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Abstract—We present a new methodology to detect and char-
acterize sleep spindles (SSs), based on the nonlinear algorithms,
empirical-mode decomposition, and Hilbert–Huang transform,
which provide adequate temporal and frequency resolutions in
the electroencephalographic analysis. In addition, the application
of fuzzy logic allows to emulate expert’s procedures. Additionally,
we built a database of 56 all-night polysomnographic recordings
from children for training and testing, which is among the largest
annotated databases published on the subject. The database was
split into training (27 recordings), validation (10 recordings), and
testing (19 recordings) datasets. The SS events were marked by
sleep experts using visual inspection, and these marks were used
as golden standard. The overall SS detection performance on the
testing dataset of continuous all-night sleep recordings was 88.2%
sensitivity, 89.7% specificity, and 11.9% false-positive (FP) rate.
Considering only non-REM sleep stage 2, the results showed 92.2%
sensitivity, 90.1% specificity, and 8.9% FP rate. In general, our sys-
tem presents enhanced results when compared with most systems
found in the literature, thus improving SS detection precision sig-
nificantly without the need of hypnogram information.

Index Terms—EEG, empirical-mode decomposition (EMD),
Hilbert–Huang transform (HHT), sleep-pattern recognition, sleep
spindles (SSs).

I. INTRODUCTION

THE CYCLIC alternance between sleep and waking is one
of the most prominent and profound rhythms in life. Al-

though sleep can be perceived as rest, it is actually also a period
of substantial neurological and physiological activity. Indeed,
neurons in most parts of the brain remain active during sleep,
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Fig. 1. SSs marked by a sleep expert in an EEG recording. The length of the
horizontal line indicates the duration of an event. Figure shows two frontocentral
EEG derivations (F4-C4 and F3-C3) during NREMS-2.

and the brain consumes a significant amount of energy with
this neural activity. It is easily conceivable that neurons are re-
sponsible for autonomic functions, such as respiration remain
active in both sleep and waking, but neurons in other brain areas
also remain active, often, in a highly synchronous and rhythmic
manner [1].

Sleep is not a homogeneous process. Two different states are
described: REM sleep (REMS) and non-REM sleep (NREMS)
[2], [3], which are electroencephalographically, physiologically,
and behaviorally distinct from one another.These sleep states are
identified by the temporal concordance among relevant EEG,
electrooculographic (EOG), and electromyographic (EMG) pat-
terns. NREMS is further subdivided into four stages, numbered
from 1 to 4, indicating the depth of sleep and the presence of
specific EEG patterns [3]. Currently, NREMS stages 3 and 4 are
pooled together and termed slow wave sleep (SWS) [4]–[6].

Although the functions of sleep remain largely unknown,
one of the most exciting hypotheses is that sleep contributes
importantly to processes of memory and brain plasticity
[7]–[10]. Currently, NREMS stages have become a major fo-
cus of attention.

Sleep-pattern identification allows for adequate classification
of sleep–wake states and stages, but the patterns are also inter-
esting by themselves. In particular, sleep spindles (SSs) are one
of the most characteristic EEG patterns during sleep and a hall-
mark of the onset of NREMS-2. They are defined as discrete
bursts of 10–16 Hz waves with a typical duration of 0.5–2 s,
usually mounted on slower waves with larger amplitudes (see
Fig. 1) [3]–[6].

SS patterns have been proposed to be a marker of normal
brain functional development and integrity, and deviations from
normal patterns suggest altered brain functioning or a pathol-
ogy [11]. Further, SS have been suggested to provide necessary
conditions for plastic modification underlying memory forma-
tion [12]–[14]. In line with this, NREMS-2 with SS as a central
feature has been proposed as a possible candidate for offline
memory processing with several groups demonstrating: 1) SS
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increase following successful learning; 2) overnight memory-
improvement relation to the amount of NREMS-2 and SS ac-
tivity; and 3) relationships between SS and general measures of
learning aptitude [15]–[18]. Furthermore, recent results bring
additional support for the existence of distinct slow and fast
SS, with potentially different functional significance; in par-
ticular, fast SS being involved in processing sensorimotor and
mnemonic information [15], [19]–[21]. Research to date, how-
ever, continues to be fragmentary and has been conducted al-
most exclusively in adults. Although sleep-state organization in
early infancy and especially NREMS have been related to indi-
vidual outcomes in measures of cognitive functions and atten-
tion in later childhood and early adolescence [22], the relation-
ships between SS and learning in childhood have received little
attention.

