certain state, thus
introducing a higher incidence of 1S.

The outputs of the pattern-acquisition algorithm section of
the sleep/waking siate classification system are presented as
the amount of time where each characteristic activity was
present in each window. The algorithms determine a value in
the [(LO, 1.0] interval for each of five patlerns: slow-delta
waves, theta waves, sleep spindles, REM and muscle tone.
Thresholds 1o define which signals correspond to the sought
aclivity patterns are adjusted by training the detection system.

For the purpose of classifying states, the values corre-
sponding to sleep spindle and REM detection are modified,
laking their episodic nature into account. Usually, more than a
single episode occurs in a time window when they appear,
However, one such event suffices to establish a state, as follows:

() The occurrence of a single sleep spindle in a 5 min time
frame is enough lo assert its presence (GUILLEMINAULT
and SOUQUET, 1979).

ib) A single REM episode asserts REM presence for an REM

state classification purpose (CROWELL er al., 1997). In the

normalised scale used, zero means absent, and 1 means

100% (total assurance) presence. Hence, the REM time

presence value is modified for the pattemn acquisition

output using the following equation, which shows a

huge increase as a function of REM presence:

REMs = | —exp(—a” REM3s)

where REMs' is the modified REMs value and a is a correction
factor obtained during the training phase.

2.3 Madel for sleepfwaking states

A model of the different sleep/waking states and stages is
presented here, focusing on the characteristics to differentiate
these and therefore help in their identification. This model further
describes the possible time sequences among the sleep/waking
states and stages. For the purpose of this research, NREM stages
3 and 4 have been unified, as shown in Table 2. Indeed, NREM
stages 3 and 4 are usually pooled together and classified as *slow-
wave' sleep within NREM sleep.

el 2 Criteria concordance for sleep/waking state classification in
infants, according 1o expert classificarion -

State/stage WA NREM 1| NREM 2 NREM 3 +4 REM
EEG: slow delta absent  absent  absent present X
EEG: theta X present X absent  present
Sleep spindles  absent  absent present! X absent
REM present  absent  absent absent  present
MT present X X X absent
Other artefacts™  from from
WA' NREM 2°**

X = lmrelevant

* Artefacts: fast waves (fast theta or sub-alpha: 6—8 Hz) and anefacts
{caused mainly by movements, crying, fighting, being fed etc.) are
Ercsenl in WA

From WA: NREM | is defined as necessary transition from WA to
other, deeper stages of NREM. Exceptions can occur, with short WA
cpisodes emerging in an extended sleep period, where state can step
directly to other sleep states

iSleep spindles must be present for onset of NREM 2 stage, but can be
absent up to maximum of 5min (GUILLEMINAULT and SOUQUET,
1979), within ongoing stage. Thus already established NREM 2 stage

The model is conceived as a state variable automaton
consisting of the above mentioned states and the allowed
transitions, as shown in Fig. 1. An infant will always be in
one of the described states, including 1S. As time progresses, he
or she can stay in the same state, i.e. a transition to the same
state, or change to any other allowed. To avoid an overcrowded
representation of sleep/waking states, the transitions to the
same state have been purposely left out of the diagram.
Besides, as 1S is a pseudo-state, it does not belong in the
model.

In an infant's sleep physiology, an IS episode can appear in
any transition between two states, or between two episodes of
the same state (CURZI-DAsSCALOVA and MIRMIRAN, 1996).
State transitions occur naturally, or are endogenously deter-
mined (JOUVET, 1994). Note that NREM | can also be
considered as a transition; in fact, several researchers consider
the onset of a sleep episode only from the beginning of the first
NREM 2 stage appearance. However, it is not classified as 15,
because it is a relevant stage to describe both physiological and
pathological events occurring just at the onset of a sleep
episode (or at the waking—sleep transition).

The duration of WA is paramount to establish the transitions
as described. After a sustained WA period, the sleep will
normally progress as stated in the model, i.e. NREM 1 is a
natural step stage when a completely awake infant is falling
asleep. However, if the WA is a short agitation episode in the
middle of sleep, other transitions can occur. In fact, in the latter
case, it is possible to observe a transition directly from WA to
REM.

