
Classification of Sleep Stages in Infants:
A Neuro Fuzzy Approach

Editor’s Note: This article won
second-place in the 2001
EMBS Student Paper Competi-
tion. Except for minor editing
and formatting changes, the ar-
ticle appears as it was submit-
ted  for the competition.

The sleep classification pro-
cess is divided into three

steps: data acquisition, pattern
identification, and sleep-waking
state-stage classification. In the
first step, several signals gener-
ated by bioelectrical and
biomechanical activity of the in-
fant’s body are recorded by a
polygraph, generating a large
number of pages with graphical
data. The pattern identification
process is performed for each
page. The expert determines the
background predominant fre-
quency range in the electroencephalogram
(EEG) according to [1]-[3]; relevant for
this paper are the slow delta (SD) (0.5-2
Hz) and theta (TH) (3-7 Hz) frequency
ranges. The EEG is also examined to detect
sigma spindles (SS), which are in the 12-14
Hz range. The electrooculogram (EOG)
and the electromyogram (EMG) are used
to determine the presence of rapid eye
movements (REMov) and muscular tone
(MT), respectively. The polygraph records
additional signals which the expert uses as
context information, such as electrocardio-

gram (ECG), detection of body move-
ments (BM), abdominal ventilatory move-
ments, nostrils airflow, body temperatures,
and oxymetry.

The most basic division in sleep classi-
fication is to distinguish between wake-
fulness (WA) and being asleep. There are
two sleep states called REM and
non-REM (NREM). NREM is subdivided
in turn into four stages called NREM-I,
NREM-II, NREM-III, and NREM-IV.
NREM-III and IV were considered as a
single stage called NREM-III&IV in this

paper. The difference be-
tween the two is the threshold
of SD presence.

To determine the sleep state
or stage, the experts estab-
lished certain rules, based on
[2] and [3], that are shown in
Table 1. However, sleep classi-
fication is not completely stan-
dardized and usually experts
from different research centers
have slightly different ap-
proaches. Even between expert
co-workers there is usually less
than 90% agreement in sleep
classification [4].

The large amount of data,
the complexity of the classifi-
cation analysis, and the vari-
ability among human experts
are reasons to develop an auto-
mated sleep classification sys-

tem. An evaluation of the
computerized system ALICE 3 using 50
subjects [5] showed substantial differ-
ences between automated computer scor-
ing and manual ly scored paper
polysomnographies. A manual edition of
the computer scoring enhanced agree-
ment to 75.7% with the paper polysomno-
graphy scoring. In [1], a pattern
identification system for sleep stage clas-
sification that emulates the way the expert
searches for each of the five relevant pat-
terns was implemented. A ganglionar lat-
tice system performed the classification,
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achieving 84.9% of expert agreement, af-
ter manually removing several “noisy”
pages from the database. Later on, in [6],
the pattern detection algorithms were re-
designed in order to enhance their robust-
ness and evaluated with an enlarged
database using the expert’s rules of Table
1. An 86.7% correct classification rate
was achieved for the testing set, which
had no manual intervention and included
“noisy” data.

In order to discover rules that may ex-
plain how the classification process
should be performed and to find parame-
ters that define the degree of presence or
absence for a pattern, a neuro-fuzzy ap-

proach was chosen. The weight of each
rule and the parameters of the member-
ship functions were determined by super-
vised learning through an ANFIS [7]
based neuro-fuzzy classifier (NFC) [8].
Nonrelevant rules were eliminated by ap-
plying a pruning algorithm. The remain-
ing rules were analyzed and compared
with the expert’s rules.

Methods
Data Acquisition

Eight continuous sleep recordings
were obtained from infants between 6 and
13 months of age on a TECA lA97
18-channel polygraph connected as fol-

lows: five EEG channels with electrode
placement adapted for infants from the in-
ternational 10-20 system (FP1-C3,
C3-O1, FP2-C4, C4-O2, and C3-C4);
EOG for REMov detection; tonic chin and
diaphragmatic EMGs; ECG; body move-
ment detection of upper and lower limbs
using piezoelectric crystal transducers;
abdominal ventilatory movements, using
a mercury strain gauge; and nostrils air-
flow, by means of a thermistor. All data
were simultaneously recorded on paper
and on digital means at a 250-Hz sampling
rate. The digital data were collected on
hard disk and then stored in laser media
for off-line analysis. Infant behavior was
also observed directly and noted on the
polygraph paper. Depending on the poly-
graph settings, a page can last 20 or 30 s.
The digital recordings were divided in
20-s frames, which represented one paper
page in most cases.

Pattern Identification
The system described in [6] was ap-

plied to obtain a level of presence for each
of the five relevant patterns. The pattern
detection system outputs are either per-
centages of presence or quality indices of
a given pattern per frame. The outputs are
in the [0, 1] range.