Visual detection of SS in polysomnograms by sleep experts
is an intensive, time-consuming task, and introduces specialist-
associated biases [23], [24]. Automated detection is a powerful
tool to standardize detection and reduce expert time devoted
to this task. Hence, there is a need to develop an automated,
reliable SS detector tool.

Different research groups have been working on automated
SS detection. Bódizs et al. [25] used bandpass filtering on seg-
ments of EEG recordings of 12 subjects (total duration: about
3–4 h) to detect SS events. They adjusted the filters according
to amplitude and frequency criteria to identify slow and fast SS.
Their results showed 92.9% sensitivity and 58.4% false-positive
(FP) rate.

Huupponen et al. [26] compared four different methods to
detect bilateral SS in healthy adult subjects: method 1 used a
bilateral sigma index based on the fast-Fourier transform (FFT)
spectrum complemented with SS amplitude analysis based on
an filter-impulse-response (FIR) filter, method 2 used only a
bilateral sigma index, method 3 was based on fuzzy detectors,
and method 4 used a fixed SS amplitude detector. Tests applied
on 12 all-night recordings (approximately 96 h total, with 6043
bilateral SS events marked by experts) showed that all methods
provided the best results on the NREMS-2 parts of the record-
ings. Method 1 presented 70% sensitivity and 98.6% specificity,
with an FP rate of 32% in NREMS-2. The other methods showed
decreasing performances, and method 4 showing the poorest re-
sults. In a previous work [27], the same group described an
adaptive module to determine the optimal amplitude threshold
to detect SS events on six all-night recordings: two were used
as training set (TS) (approximately 15 h) and four were used as
testing set (approximately 30 h). This module was further de-
veloped and used in [26]. They reported an overall performance
in the testing set (3335 SS events marked by experts) of 79%
sensitivity and 3.4% FP rate.

Estévez et al. [28] used short-time Fourier transform (SFT),
feature extraction, and merge neural gas in segments of two nap
sleep recordings: one was used for training (about 45 min),
and the other was used as testing dataset (about 45 min)
to detect SS events in infants. Their results showed 62.9%
sensitivity for the testing dataset. Ventouras et al. [29] pub-
lished a feasibility study of applying a multilayer perceptron
(MLP) architecture to detect SS events on a single record-

ing using bandpass-filtered EEG. The sensitivity of the net-
work ranged from 79.2% to 87.5%, the specificity ranged from
88.4% to 97.3%, and the FP rate ranged from 3.8% to 15.5%.
Gorur et al. [30] used SFT on the EEG for feature extraction
and MLP and support vector machines (SVMs) for SS detec-
tion only in segments of recordings classified as NREMS-2
(5 h 45 min). For testing MLP, 1142 equally distributed sam-
ples of SS and non-SS were used, thus showing 88.7% sensi-
tivity. To test the SVM system, 175 equally distributed sam-
ples of SS and non-SS were applied, and showed 95.4%
sensitivity.

Schönwald et al. [31] applied matching pursuit (MP) on am-
plitude, frequency, and duration characteristics to define the
optimal amplitude threshold to detect SS events in nine record-
ings in a sample of NREMS-2, SWS, and REMS. The re-
sults showed 80.6% sensitivity and specificity in NREMS-2,
and 81.2% sensitivity and specificity for all stages together.
Zygierewicz et al. [32] applied MP to detect SS events in ten
NREMS-2 recordings of healthy adult subjects, reaching 90%
sensitivity.

Held et al. [33] used bandpass-filtered EEG on the sigma
band, amplitude thresholds, and duration criteria. The method
was applied on a testing set consisting of two continuous nap
sleep recordings of infants (totaling 6 h with a total of 803
SS events marked by the sleep experts). Results showed 87.7%
sensitivity and 8.1% FP rate. Schimicek et al. [34] detected
SS events from recordings of ten subjects using EEG filter-
ing, amplitude and duration criteria, and artifact treatment;
the method performance showed 89.7% sensitivity and 6.5%
FP rate.