Physiological sleep—waking transitions are age-dependent.
In infants up to 2—3 months of age, direct transitions from WA
1o IS clearly predominate (we do not show them in Fig. 1,
because our main focus is on infants from four months
onward). Later on, they reach the adult pattern of progressing
first from WA to NREM through NREM 1, and then to the
other NREM stages. Nevertheless, in some cases, they can
proceed directly from WA to NREM 2. During a sleep episode,
transitions between NREM and REM normally occur either
from NREM 2 or NREM 3 + 4; in contrast, the transition from
REM to NREM-3+44 is forbidden (GUILLEMINAULT and
SOUQUET, 1979).

will remain NREM 2 if all other criteria are met but there are no slecp Fig. 1 Model of sleep/waking siates, showing transition irafeciories.
spindles within a few minutes 15 and transitions within a state have been intentionally lefi
** As sleep deepens, NREM 3 + 4 state follows NREM 2 stage out for clarity
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2.4 Expert sysiem

The inference engine and the knowledge base to simulate the
human expert have been constructed using fuzey ganglionar
lattices (GLs) based on analogue variables. The advantages of
using GLs are the power of their explanatory capabilities and
the possibility to include uncertainty casily, both in the data
and in the reasoning process. A characteristic of a GL is that
each unit of the lattice is associated with a meaningful concept
in the knowledge base. Besides, a GL knowledge base is not a
list of rules and provides a powerful tool to avoid inconsis-
lencies,

In general, a GL is a hierarchical network, formed by
functional units quite similar to a ‘sigma-pi’ type of neural
network (NN) (DUREIN and RUMELHART, 1989). In a GL, each
unit of the network depends on a number of antecedents, or
inputs, which are combined in the form of weighted sums of
products of any number of the antecedents. The output is
deflined by a linear activation function, without a threshold.

During the initial stages of development of the GLs as a
model for human-expert reasoning, the defined structure only
considered pairs of inputs 1o generate an output, in the form

z=a X +apxy + (1 = ay = ay)xx;

This expression has the properly lo be equal to zero when
X =x;=0, and equal to one when x;, =x; =1, i.e. no
constant term is considered, and the sum of the coefficients
is equal to one. The output = corresponds to the probabilistic
sum if ay =a, =1, and to the probabilistic product if
iy = gy = 0. Normalising the inpuis within the range [0, 1]
provides an output in the same range. [f the inputs are
associated through a sum, then the output will be equal to or
larger than the largest input. However, if the inputs are
associated through a product, then the output will be equal to
or smaller than the smallest input. If the coefficients are also in
the [0, 1] range, then the expression of z can be set 1o satisfy a
number of different associations, apart from the ones already
mentioned, such as weighted sum, arithmetic average etc. In
fact, with these associations, it has been possible successfully
to model human reasoning with two given inputs. For example,
let us assume that *body size’ depends only on the normalised
height and weight of a person. The ‘size’ is a concept of a
higher level (more elaborate) than the antecedents of height and
weight. For example, we could have an expression relating the
inputs to the output of the form:

size = 0.5 = height + 0.8 x weight — 0.3 x height = weight

Mote that, if height = weigh =0 (1), then the size=0(1). If a
person has height of 0.9 and weight of 0.3, then, using the
association just defined, the person’s size is approximately
0.61.

GL units of higher complexity were developed (HOLZMANN
ef al.,, 1996), introducing the capability to handle simulta-
neously more aniecedents, which allowed the adequate model-
ling of higher-level concepts. The case with three antecedents
is shown to induce a generalisation of the association formula:

I=ax + (35 + Xy = d2 X)Xy = dj3X Xy
— £r23x2.\'] + "u}-\.-l-fzx_'ll

where gy =0and Y a= 1.

