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a b s t r a c t

Skull stripping methods are designed to eliminate the non-brain tissue in magnetic resonance (MR)
brain images. Removal of non-brain tissues is a fundamental step in enabling the processing of brain
MR images. The aim of this study is to develop an automatic accurate skull stripping method based on
deformable models and histogram analysis. A rough-segmentation step is used to find the optimal start-
ing point for the deformation and is based on thresholds and morphological operators. Thresholds are
computed using comparisons with an atlas, and modeling by Gaussians. The deformable model is based
on a simplex mesh and its deformation is controlled by the image local gray levels and the information
obtained on the gray level modeling of the rough-segmentation. Our Simplex Mesh and Histogram Anal-
ysis Skull Stripping (SMHASS) method was tested on the following international databases commonly
atient specific mesh
1W MRI

used in scientific articles: BrainWeb, Internet Brain Segmentation Repository (IBSR), and Segmentation
Validation Engine (SVE). A comparison was performed against three of the best skull stripping methods
previously published: Brain Extraction Tool (BET), Brain Surface Extractor (BSE), and Hybrid Watershed
Algorithm (HWA). Performance was measured using the Jaccard index (J) and Dice coefficient (�). Our
method showed the best performance and differences were statistically significant (p < 0.05): J = 0.904
and � = 0.950 on BrainWeb; J = 0.905 and � = 0.950 on IBSR; J = 0.946 and � = 0.972 on SVE.
. Introduction

Three-dimensional brain images have become increasingly
opular in medical applications. These images are being used
or research, diagnosis, treatment, surgical planning, and image-
uided surgeries. However, several pre-processing methods are
equired before these images can be employed, such as image
egistration (Klein et al., 2010), inhomogeneity correction (Wels
t al., 2011), tissue classification (de Boer et al., 2010; Wang et al.,

010), analysis of cortical structure (Thompson et al., 2001), cor-
ical surface reconstruction (Tosun et al., 2006), cortical thickness
stimation (MacDonald et al., 2000), shape quantification (Park and
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Seo, 2011) and/or identification of brain parts (Zhao et al., 2010).
Many of these methods achieve a brain extraction using a skull
stripping process as first step, to eliminate non-brain tissue present
in the image. Therefore, it is imperative to have accurate skull
stripping methods available to avoid time consuming manual cor-
rections that are not systematic and can not be applied routinely.
In addition, the reliability of these processes is essential because
any error at this first step will be difficult to correct in subsequent
processing steps.

Many skull stripping methods have been proposed (Kapur et al.,
1996; Atkins and Mackiewich, 1998; Lemieux et al., 1999, 2003;
Dale et al., 1999; Ashburner and Friston, 2000; Yoon et al., 2001;
Shattuck et al., 2001). Among the first commonly used methods
are the Brain Extraction Tool (BET) (Smith, 2002; Jenkinson et al.,
2005), Brain Surface Extractor (BSE) (Sandor and Leahy, 1997;
Shattuck et al., 2001) and the Hybrid Watershed Algorithm (HWA)
(Ségonne et al., 2004). In BET, a mask is initially created using two
thresholds estimated from the image histogram. Then, a spheri-

cal deformable model is initialized at the center of gravity of the
mask. Finally, this deformable model is pushed to the brain surface
by locally adaptive forces. The BSE performs brain segmentation
using a sequence of anisotropic diffusion filters, Marr–Hildreth
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dge detection, and morphological processing. The HWA is a hybrid
ethod that combines the watershed edge detection algorithm
ith a deformable surface model which includes shape restrictions

ased on a brain atlas. Another of the first commonly used meth-
ds is the 3dIntracranial (Cox, 1996; Ward, 1999). This method first
odels the gray levels of different tissues using Gaussian functions,

nd extracts upper and lower boundaries to identify brain voxels.
ext, a connected component analysis is carried out slice-by-slice

o identify the brain, followed by a 3D envelope process over all the
lices. Finally, a neighborhood analysis is performed on each voxel
o include or exclude misclassified voxels.