This paper has two main objectives. The first is to present a
new methodology to detect and characterize SS based on non-
linear algorithms: empirical-mode decomposition (EMD) [35],
[36], Hilbert–Huang transform (HHT) [36], and fuzzy logic.
These methodologies significantly improve SS detection pre-
cision. In particular, the use of EMD and HHT provide better
temporal and frequency resolutions in the EEG analysis, and the
application of fuzzy logic allows to emulate expert’s procedure
in SS detection. The second objective is to generate a significant
annotated database of all-night polysomnographic recordings of
children (56 recordings) to train and test this and other methods.

II. METHODOLOGY

A. Subjects and Recordings

We studied all-night polysomnographic recordings of 56
healthy ten-year-old children. The research protocol was ap-
proved by the Institutional Review Boards of the University
of Michigan Medical Center, Ann Arbor, MI, USA; the ethi-
cal committee of the Instituto de Nutrición y Tecnologı́a de los
Alimentos (INTA), Universidad de Chile, Chile; by the Office
of Protection from Research Risk, National Institutes of Health
(NIH), USA; and by the Chilean Science and Technology Fund-
ing Agency (CONICYT), Chile. Parental signed informed con-
sent and child assent were obtained.

1) Procedures: One-night recordings were performed in the
Sleep Laboratory at INTA, in a special quiet and comfortable
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room during the children’s spontaneous night sleep. The proce-
dures were standardized to limit the potential influences of envi-
ronment, circadian rhythms, and/or food intake on sleep–wake
patterns and other related physiological variables. Children and
their mothers were transported from home to the laboratory;
they arrived at least one hour before their usual dinner time.
Upon arrival, mother and child had the opportunity to become
familiar with personnel and setting, while playing or relaxing.
Then, they ate dinner together and engaged in their own rou-
tines before the child’s bedtime. The mothers also stayed in
the laboratory overnight, sleeping in a nearby room after the
child fell asleep. The room temperature was maintained constant
(20–22◦C) throughout the recording session.

The recordings were performed with an Easy EEG-II
32-channel polygraph (Cadwell, WA, USA, 2000) including:
EEG signals with electrode placement according to the interna-
tional 10-20 system [37], rapid eye movements monitored by
EOG, tonic chin and diaphragmatic EMG using surface elec-
trodes, motor activity of both upper and lower limbs recorded
independently by piezoelectric crystal transducers and EMG of
the right and left tibialis anterior muscles, abdominal respira-
tory movements using a mercury strain gauge, airflows by a
nasal cannula and a mouth thermistor, electrocardiogram us-
ing surface electrodes, skin temperature, and oxymetry were
also recorded. Child behavior was observed directly and noted
throughout.

All data were converted online from analog to digital signals;
each channel was sampled at a rate of 200 Hz, collected on
a hard drive, and then, transformed to European data format
(EDF) [38] for offline analyses.

To detect SS, we used both frontocentral EEG derivations
(F4-C4 and F3-C3) because the sigma activity is predominant
in these derivations, whereas the posterior EEG derivations are
the primary reference for background activity [39]–[43].

2) Database and SS Visual Scoring: Independent scorers of
the INTA Sleep Laboratory visually analyzed all recordings
and marked the beginning and the end of the SS events us-
ing the visualization and marking tools of the sleep analyzer.
Sleep analyzer is a sleep recordings analysis system based on
MATLAB, which includes different tools to visualize, mark, fil-
ter, process, and analyze polysomnographic signals, sleep pat-
terns, and hypnograms. This tool was developed by the Biomed-
ical Engineering Laboratory of the Electrical Engineering
Department, in collaboration with the Sleep Laboratory, INTA,
both from the Universidad de Chile.

The recordings were divided into three different sets. Neu-
ral networks [44]–[47] were applied to group the recordings
to obtain an adequate distribution of all sleep states and stages
in each set, resulting in a TS of 27 recordings (216 h approx-
imately, 48 669 SS), a validation set (VS) of ten recordings
(80 h approximately, 22 443 SS), and a testing set of 19 record-
ings (152 h approximately, 40 412 SS).

B. SSs Detection System

The proposed SS detection system can be described as an
analysis cascade of four modules, as shown in Fig. 2. In Mod-

Fig. 2. Block diagram of the proposed SS detection system. The inputs are
the frontocentral EEG derivations. Modules 1 and 2 are candidate generation
processes, whereas Modules 3 and 4 are elimination processes. The system
outputs are the starting and ending positions of each SS event detected.

ule 1, the two frontocentral EEG derivations are processed to
define EEG zones where to search for SS candidates. Module
2 is applied on the defined EEG zones to generate first-step
SS candidates (SSc1). Module 3 validates SSc1 based on SS
features, by reducing the number of wrong detections and gen-
erating second-step SS candidates (SSc2). Module 4 further
refines the analysis to generate the final SS detection (start and
end positions).