The main difference between a GL and an NN is that each
ganglion (unit) of the lattice is related to a concept that is of a
higher level than its imputs. This reasoning structure, which
utilises intermediale concepls Lo reach the conclusion, is widely
used in medicine, and the GLs were specifically developed to
model reasoning in this field of expertise (HOLZMANN er af.,
1988; 1990; 1996; HOLZMANN and AVARIA, 1992; HOLZMANN
and SAN MARTIN, 1997). Human reasoning is based on the

evaluation of some elemental antecedents to value intermediate
consequents within a degree of uncertainty, progressing to
higher-level concepts. The GL, like an expert, allows the
simulation of a specialist’s reasoning, establishing the current
situation of a top-level concept. The developed methodology is
also capable of providing explanations that are as precise as
possible, according to the given uncertainty of the data. Using
fuzzy coefficients, the variability in human reasoning can also
be modelled. Finally, the GL methodology helps in finding a
procedure 1o add certainty to the conclusions, providing an
adequate prospecting plan (HOLZMANN ef al, 1996;
HoLzmanN and SaN MARTIN, 1997).

To create the GLs that characterise each sleep/waking state,
the uncertainty in raw data had to be eliminated, i.e. only noise-
and artefact-free segments of real recordings were considered
for training. The following steps are followed to develop the
ES: adequate representation of sleep patterns, states and stages
using GLs; computational implementation; training and tuning;
and validation.

2.4.1 Represeniation in terms of fuzzy sefs: Sleep/waking
patterns and stales were presented as linguistic concepis,
whereas artificial ganglionar lattices operate on fuzzy numbers
of trapezoidal form. To achieve a common ground, numbers
(real or fuzzy) were also assigned the concepts of interest. For
expert-assessed cases, the extreme values of 1.0 and 0.0 were
associated with each concept, meaning the possibility of
presence or absence, respectively. However, intermediate
values can also be found, whose interpretation will depend
on the associated concept. The membership value of a sleep
state, as defined by the expert, is also translated as an extreme
value 1.0 or 0.0, as for the sleeping patterns. As the expert
defines one sleep state in each time window, there is one sleep
state with the value 1.0, and all other states have the value 0.0,
for each window in the training data.

The ES is composed of six GLs, one for each sleep/waking
state, i.e. WA, REM, NREM |, NREM 2, NREM 3 + 4 and IS,
The inputs of the GLs are outputs of the specific pattern
algorithms described before. Fig. 2 shows diagrams of the
GLs involved.

2.4.2 Training and tuning of the GL: The ES requires that its
coefficients be determined. This is performed by a training
method published elsewhere (HOLZMANN er al., 1996) over a
representative training database. The training procedure

slow defta waves slow della waves
sleep spindles theta waves
REM sleap spindlas

muscle tone REM

a b
slow delta waves siow delta waves
sleep spindles 3— Thita waves @
REM REM
c d

thela waves WA
sleep spindles MREM 1
NREM 2
REM NREM 3+4
mugcle lone REM

8 f

Fig. 2 Diagram of diffevent GLs that ave paris of ES for sleep/wak-
ing state classification. Note that inputs of GL representing I8
(Y are outputs of all other GLs
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resembles the back-propagation method used in artificial
neural networks. The ES is validated using a testing data set
different from the training set, by directly comparing the
results given by the system with those determined by the
expert. The membership values obtained for the different sleep
states will be in the [0.0, 1.0] range. A state is determined
when one GL has a value close to 1.0, and all other GLs values
arc close to 0.0, lll-defined patterns tend to give intermediate
values. Each of the training and testing data seis are composed
of n-tuples of inputs and outputs, corresponding o an expert’s
visual evaluation of paper polysomnographic recordings
showing wave patterns, and their corresponding state classifi-
cation. At the beginning of the training phase, the coefficients
for each GL are given arbitrary values. Sequentially, the input
data of each r-tuple in the training set are applied to the
system, giving the output of each GL, and the associated error
compared with the n-tuple outputs is calculated. The corre-
sponding error value determines modifications of the GL
coefficients, according to the methods explained in HoLz-
MANN ef al. (1996), until an error of less than 1% is obtained,
or when no further improvement can be made.

3 Results

The results involving direct automated analysis of real
polysomnographic  recordings came from three different
patients. In these cases, the expert sorted out the characterising
patterns and also classified the sleep state accordingly, for each
page of the recording. This allowed for separate tests of the
different parts of the system.