The above mentioned methods are commonly used for compar-
son. BET, BSE, ANALIZE 4.0 (Richard, 2000) and modified region
rowing (mRG) (Yoon et al., 2001) methods are compared in Lee
t al. (2003). Boesen et al. compare their Minneapolis Consensus
trip (McStrip) (Rehm et al., 2004) method with Statistical Paramet-
ic Mapping v2 (SPM) (Ashburner and Friston, 2000), BET, and BSE
n Boesen et al. (2004). A comparison among methods HWA, BET,
SE, and 3dIntracranial was carried out in Fennema-Notestine et al.
2006). More recently, a comparison study among HWA, BET and
SE was performed in Shattuck et al. (2009). Among these methods
WA has the highest sensitivity in general but the lowest specificity

Fennema-Notestine et al., 2006; Shattuck et al., 2009). HWA is
rone to include unwanted subarachnoid space and non-brain tis-
ue, particularly dura, in the segmentation. By contrast, HWA seems
o be more robust to the change of parameters than other methods
Shattuck et al., 2009). There are two different indices usually used
o measure the overall similarity between the gold standard and
he proposed segmentation: the Jaccard index (J) (Jaccard, 1912)
nd the Dice coefficient (�) (Dice, 1945).

In the literature, different databases and parameters have been
sed in the comparisons, and therefore results vary. In Shattuck
t al. (2009), the best performance was obtained by BET closely
ollowed by BSE, and the method with worst performance was
WA. Nevertheless, BSE and HWA showed similar performance in
ennema-Notestine et al. (2006), as well as BET and 3dIntracranial,
ut BSE and HWA demonstrated better performance. All methods
how that the sagittal sinus and the posterior fossa are the areas
ith the largest number of false positives.

Another example of skull stripping methods is the watershed
odified algorithm proposed in Hahn and Peitgen (2000). The
ethod presented in Grau et al. (2004) is also based on a watershed

ransformation that uses prior information. Elastic deformations
ased on atlas (Sandor and Leahy, 1997), level set methods (Baillard
t al., 2001; Zhuang et al., 2006), and region growing algorithms
Park and Lee, 2009) have also been employed. In Huang et al.
2006), a hybrid method combining expectation maximization and
eodesic active contours is used. A method based on an implicit
eformable model which is described by radial basis functions is

ntroduced in Liu et al. (2009). A method that uses an intensity
hresholding followed by removal of narrow connections using a
ridge Burner algorithm is presented in Mikheev et al. (2008). A
ore recent example also using removal of narrow connections

ut employing a graph theoretic image segmentation technique
s Sadananthan et al. (2010). A method that uses watershed seg-

entation, Gaussian mixture model clustering and a modification
f BET is employed in Merisaari et al. (2009) to segment MRI
mages of premature infant brains. Techniques for combining dif-
erent skull stripping algorithms to improve the segmentation have
lso been proposed, such as the Brain Extraction Meta-Algorithm
BEMA) (Rex et al., 2004). Recently, the multi-atlas propagation
nd segmentation (MAPS) method was presented in Leung et al.

2011). This method generates the brain segmentation by combin-
ng many segmentations performed by atlas registration. Another
ecent method which uses thresholding, length scheme, and mor-
hological operators can be seen in Somasundaram and Kalaiselvi
nce Methods 206 (2012) 103–119

(2011). The Robust Learning-Based Brain Extraction (ROBEX) sys-
tem is presented in Iglesias et al. (2011), which is based on a point
distribution model (PDM) adjusted by using a voxel classification
with the random forest algorithm. A fast level set method which
uses a speedup operator is introduced in Hwang et al. (2011). The
Simple Paradigm for Extra-Cerebral Tissue Removal (SPECTRE) that
is based on a watershed principle and combines elastic registration,
tissue segmentation, and morphological operators is described in
Carass et al. (2011).

Deformable models have proven to be a robust method to seg-
ment MRI images, but they are sensitive to the initialization. In
addition, simplex meshes (Delingette, 1999; Matula, 2002; Böttger
et al., 2007; Tejos and Irarrazaval, 2009; Gilles and Magnenat-
Thalmann, 2010; Galdames et al., 2011) are a simple and efficient
way to implement these models and have yielded excellent results
in many applications. In this paper, we report use of a simplex mesh
for brain segmentation and, to avoid the initialization sensitivity
problem, implementation of a rough-segmentation. This rough-
segmentation ensures an optimal starting point for the deformable
model. The rough-segmentation is based on histogram analysis and
morphological operators, but it differs from other methods because
it performs efficient comparisons with a model to guarantee a suit-
able result. The mesh deformation is based on the local image
gray levels, and on a modeling of the tissue gray levels performed
in the rough-segmentation. Therefore, local and global informa-
tion is taken into account. The mesh deformation is carried out
in stages, first to ensure that all the brain tissue is included, and
then to refine the segmentation and remove remaining non-brain
tissue. Our Simplex Mesh and Histogram Analysis Skull Stripping
(SMHASS) method obtains the best performance in the most popu-
lar online databases when compared with three of the best skull
stripping methods (BET, BSE and HWA). The databases used for
comparison are: BrainWeb (Cocosco et al., 1997; Aubert-Broche
et al., 2006), Internet Brain Segmentation Repository (IBSR) (Center
for Morphometric Analysis, 1995), and Segmentation Validation
Engine (SVE) (Shattuck et al., 2009). Furthermore, the method is not
based on machine learning techniques (Perez et al., 2005), hence a
training database is not required.