The system parameters were adjusted using the TS to estab-
lish adequate thresholds and fine-tuned applying the VS. Tra-
ditionally, the amplitude thresholds have been selected using
training recording or by some spindles scoring criteria, but there
is not a single definition [27]. Our research group defined the
accepted amplitude range values between 15 and 120 µV, con-
sidering that higher values would correspond to artifacts. Sim-
ilarly, there is not a single definition about the frequency band
allowed for SS, for example, some authors use bands as wide as
10–16 Hz [27], whereas others constrain it to 11–15 Hz [48] or
12–15 Hz [49]. In this paper, we use the same definition that
was used in [27] to define the sigma band.

1) Module 1 (Detection of EEG Analysis Zones): Mod-
ule 1 searches for EEG zones compatible with SS presence,
i.e., NREMS-2 and SWS [3]–[6]. The purpose of this is to
reduce the search zones of SS candidates, since EMD–HHT
(Module 2) are computer-intensive tasks.
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Fig. 3. Example of the Module 1 process in an all-night sleep recording. FFT is applied on each frontocentral EEG derivation, obtaining the AP for the: (a) delta
band ([0.5, 3] Hz), (b) sigma band ([10, 16] Hz), and (c) high frequency band ([30, 60] Hz). (d) Result of Module 1, i.e., the EEG zones where to focus the SS
detection. “1” indicates that the EEG zone is compatible with the presence of SS, otherwise it is “0.” (e) Corresponding hypnogram (referential information, the
hypnogram is not a part of the process). It can be seen that Module 1 successfully selects NREMS-2 and SWS epochs.

FFT is applied on each frontocentral EEG derivation on a
moving Hamming window of 2.56 s (512 samples) with an
overlap of 1.28 s (256 samples) between windows. Then, the
power of bands delta ([0.5, 3] Hz), sigma ([10, 16] Hz), and
high frequency ([30, 60] Hz) are calculated. The power of the
physiological band ([0.5, 60] Hz) is also calculated to normalize
the previous indexes. The average power (AP) for 30-s EEG
windows is obtained for each band: APD (delta band), APS

(sigma band), and APHF (high-frequency band), throughout the
whole EEG recording. The duration of the EEG windows was
empirically determined using the TS. Each window is qualified
as an EEG analysis zone if either APD or APS is above a
certain threshold, and at the same time, APHF is below another
threshold, according to the following rules:

1) if (APDn ≥ α1 ∧ APHFn ≤ α3) ⇒ EEG zone(n) = 1;

2) if (APSn ≥ α2 ∧ APHFn ≤ α3) ⇒ EEG zone(n) = 1;

3) else EEG zone(n) = 0.

Parameters α1 and α2 are threshold values to discriminate
the EEG zones with significant power in the delta and sigma
bands, respectively (interest zones); α3 is meant to discard the

EEG zones with high noise levels. The threshold values were
empirically obtained using the TS. The epochs classified as
NREMS-2 typically show a high APS , epochs classified as SWS
show a high APD , and epochs classified as wakefulness show a
high APHF . Fig. 3 shows an example of the EEG power analysis
and the results of Module 1. Compared to the hypnogram of the
same data, Module 1 successfully separates the zones of interest.

2) Module 2 (SSs Candidate Generation (SSc1)): Module 2
is applied only to the zones defined by Module 1 to generate
SSc1. It can be divided into three stages. In stage 1, EMD, FFT,
and HHT are applied to obtain the instantaneous amplitude
(aIMF(i)(t)) and instantaneous frequency (ωIMF(i)(t)) of the
frontocentral EEG derivations, where a is in microvolts and ω
is in Hertz. Both aIMF(i)(t) and ωIMF(i)(t) must meet certain
criteria simultaneously to qualify an SS candidate, which are
applied by means of fuzzy logic in stage 2. Stage 3 applies
duration criteria.