To correct and adjust the detection of the characterising
patterns, several partial tests were performed during the devel-
opment of the system. Section 2.1 describes the detection
algorithms that were finally applied. Several pages of the three
available recordings were eliminated, owing to inconsistencies:

Table 3

30 pages out of 220 in record 1 (FH120594); 101 pages out of 610
in record 2 (CV061493); and 20 pages out of 201 in record 3
(CROB2995). Hence, a total of 880 pages of data were consid-
ered. Even so, there are differences between the criteria detailed
in Table 2 (given by the expert) and the assessments given by the
same cxpert for the data that were used, as detailed in Table 3. In
some cases, the situation does not involve a contradiction, c.g.
sleep spindles must be present for the onset of stage NREM 2, but
can be absent for up to 5 min within NREM 2.

Table 4 shows the performance of the pattern-detection
algorithms with the training data set (recording 1) in terms of
number of pages wrongly classified, and Table 5 shows the
same results as a percentage of the total number of cases, for
each pattern and sleep state. The two other available recordings
were used as testing data. The performance of the detection
algorithms on recordings 2 and 3, using the parameters set with
recording 1, is shown in Tables 6 and 7, respectively. The
corresponding percentages are not shown, but can be easily
obtained with the information given.

The sleep/waking state identification ES was tested on the
same polysomnographic recording data, dividing these into
three sets, namely training, test and validation data. However,
for this part of the experiment, the data of the three recordings
were mixed, to provide a pood set of data for each
sleep/waking state, and to ensure that the training set
comprised only consistent data, without artefacts. The ES is
trained using these data, and automatically checks its perfor-
mance with the testing data set. If the results are not satisfac-
tory, it goes back and trains again, proceeding back and forth
until the desired performance threshold is met on the testing
data set. Then, the performance of the ES is independently
measured using the validation data set.

Table 8 shows the sleep/waking state classification obtained
by the ES using the training data set. Once the ES is completely
trained, the outcome of this test should reach 100% correct
classification. The errors are a sign of inconsistent data, which

Inconsistencies between criteria for sleep/waking state classification in infants given in Table 2, and actual expert classificarion

performed on each page of data of three recordings. Data corvesponding to IS were not included. They do nat necessarily convey coniradictions,
e.g. slecp spindies must be present for onset of stage NREM 2, but can be absent for up to § min within NREM 2

State/stage Wa NREM 1 MNREM 2 NREM 3 + 4 REM

EEG: slow no inconsistencies 3 inconsistent 7 inconsistent 11 inconsistent X

dela found (r2) (ra) (ra:10;r3:1)

EEG: X 10 inconsistent X 2 inconsistent no inconsistencies

theta (ra:6;ry:d) (ra:l;r:1) found

Sleep no inconsistencies 5 inconsistent 111 inconsistent X no inconsistencies

spindles found (ra) (ry:14;r2:85;r2:12) found

REM no inconsistencies 4 inconsistent no inconsistencies 3 inconsistent 10 inconsistent
found (ry: a2} found (ra:2;ra: 1) (ry:2;r2:8)

MT 7 inconsistent (ry) X 17 inconsistent (r;)

Total number of pages 128 102 205 248 132

Ty, T2, Ty =recordings, 1, 2 and 3, respectively

Table 4  Ervors in detection of sleep patterns from polysomnographic recordings using expert-assessed patterns
status as input. Number of total incorrect detections is shown, separated by sleepfwaking state, ma’:carmg mumber of
false negatives (FN) and false positive (FP) in each case, for training data sel (recording [)

Total EEG: slow sleep
State pages delta EEG: theta spindles REM MT
WA 36 0 B (FF) 0 1 (FN) B (FN)
MNREM | 7 1 (FP) ] i 1 (FN) ]
NEEM 2 23 4 (FP) 9 (FN:2;FP:7) 5 (FMN) 2 (FP) 5 (FN)
NREM o4 1 (FN) 1] 5 9 (FP) k]|
i+4 (FM:4;FP:1) (FMN:30;FP:1)
REM 16 0 0 0 2 (FM) 1]
1S 14 5 3 1 (FN) 3 0
(FN:2:FP:3) (FN:2:FP:1) (FN:1;FP:2)
Total 190 11 20 i1 18 44
Medical & Biclogical Engineering & Computing 1999, Vol. 37 471