The data set was divided into four re-
cords with 2,067 frames for the training set,
two records with 585 frames for the valida-
tion set, and two records with 858 frames
for the testing set. The training set was used
to adjust the parameters with supervised
learning in order to achieve over 80%
agreement on the validation set for each
sleep-waking state-stage when using the
expert’s rules of Table 1. Two additional
recordings were left for testing the system.

ANFIS-Based
Neuro-Fuzzy Classifier

A neuro-fuzzy classifier (NFC) based
on [7] and [8] was applied on the detected
patterns to perform sleep-waking
state-stage classification. Each of the five
relevant patterns were associated to two
fuzzy concepts, present and absent, with
sigmoidal fuzzification functions

1 1/ ,( )� �e s x c
(1)

where s is the slope and c is the center of the
sigmoid. The sign of s determines if the
concept means present (+) or absent (�).
Parameters s and c are determined through
a training process, using the delta rule
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Table 1. Expert’s rules for sleep-waking state-stage classification.
A: absent, P: present, X: irrelevant. A particular state or stage

has to last at least 1 minute to be assessed as such.
Pattern Sleep-Waking States and Stages

NREM-I NREM-II NREM-III&IV REM WA

REMov A A A P P

TH P X X P X

SD A A P A A

SS A P X A A

MT X X X A P

X1 C1

X2 C2

X3
C3

A1

B1

A2

B2

A3

B3

Layer 1 Layer 2 Layer 3

1. Neuro-fuzzy classifier architecture. Layer 1 is the fuzzification layer. Three input
variables are shown here (X1, X2, and X3), each with two associated fuzzy concepts
(Ai and Bi). Layer 2 generates all the possible rules of the form IF X1 is A1 and X2 is
B2 and X3 is A3, with a T-norm operator ( ), considering one fuzzy concept per in-
put variable. The output of layer 2 is a strength parameter for each of the rules.
Each node at layer 3 performs a linear combination of the rules and uses a sigmoidal
function to determine the degree of belonging of the input pattern to each class (C1,
C2, C3).



∆W
W

= −µ
∂ε
∂ ,

(2)

where ∆W is the adjustment for the param-
eter W, ε is the sum of the squared error,
and µ is the learning rate. The weights of
the linear combinations at layer 3 were
also determined by supervised learning
using the delta rule (2). The NFC architec-
ture allowed us to implement a fuzzy clas-
sification system with differentiable
fuzzification functions at layer 1 (in our
case sigmoidal functions), including pa-
rameters that were trained using the delta
rule (2) with the squared error as the ob-
jective function
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where m is the number of output classes, n
is the number of examples, d is the desired
output (0 or 1), and o is the node output at
layer 3.

The validation set was used to estab-
lish when to stop the learning algorithm
and to consider the tuned parameters as fi-
nal. The testing set was used to evaluate
the performance of the tuned system with
independent data. Nonlinear relations re-
sulted after training between the NFC in-
put and output spaces.

A simplified diagram of the NFC sys-
tem architecture is shown in Figure 1. A
detailed explanation about the training
process of an ANFIS network is given in
[7]. The actual NFC model applied to the
sleep problem had five inputs, each one
with two associated fuzzy membership
functions, and five output classes (WA,
NREM-I, NREM-II, NREM-III&IV, and
REM). The combination of the fuzzy con-
cepts of layer 1 produced a total of 32
rules at layer 2. The maximum output at
layer 3 determined the class associated to
each input vector. The weights at layer 3
were initialized with random values in the
[0, 1] interval. The center c was initially
determined at half of the maximum input
from all the respective training examples
and the parameter s was set at ±5.

Postprocessing
In order to reduce the number of rules

and thus produce a more expert-like set of
fuzzy if-then rules, a pruning algorithm
was implemented. For every output class,
the average contribution of each rule was
evaluated and a threshold of 0.01 was
used to eliminate the least significant
rules (the observed contribution values
were always in the [0, 1] range). The last
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Table 2. Performances of the implemented NFC, a multilayer perceptron
neural network  (MLP), and the expert’s rules. The results show the overall

classification performance on a frame by frame basis except for the last
column, which shows results on a 1-minute basis after applying the State

Duration Algorithm (SDA).
Training Validation Test Test with SDA

NFC 86.2 ± 0.1% 87.7 ± 0.2% 83.9 ± 0.4% 88.2± 0.5%

MLP 87.1 ± 0.7% 87.3 ± 0.4% 83.4 ± 0.6% 87.3 ± 0.9%

Expert’s Rules 84.1% 87.2% 82.6% 86.7%
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2. System Rules for NREM-I. The average contribution of the surviving rule for
NREM-I after pruning is shown. To simplify the analysis, the rules have been
grouped in pairs (R1, R2, and R3), in accordance with their order of average contri-
bution. The only difference in each pair of rules is the fuzzy concept associated to
the MT input (presence or absence).