a) Stage 1 (EMD–FFT–HHT): The nature of the EEG
data and the SS characteristics make it inadequate to apply
detection methods based only in FFT, amplitude, and duration
criteria. Therefore, we use EMD and HHT to generate SS can-
didates, because they allow a better resolution in the time and
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Fig. 4. Example of the application of EMD to a NREMS-2 EEG signal. (a)
Original signal showing three SS events marked by the sleep expert. (b)–(h)
EMD IMFs 1 to 7. (i) Residue of the EMD. Only the first three IMFs show
events related to SS (circles); the rest involve slower frequencies. In this case,
IMF2 shows the highest power level in the sigma band; hence, it is the primary
IMF. IMF1 and IMF3 correspond to secondary IMFs.

frequency domains [50]. Other applications have shown that
EMD–HHT can be a powerful technique for biomedical sig-
nal analysis [51]–[53], and particularly, for neural data analy-
sis [50].

EMD is a signal decomposition method that operates in an
iterative form. It decomposes the signal in a set of compo-
nents called intrinsic-mode functions (IMFs). Each includes
components of similar frequencies only. In each iteration, the
EMD separates the signal in a high-frequency component (IMF)
and a lower frequencies component (residue). The first it-
eration creates IMF1; the second iteration creates IMF2 by
applying EMD to residue 1 and obtaining a residue 2. The
EMD is completed once the residue is close to a flat zero
signal [35]. HHT [36] is a technique that allows the rep-
resentation of a signal in the frequency and time domains
simultaneously.

EMD is applied to the zones of EEG derivations defined by
Module 1. Then, HHT is used to obtain the aIMF(i)(t) and
ωIMF(i)(t) for the first three IMFs. Extensive trials with the TS
showed that analyzing the first three IMFs of the EEG signals
was enough to capture SS, because they only carried significant
power information about the sigma band (see Fig. 4). The power
level in the sigma band varies among these three components
depending on the EEG characteristics; therefore, FFT is applied
to establish the IMF with the highest power in the sigma band
in each window, which we call as the primary IMF (IMFP ),
according to the following equation:

IMFP = max(P(SS)IMF1 , P(SS)IMF2 , P(SS)IMF3) (1)

where P(SS)IMFi is the sigma band power for IMF i (i = 1, 2, or
3). The others IMFs are referred to as secondary IMF (IMFSj ).
The secondary IMFs are eliminated from further analysis if
their sigma power is below a certain threshold, according to the
following equation:

IMFSj =
{

IMFi , P(SS)IMF i ≥ β1

0, otherwise
(2)

where j = 1 or 2, i = 1, 2, or 3, and i �= P. The parameter β1
was obtained empirically using the TS.

HHT is applied to the primary IMF and the surviving
secondary IMFs, obtaining the corresponding aIMF(i)(t) and
ωIMF(i)(t).

b) Stage 2 (Fuzzy Criteria): In Section II-B, we defined
the initial amplitude and frequency range values, which have
variations among different authors.This fact and trials with
the TS determined the application of fuzzy-logic criteria on
aIMF(i)(t) and ωIMF(i)(t) to determine the instantaneous fuzzy
amplitude (faIMF(i)(t)) and the instantaneous fuzzy frequency
(fωIMF(i)(t)). The thresholds of the maximum and minimum
values for amplitude and frequency for an SS event were fuzzi-
fied as follows:

faIMF(i) = {0/10, 1/15, 1/120, 0/150} (3)

fωIMF(i) = {0/9.5, 1/10, 1/16, 0/16.5} (4)

and are applied to IMFP and IMFSj . In the aforementioned ex-
pressions, the four terms between the brackets are the points
defining each trapezoid. The numerator is the value of the
membership function at the corresponding value of the vari-
able, which is indicated by the denominator.

Once the fuzzy values are obtained, the instantaneous prod-
uct (PIIMF(i)(t)) is used to ensure simultaneous compliance to
both amplitude and frequency, by combining faIMF(i)(t) and
fωI MF(i)(t)

PIIMFi(t) = faIMF(i)(t)fωIMF(i)(t). (5)

Then, the maximum instantaneous product (PImax (t)) is ob-
tained among the PIIMF(i)(t) obtained for IMFP and IMFSj as
follows:

PImax(t) = max(PIIMFP (t), P IIMFS1(t), P IIMFS2(t)).
(6)

PImax (t) indicates the presence of an SS candidate, if it sur-
passes a threshold of 0.5, as determined with the TS.

c) Stage 3 (Duration Criteria): SS are trains of waves.
Therefore, consecutive PImax (outputs of stage 2) above the
threshold will be first-step SSc1 if certain duration criteria are
met. Consecutive samples are grouped together, forming pulses.
To overcome noise corruption, pulses less than 0.2 s apart are
joined together and their duration expanded from the beginning
of the first pulse until the end of the last pulse. These trains of
pulses are the outputs of Module 2, as shown by the example in
Fig. 5.