Tuble 3 Errors in detection of sleep patterns from polysomnographic recordings, using experf-
assessed patterns siatus as inpul. Percentage of pages in error for each feature detected and state are
shown for iraining data set {absolute values shown in Table )

Ya Total " EEG: slow Sleep

State pages delta EEG: theta spindles REM MT
WA 18.9 0.0 222 0.0 28 222
NREM 1 37 14.3 0.0 0.0 14.3 0.0
NREM 2 12.1 17.4 39.1 21.7 8.7 21.7
NREM 344 49.5 1.1 0.0 5.3 9.6 330
REM 8.4 0.0 0.0 0.0 12.5 0.0
1S5 7.4 35.7 214 7.1 214 0.0
Total 100.0 5.8 10.5 58 9.5 232

Table 6 Errors in detection of sleep patterns from polysomnographic recordings, using expert-assessed patterns
status as input Number of total incorrect detections is shown, separated by sleepfwaking siale, indicating number of
false negatives (FN} and jalse positives (FP) in each case for recording 2 (iesting data set)

Total EEG: slow Sleep

State pages delea EEG: theta spindles REM MT

WA 54 0 7 (FP) 1 (FP) 10 (FN) 1 (FN)

MREM 1 79 3 16 1 (FN} 9 (FF) 3

(FMN:1;FP:2) (FN:11;FP:5) (FMN:2;FP:1)
MREM 2 154 6 (FP) 54 28 6 (FP) 26 (FN)
(FN:25;FP:29) (FN:20;FP:8)

NREM &0 7 7 (FP) 12 2 0

i+4 (FN:2;FF:5) (FN:4;FP:8) (FN:1;FF:1)

REM 105 4 (FP) 2 (FN) 0 38 0

(FN:3T;FF:1)

15 37 8 (FF) 7 5 7 0
(FM:6;FP:1) (FM:2;FP:3) (FN:1;FF:6)

Total 509 28 93 47 72 30

Table 7 Ervors in defection of sleep patierns from polvsomnographic recordings, using expert-assessed patterss
status as input, Number of total incorrect detections is shown, separated by sleep/waking state, indicating number of
Jalse negatives (FN) and false positive (FP) in each case, for recording 3 (testing data set)

Tintal EEG: slow Sleep

State pages delta EEG: theta spindles REM MT

WA kH] 0 15 (FF) i (FP) 6 (FMN) 0

NREM | 16 1 (FP) 4 1 (FP) 1 (FN) 2
(FN:2:FP:2) (FN:1;FF:1)

NEEM 2 2% 0 5 10 (FN) 0 £ (FN)
(FN:3:FP:2)

NREM 74 4 2 26 1 (FN) 8 (FN)

i+4 (FN:3;FP:1) (FN:1;FP:1) (FN:25;FP:1)

REM 11 0 0 0 7 (FN) 1]

15 14 3 (FP) 1 (FN) 2(FP) 6 | (FP}

{FN:5;FP:1)
Total 181 ] 27 42 21 19

is not unexpected, and they set an upper limit for the overall
performance capability of the ES. Each Table compares the
specialist (medical expert) classification with the ES classifica-
tion for all possible states, showing the number of pages of
agreement on the diagonal and the number of pages confused
by the ES elsewhere. The ES showed itself to be sensitive to
data with artefacts. Therefore the performance of the system is
first shown on the test set where the pages with artefacts were
left out (Table 9), and then on the whole testing data set (Table
10). The same separation of data was carried out with the
validation set. The validation data are the closest data set to a
new recording. The results obtained on the dala without
artefacts are shown in Table 11, and those using the whole
validation set are shown in Table 12,

The performance of the ES as opposed to plainly applying
the criteria detailed in Table 2 was also tested. Tables 13-15
show the results of applying Table 2 to the training, test and
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validation data sets defined for the ES, respectively. Comparing
these Tables with Tables 8, 10 and 12, respectively, indicates
the contribution of the expert system towards the adequate
classification of sleep/waking states.