Table 3. Fuzzy rules generated to assess stage NREM-I. The letters
represent: A: absent, P: present, X: irrelevant. Absent and present

are fuzzy concepts defined by sigmoidal functions.
Pattern Fuzzy Rules Generated

R1 R2 R3

REMov A A A

TH P A P

SD A A P

SS A A A

MT X X X

Table 4. Classification performance degradation for stage NREM-I when
one of the rules (R1, R2, R3) is supressed.

NREM-I Stage Classification Performance

Supressed
Rule

None R1 R2 R3

% of Correct
Classification

82.4% 19.7% 65.0% 76.8%



step of the classification process took into
account that, according to expert criteria,
every sleep-waking state-stage had to last
at least 1 min [2]. A state duration algo-
rithm (SDA) was developed to ensure this
condition [6].

In order to compare the performance of
the system with a general classification
method, a multilayer perceptron (MLP)
neural network with five input nodes and a
hidden layer with ten nodes and five out-
put nodes was trained, using the same
training, validation, and testing sets as for
the NFC.

Results
Ten simulations with the ANFIS-

based NFC were performed and the test
results were postprocessed by applying
the SDA algorithm. The average results
for the training, validation, and test sets
are summarized in Table 2. This table also
shows the results of classifying these sets
using an MLP neural network and using
the expert’s rules of Table 1.

Only a few of the 32 rules survived af-
ter applying the pruning algorithm, for
each of the 5 possible outputs (classes).
As an example, the rules generated to
classify NREM-I with the results of one of
the ten simulations will be described in
what follows. A similar analysis could be
performed for all the other output classes.
Figure 2 shows the average contribution
to the node output for the rules that were
not pruned. Table 3 shows the surviving
rules (R1, R2, and R3), with their respec-
tive fuzzy concepts associated to each rule
(absent or present). Only the examples
classified as NREM-I by the NFC were
considered in the average calculation.

Table 4 shows the system performance
for classifying NREM-I after eliminating
one of the three rules. Finally, Table 5
shows the relative activation frequency of
rules R1, R2, and R3, as a function of the
sleep-waking state previous to NREM-I.
A rule was considered active when its
contribution to the output was above 0.2
(in the [0,1] range).

Discussion
The results of applying MLP and NFC

(Table 2) were statistically nondifferent at

a level of significance of 0.01 (t-test), for
all data sets (training, validation, and test).
Both methods show an enhancement over
applying the crisp expert’s rules of Table
1. The last column of Table 2 shows the
results after applying the state duration al-
gorithm, which improved the classifica-
tion percentages because it eliminated
isolated frames with different patterns.
The same partition of sets used in [6] was
maintained in order to perform meaning-
ful comparations between NFC, the crisp
classifier, and the MLP.

To evaluate the pruning algorithm, the
results of the NFC applied to the training,
validation, and test set with and without
pruning were compared, showing no sta-
tistically significant differences.

Figure 2 and Tables 3 and 4 show that
there is a hierarchy among rules. R1 can be
considered as the main rule while R2 and
R3 are complementary rules; their combi-
nation made the system achieve a perfor-
mance of over 80%. R1 matches exactly
the expert’s rule for NREM-I (Table 1). R2
and R3 are newly discovered fuzzy rules.

Table 5 shows relative activation fre-
quency for the surviving rules as a function
of the preceding sleep state. It shows that
R2 and R3 activate mainly within NREM
sleep. These results suggest that NREM-I
sleep within NREM may have different
characteristics than NREM-I following
WA or REM state. The rules R2 and R3
may help to identify these differences.

Conclusions
An ANFIS based neuro-fuzzy classi-

fier with a pruning algorithm was imple-
mented and applied to the classification of
sleep-waking states-stages in infants, us-
ing the sleep pattern detection system of
[6] to generate the inputs. Including
artifacted pages, an average of 88.2% of
expert agreement was achieved for testing
data. As a result of the training process
and pruning, rules and parameters that de-
fined a fuzzy classification system were
also determined. Analyzing the rules ob-
tained for sleep-stage NREM-I, it was
found that the main rule matched the ex-
pert rule to classify NREM-I. Additional
rules were discovered that complement
the classification and may provide addi-

tional information about the characteris-
tics of this sleep stage. This is a promis-
sory result, and further research is needed
in this topic.

Future work includes implementation
of a clustering algorithm to determine the
initial parameters of the system, training
the system with a different objective func-
tion, such as the max-type error function
described in [8], and evaluating the per-
formance of different T-norms at layer 2
in Figure 1. The development of a general
methodology for rule discovery and inter-
pretation is also of interest.
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Table  5. Relative activation frequency for rules R1, R2, and R3 In NREM-I.
Previous State
to NREM-I

R1 R2 R3

NREM 40.7% 70.0% 100%

REM OR WA 59.3% 30.0% 0%
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