3) Module 3 [SSs Candidate Elimination (SSc2)]: The pur-
pose of Module 3 is to reduce the number of FP detec-
tions without losing true-positive (TP) detections, discrimi-
nating according to some SSc1 features. This module uses
morphological and frequency information to filter and validate
SSc1.

The EEG segments containing SSc1 are preprocessed us-
ing an FIR passband filter, with cutoff frequencies of [0.5;
25] Hz to eliminate artifacts and noise. Then, three consecu-
tive peaks (min–max–min or max–min–max) are established by
three consecutive sign changes in the slope of the signal, which
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Fig. 5. Example of Module 2, stages 1, 2, and 3. (a) EEG signal segment with seven SS marked by the sleep expert. (b) Primary IMF (in this case IMF1) obtained
by applying EMD. The secondary IMFs did not meet the minimum energy requirement and were discarded. (c) Instantaneous amplitude aIM F(1) (t) obtained by
applying HHT to IMFP . (d) Instantaneous fuzzy amplitude faIM F(1) (t). (e) Instantaneous frequency wIM F(1) (t) obtained by applying HHT. (f) Instantaneous
fuzzy frequency fwIM F(1) (t). (g) Instantaneous maximum product, PIm ax (t). (h) First-step SSc1. Note the correlation between Module 2 output in (h) and the SS
events marked by the sleep expert in (a).

are determined using linear regression. Three simple features
are calculated: amplitude, frequency, and symmetry. Then, the
average and standard deviation for each feature are calculated
in each SSc1. Empirical threshold values are applied on these
features to eliminate and generate the SSc2. Fig. 6 shows exam-
ples of features distribution extracted from SSc1 of the TS. The
graphs combine average and standard deviation for frequency
and amplitude, according to SS events (TP) and non-SS events
(FP) marked by the sleep experts. SS events tend to show aver-
age values within a characteristic SS range and smaller standard
deviation values.

4) Module 4 (Expert’s Procedure Mimicking): Usually, SS
are mounted on slower waves with larger amplitudes, which
causes problems because these waves may interrupt and mask

the SS trains. In manual analysis of the recording, the sleep
expert does a visual recognition of the SS candidate to determine
if it is a really SS or only sigma band activity, which does not
satisfy the morphological and duration criteria for SS. Module
4 mimics the expert’s procedure based on duration criteria and
context analysis to generate the final SS detection (start and end
positions).

SSc2 less than 0.25 s apart are grouped together and their
duration expanded from the beginning of the first component
until the end of the last component. The amplitude of each
surviving train is obtained as the weighted average of all merged
trains amplitudes. Trains lasting less than 0.1 s are eliminated.
Then, trains less than 0.5 s apart are added together using the
same process.
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Fig. 6. Examples of average and standard deviation distribution of SSc1 features of the training dataset. (a) Frequency for SS events (TP). (b) Same for non-SS
events (FP). (c) Amplitude for SS events (TP). (d) Same for non-SS events (FP). True SS events show average values in characteristic ranges and smaller standard
deviation values.

Finally, we use the AP in the sigma and delta bands (computed
in Module 1) to define rules of elimination according to the train
durations:

1) if APDn ≥ δ1

⇒ trains lasting less than 0.4 s are eliminated;

2) else if APSn ≥ δ2

⇒ trains lasting less than 0.3 s are eliminated;

3) else, trains lasting less than 0.5 s are eliminated;

where APDn is the AP in the delta band, APSn is the AP in
the sigma band, and n is the corresponding 30-s EEG window
containing SSc2. δ1 and δ2 were adjusted using the TS.