The performance of the ES, isolated from the characteristic
pattern-detection algorithms, was tested separately. Tables 16
and 17 show the results obtained from the ES, applying the
pattern data identified by the medical expert in the polysomno-
graphic recordings as inputs to the system, i.e. bypassing the
pattern-detection algorithms. The available data were separated
into two sets for training and testing. As the raw signals were
not used here, more pages of the data available were suitable,
Table 16 shows the classification performance obtained with
the data used for adjusting the parameters of the expert system
(training set). Table 17 shows the same experiment, but
applying testing data, and using the same parameters adjusted
using the training data.

1999, Vol. 37



Table 8  Sleep/waking state classification obtained by ES using training data. Number of pages classified in each

state/stage is indicated

ES NREM Total, Error, Error,
expert WA NREM | NREM 2 3+4 REM 1S pages pages %
WA 70 70 ] 0.0
MREM 1 39 i9 0 0.0
NREM 2 45 45 0 0.0
NREM 344 49 49 ] 0.0
REM 38 k] 0 0.0
1S 1 3 4 1 25.0
45 49 38 3 245 1 0.4

Tanal T0 40

Table 9 Sleep/waking state classification obtained by ES using testing data. Number of pages classified in each

state stage is indicated. Data with artefacts are not included

ES NREM Total,  Error,  Error,
expert WA NREM 1 NREM 2 3+4 REM 15 pages pages %
WA 28 23 0 0.0
NREM 1 13 13 0 0.0
NREM 2 33 33 0 0.0
NREM 3+4 47 2 49 2 4.1
REM 12 12 0 0.0
- I8 k! a 0 0.0
Total pi ] 13 11 47 12 5 138 2 1.5

Tabie 10 Sleep/waking state classification obtained by ES wsing all testing data, including pages with artefacts.
Number of pages classified in each state/stage is indicated

ES NREM Total, Error, Error,
expert WA NREM 1 NREM 2 I+4 REM 15 pages pages %

WA 29 29 0 0.0
NREM 1 21 21 0 0.0
NREM 2 1 37 5 43 6 14.0
NREM 3+4 48 2 50 2 4.0
REM 5 1 16 2 6 273
15 3 o 0 0.0
Total 29 27 37 54 16 5 168 14 83

Table 11 Sieep/waking state classification obtained by ES using validation data, Number of pages classified in each

state/stage is indicated. Data with artefacts are not included

~—ES NREM Total, Error, Error,
expert WA NREM 1 MREM 2 I+4 REM Is pages pages %o
WA 26 26 0 0.0
NREM 1 3 10 13 K} 3.1
NREM 2 37 1 38 1 2.6
NREM 3+4 47 47 0 0.0
REM 1 14 15 i 6.7
15 2 2 0 0.0
Total 29 11 37 47 14 3 141 3 3.6

Table 12 Sleep/waking state classification obtained by ES using alf validation data, including pages with ariefacts.
Number of pages classified in each state/stage is indicated

ES NREM Total, Error, Error,
expert WA NEEM 1 MREM 2 J+4 REM Is pages pages ko

WA 28 28 0 0.0
NREM 1 4 16 20 4 20,0
MREM 2 | 40 9 7 57 17 29.8
NREM 344 50 50 0 oo
REM f 16 22 [ 271.3
15 2 2 0 0.0
Total 12 23 40 39 16 9 179 27 15.1

& Biological Engineering & Computing 1999, Vol. 37
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Table 13 Sleep/waking state classification obtained using training data of ES and applying Table 2 instead af ES.
Number of pages classified in each state/stage is indicated

ES NREM Total, Error, Error,
expert WA MREM I NREM 2 3+4 REM 15 pages pages %

WA 70 70 0 0.0
MREM | k1] 1 9 | 2.6
NREM 2 45 45 0 0.0
NREM 344 46 3 49 3 6.1
REM 37 1 38 1 2.6
18 1 3 4 1 25.0
Total T 39 45 46 E¥ g 245 ] 2.5