III. EXPERIMENTAL RESULTS

The system was trained and the parameters were adjusted by
means of an iterative process using the TS and VS, the latter
being used to prevent over adjustment. The process begun with
the selection of a set of parameters (P1) within the normally ac-
cepted SS ranges. The model with parameters P1 was evaluated
on the TS and VS, obtaining the model errors (FP/TP)TS and
(FP/TP)VS . In the next iteration, a different set of parameters
(P2) was built: based on the FPTS and FNTS results, the param-
eter values were changed, aiming at reducing (FP/TP)TS . Once
P2 was determined, (FP/TP)VS was measured. The parameter
set P3 was chosen as the set with smallest (FP/TP)VS between

P1 and P2 . Then, P4 was created using the same procedure as
P2 , and P5 was obtained as the set with smallest (FP/TP)VS
between P3 and P4 . The iteration process continued until no
further decrease in (FP/TP)TS was found, or until an increase in
(FP/TP)VS was detected. The final model (Pf ) was then applied
to the untouched testing dataset, which did not participate in the
adjustment process, to measure the performance of the system.

We used a quite strict criterion to determine system-expert
agreement. If an SS marked by the system did not coincide at
least in 75% with one established by an expert, it was labeled
as FP. On the other hand, if an SS marked by the system was
longer by 0.5 s or more than the established by the expert, the
exceeding portion was marked as FP. The criteria used in other
publications are not explicit. To characterize the true negative
(TN), the sleep experts defined non-SS events as EEG data with
sigma band activity, but not fulfilling morphology conditions
for SS in visual inspection.

The overall results for each dataset for continuous all-night
sleep recordings using the final model (optimal set of thresholds)
are presented in Table I. Table II shows the results for the testing
dataset in NREMS-2 and SWS. These are better in NREMS-2
than in SWS.

IV. ANALYSIS OF RESULTS

The automated system detected most of the SS events. Results
for the testing dataset in continuous EEG recordings show that
35 663 SS events were correctly identified by the automated
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TABLE I
SS DETECTION RESULTS ON EACH DATASET

TABLE II
DETECTION RESULTS IN NREMS-2 AND SWS ON THE TESTING DATASET

system with an overall performance of 88.2% sensitivity, 89.7%
specificity, and 11.9% of FP rate (see Table I). On the other hand,
the global results for the TS, VS, and testing dataset present a
low rate of dispersion, thus indicating an adequate distribution
of the recordings among each dataset (see Table I).

The best results in the testing dataset were obtained in
NREMS-2 with 92.2% sensitivity, 90.1% specificity, and an
FP rate of 8.9% (see Table II). Detection results in SWS
were poorer, apparently due to the high levels of delta activ-
ity, which introduces ambiguity on the SS identification. The
system can spot sigma activity included in the signal because of
its bandpass filters that eliminate the delta effects, generating FP
detections.

The SS detection described can be divided in two steps; first
is a candidate’s generation process (Modules 1 and 2) and the
second is a candidate’s elimination process (Modules 3 and 4).
Hence, it is very important that the first step detects all or most
SS events, whereas the second step should eliminate most FPs,
losing as few as possible TPs. The outputs of the modules show
the evolution of the detection process: the increasing precision
has the cost of losing some TP detections. In Fig. 7, this evolution
on the testing dataset is shown as a ROC curve, which presents
the sensitivity as a function of the FP rate. At the output of
Module 2, about of 99% of the SS events are detected, but with
a high FP rate of 88.9%. Module 3 is an intermediate step that
introduces a significant improvement in the FP rate: it reduces
the TP to FP rate from about 1:9 to about 1:1, at a cost of about
6.5% of TP. Finally, Module 4 detects 88.2% of the SS events,
with an FP rate of 11.9%. The modules outputs show a similar
detection performance when comparing all-night [see Fig. 7(a)]
and NREMS-2 [see Fig. 7(b)] recordings.

It is suitable to compare results of different SS detection
systems in the same way, since there is a tradeoff between the
sensitivity and the FP rate. As mentioned earlier, Fig. 7 shows the
ROC curves of our system. Other points in the graphs correspond
to the results of other automated SS detection systems published
in the literature (only comparable works). Our system matches
or outperforms other published results, as it can be seen that

Fig. 7. ROC curves of the proposed SS detection system (Modules 1, 2, 3,
and 4) compared to others published in the literature. The output of the system
corresponds to Module 4, but intermediate results are available as well. (a) ROC
curve for continuous all-night recordings. (b) ROC curve for NREMS-2 only.
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TABLE III
COMPARISON OF DIFFERENT PUBLISHED AUTOMATED SS DETECTION SYSTEMS: RESULTS FOR COMPLETE AND MIXED SEGMENTS OF EEG RECORDINGS

TABLE IV
COMPARISON OF DIFFERENT PUBLISHED AUTOMATED SS DETECTION SYSTEMS: RESULTS FOR NREMS-2 SEGMENTS

their results fall below our ROC curve. For the continuous all-
night recordings, the results obtained by Bódizs et al. [25] fall
close to our curve, with a performance similar to the output of
Module 3. A wider comparison with other SS detection systems
described in the literature and mentioned in the introduction is
shown in Tables III and IV.