Tuble 14 Sleepfwaking state classification obtained using all testing data applied to ES, including pages with
artefacts, and applying Table 2 instead of ES. Number of pages classified in each state/stage is indicated

ES NREM Total, Error, Errar,
expert WA NREM 1| MNREM 2 J44 REM 15 pages pages Y

Wwa 27 2 29 2 6.9
NREM I 4 8 9 21 13 61.9
NREM 2 34 4 5 43 9 20.9
NREM 344 42 8 50 8 16.0
REM 2 B 10 2 22 12 54.6
15 i 2 ] 1 333
Total 34 16 34 46 10 28 168 45 26.8

Table |5 Sleep/waking state classification obtained using all validation data applied o ES, including pages with
artefacts, and applying Table 2 instead of ES. Number of pages classified in each state/stage is indicared

ES NREM Total, Eror, Error,
expert W NREM 1| NREM 2 3+4 REM IS pages pages Y

WA 2 6 28 [ 214
NREM | 2 4 5 9 20 16 £0.0
NREM 2 2 4 i 7 33 57 46 80.7
NREM 3 +4 41 9 50 9 18.0
REM 8 12 2 2 10 45.5
Is | 1 2 2 1040.00
Total 27 16 16 48 13 59 179 ] 49.7

Table 16 Sleep state classification using expert-assessed pattern status as input. Numbers of pages correctly and
incorrecily classified are shown, contrasting system wich specialise, for training data. Coincidences are shown on

diagonal

Specialist MNREM Total, Error, Error,
System WA NREM 1 NREM 2 3+4 REM IS5 pages pages k0
WA 201 l 2 204 3 1.5
NREM I 80 50 0 0.0
NREM 2 163 1 164 1 0.6
NREM 3 +4 459 459 0 0.0
REM 5 1 10 116 & 5.2
15 2 108 110 2 1.8
Totals 206 92 163 459 115 108 1143 12 1.1

Table 17 Sleep state classification using expert-assessed patterns status as input. Numbers of pages correctly and
incorrectly classified are shown, contrasting system with specialist, for testing data. Coincidences are shown on

diagonal

Specialist HNREM Total, Error, Error,
System WA NREM 1 NREM 2 i+4 REM 15 pages pages i
WA 26 1 a7 1 1.0
NREM 1 57 St 0 0.0
NREM 2 78 3 81 k] a7
NREM 344 232 232 0 0.0
REM 60 60 0 0.0
15 3l il 0 0.0
Totals 96 57 78 232 64 3l 558 4 0.7

Medical & Biological Engineering & Computing
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4 Discussion and conclusions

The development of the model based on state variables to
describe the sleep/waking states in infants, as detailed in
Section 2.3, is a contribution towards the objective formalisa-
tion of these physiological states. It is also helpful in designing
an ES for automatic classification,

An ES to classify sleep/waking states in infants has the
potential 1o be a powerful tool in sleep-related research (sleep
medicine and chronobiology) (FERBER and KRYGER, 1995).
This includes a wide variety of applications, such as the
neurofunctional assessment of the central nervous system,
nutritional deficits, or those relative to evaluating the risk of
presenting sudden infant death syndrome (S1DS), with the
added virtue of being a non-invasive approach.

There are various sources of uncertainty for the
sleep/waking state identification ES, including noise in the
signals, individual variations in acquired signals, uncertainty
(inconsistency) in the expert's classification process etc. The
uncertainties can be separated into two types, according to the
division of tasks stated for the system structure: uncertainty in
the pattern-detection algorithms, and uncertainty in the
reasoning process for sleep classification.

As mentioned previously, noise and artefacts are important
sources of error for pattem-detection algorithms, originating in
electromagnetic noise, body movements of the infant and the
mother, and interfering physiological signals. The body move-
ments can cause artefacts in different signals, such as false slow
delta waves in the EEG channels, particularly in WA, False REM
pulses can appear on the EOG recording owing to EEG activity or
owing to artefacts seen as saturations on the EEG, and so on. In
our experience, several difficulties encountered in the develop-
ment of the ES were related to the noise and artefacts in the
polysomnographic recording. The design of adequaie algorithms
to identify the characteristic activity patterns, such that they
would be robust in the presence of noise and able to identify
and discard artefacts, introduced a significant complexity to the
problem. No single solution would give the best result in all
situations. For example, to characterise predominant background
EEG activity, slow-delta predominance was better detected using
a zero-crossing strategy, whereas theta-predominance detection
was performed better using FFT.