Comparing the databases used by the different research
groups, our database seems to be the largest, with a total of
56 all-night sleep recordings. The same holds true for the num-
ber of SS events marked by the experts, as we have a total of
111 524 SS events. Regarding the type of data, only Huupponen
et al. [26], [27] and our work use all-night sleep recordings; other
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groups use segments of EEG recordings [25], [28]–[32], [34].
On the other hand, our group is one of the few that focuses
on automated detection in infants and children recordings [28],
[33], [39], [40], [54]. Most studies apply their work on adults
sleep recordings [25]–[27], [29]–[32], [34], [55], [56].

V. DISCUSSION AND CONCLUSION

We developed a new method to detect and characterize SS
events in continuous all-night sleep recordings, based on ad-
vanced signal processing tools as FFT, EMD, HHT, fuzzy logic,
and feature extraction. FFT provides the capacity to search for
EEG zones compatible with the presence of SS events without
requiring a hypnogram. This is relevant because the hypnogram
creation is a time-consuming task for the sleep experts. EMD
and HHT allow for discriminating SS trains in the time and
frequency domains, generating enhanced temporal location of
SS events throughout the EEG recording, preventing under- and
overestimation of the duration of the SS events detected. In ad-
dition, fuzzy logic and feature extraction allow to emulate the
expert’s procedure during visual inspection.

The proposed method shows an expert-system agreement
(sensitivity) for continuous all-night sleep recordings of 88.2%,
and considering only NREMS-2, this performance is 92.2%.
These results fall in the upper limit of the study by Campbell
et al. [23] about human and automatic SS detection that show
an expert–system agreement of 80%–90%.

This study has limitations, which need to be considered. With
a bipolar montage, fronto-to-central derivations for this study,
we could not evaluate the precise location of SS waves. For
instance, frontal and central SS appear to follow somewhat dif-
ferent developmental paths, with the first being slower in the
same individual [57], [58], thus suggesting the existence of
different generators or a topographical difference during matu-
ration of the thalamocortical network [57], [58]. It seems possi-
ble that analyzing frontal and central derivations independently,
rather in combined derivations, might provide even better re-
sults. The same holds true for other known modifiers of SS
characteristics, like sleep restriction or deprivation, circadian
phase, or pharmacologic effects [59]. Because our recordings
were performed in healthy subjects during their naturally occur-
ring sleep–wake cycle without affecting the usual routine, we
were unable to evaluate the influence of these upon SS features.
Since the aforementioned factors might help to strengthen our
results, they could be the focus for future studies.

The reliance of our system on several thresholds selected
empirically may reduce the application by other laboratories.
The replication of a process like the one we used (train-
ing/validation/testing) should help to clarify its applicability for
other groups. On the other hand, we believe that it also provides
a challenge for the field to consider more innovative approaches
to identify sleep patterns and SS in particular. This could be even
more relevant when considering the few published studies that
have compared visual and automated scorings of polysomno-
graphic data in infancy and childhood, as it was recently reported
by the Pediatric Task Force and the Scoring Manual Steering
Committee of the American Academy of Sleep Medicine [5].

The construction of a large 56 all-night children polysomno-
graphic database, which can be used to train and test this and
other methods, is among the important achievements of this pa-
per, and it certainly contributes to its robustness. It is among the
most complete and largest annotated databases of this type in
children.
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[44] P. A. Estévez and C. J. Figueroa, “Online data visualization using the
neural gas network,” Neural Netw., vol. 19, no. 6/7, pp. 923–934, 2006.

[45] T. M. Martinetz and J. Schulten, “A neural-gas network learns topologies,”
in Artificial Neural Networks, T. Kohonen, K. Mäkisara, O. Simula, and
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