Another source of error is the high variability in the
amplitudes of the same signals, which vary from patient to
patient and also with time within the same patient record. The
visual interpretation made by the specialist for patiern detection
takes contextual knowledge ‘for filtering” into account, which
is not stated as a sleep-stage characteristic. Therefore it is
difficult properly to interpret these filters in a formal way.

The detection of specific patterns in the EEG, EOG and
EMG signals in polysomnographic recordings for the ES was
performed using algorithms developed by the research team
(see Sections 2.1 and 2.2). The visual assessment made by the
expert was interpreted by using FFT, RMS or other calcula-
tions, which are an approximation of his definitions. Although
the algorithms are intended for translating the expert’s criteria
in an accurate way, this is a source of uncertainty,

Several algorithms were developed to detect patterns in the
EEG, EMG and EOG signals. The results obtained for record-
ings 1, 2 and 3 (Tables 4, 6 and 7) indicate that the error rates
vary from case to case. The muscular tone-detection algorithm
shows a high error rate for recording 1 (Table 4); EEG theta-
predominance detection is worst in recording 2 (Table 6), and
sleep spindle detection is weakest in recording 3 (Table 7).

However, it is important to evaluate these results based on
Table 2, i.e. considering that the error is important only in the
cases where the particular pattern is relevant in determining the
particular sleep/waking state. For example, muscular tone is
irrelevant to classification of any NREM sleep (Table 4).
Another example: the overall results obtained with testing
data in Table 6 show 93 out of 509 pages wrongly classified,
in terms of theta-wave predominance in the EEG (third column
in Table 6). However, as the predominance of theta is irrelevant
in WA and NREM 2 stage, there are only 32 relevant pages
wrongly classified, out of 509, i.e. 6.3%. The training of the
characteristic pattern-detection algorithms was focused to
optimise their performance for relevant cases.

Based on the charactenistic patterns, an ES to recognise
sleep/waking states was implemented, performing several adjust-
ments and tests using data from real patients. Results show an
overall performance of 96.4% agreement with the expert on
validation data without artefacts (Table 1 1), and 84,9% agreement
on validation data with artefacts (Table 12). This last result
compares favourably with the almost 50% error obtained if the
criteria of Table 2 were plainly applied to the validation data with
artefacts (Table 15), which shows the significant enhancement
due to the ES. This is corroborated when testing the ES on expert-
classified patterns instead of those obtained by the pattern-
detection algorithms from real data, where most of the pattern-
detection error is eliminated (Tables 16 and 17).

The inconsistency in the experts’ classification process, i.e. the
uncertainty in the reasoning process, was also explored. Several
already classified pages were selected, i.e. where an expert had
already established the sleep/waking state of the patient. The
same pages were presented again to an expert, establishing that it
was an independent judgment, either because it was a different
expert, or because there was no memory about the particular
record. The expert was asked to classify the page and confronted
with the original classification. If the classification was the same
as before, then a total agreement was annotated. Otherwise, the
expert was asked to qualify his degree of agreement with it, from
agreement to total disagreement. The results shown in Table 18
seem to indicate that there is a degree of contradiction in the
experts’ assessments. However, these results, as well as those
discussed before, should not be overstated. The experts’ confron-
tation performed here was based on register pages and does not
take into account the minimum 1 min time span to determine a
sleep/waking state, nor that a single sleep spindle is enough to
assert its presence in a 5 min time frame, as stated in Section 2.2
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Table 18  Uncertainty in reasoning: expert classification agreement on revisited recording pages

Diagnosis Totally Totally Total
State agree Agree Indifferent Disagree disagree pages
WA 33 I | 3 60
MNREEM | 42 7 16 B
MREM 2 64 5 74
MREM 3+ 4 222 | ) 230
REM 56 2 58
15 6 5 10 21
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