2. Methods

Most brain quantitative MRI study methods use skull strip-
ping as a first step to eliminate non-brain tissue. The automatic
method proposed in this work uses a deformable model initialized
by rough-segmentation which is based on histogram analysis and
is designed to eliminate most non-brain tissue.

2.1. Rough-segmentation

The rough-segmentation allows good initialization of the
deformable model which is a crucial step for the final segmentation.
The rough-segmentation is based on thresholds, morphological
operators, and modeling by Gaussian functions. It is fast, robust, and
based on the fact that the brain is the largest connected structure
inside the head (Shan et al., 2002; Kovacevic et al., 2002; Dogdas
et al., 2005; Chiverton et al., 2007).

Usually, MRI images have non-isotropic voxel sizes; there-
fore, a re-sampling is first carried out using trilinear interpolation
(Meijering, 2002) to obtain an isotropic image. Considering the
original resolution of most of the images, we use a re-sampling
resolution of 1 mm×1 mm×1 mm. Therefore, the values expressed

in voxels or millimeters are equivalent. Nevertheless, some values
are explicitly given in millimeters as they are related to the size
of anatomical structures. To compute the thresholds, we consider
that different tissue gray levels follow Gaussian statistics, and the
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Fig. 1. Flow diagram of the rough-segmentation method (which is divided into 3
steps). In step (I), an Otsu threshold TOtsu is applied to the original image (a), to
eliminate background, obtaining a masked image (b). In step (II), a threshold, Ts and
morphological operators are applied to the masked image (b), obtaining a mask, M2

(white and light gray in (d)). The threshold, Ts is adjusted by comparing the mask,
M2 with a model mask, Mm (c) (Rex et al., 2003). To perform the comparison, M2 and
the model mask are registered. (d) Shows the registration: white represents Mm and
M2; dark gray represents only Mm; and light gray represents only M2. Then, if the
volume, Vout

M2
(light gray in (d)) of M2 that lies outside the model mask is lower than

8% of the model mask volume, VM (dark gray and white in (d)), the image masked
with M2 (e) is used in the next step (III). Otherwise, Ts is modified to eliminate more
F.J. Galdames et al. / Journal of Neu

mage histogram is considered as a probability density function of
he image gray levels:

(i) = ni

N
(1)

here ni is the number of voxels with gray level i = {0, 1, 2, . . .,
− 1}, and N is the number of voxels in the image, i.e., p(i) is the

robability for a voxel to get intensity i. Usually the number of gray
evels may change depending on the image, but using a fixed num-
er of bins W will allow standardizing our analysis. We used W = 256
s in Shan et al. (2002). The rough-segmentation is performed in
hree main steps.

.1.1. Background elimination
The Otsu method (Otsu, 1979) is used, which finds the thresh-

ld, TOtsu, that minimizes the within-class variance between two
lasses. In our case, one class is formed by the very low intensity
oxels corresponding to air, bone, and part of the Cerebro-Spinal
luid (CSF) (background); and the other class is composed of the
ther tissues including the Gray Matter (GM) and White Mat-
er (WM) of the brain (foreground). The within-class variance is
efined as:

2
within(TOtsu) = nB(TOtsu)�2

B (TOtsu) + nF (TOtsu)�2
F (TOtsu) (2)

here �2
B (TOtsu) and nB(TOtsu) are the variance and number of vox-

ls in the background (p(i) < TOtsu), respectively; and �2
F (TOtsu) and

F(TOtsu) are the variance and number of voxels in the foreground
p(i) ≥ TOtsu), respectively. The original image is masked using TOtsu,
.e., all voxels with gray level value less than TOtsu are ignored, lead-
ng to the mask, M1, (see Fig. 1(b)) where air, bone, and most of the
SF have been removed. The removal of very low intensity vox-
ls (background) allows focusing the processing on the tissues of
nterest (foreground). Next, the brain can be identified as the largest
tructure inside the head.

.1.2. Brain identification
The brain is first separated from other tissues by applying a

hreshold, Ts based on an image histogram, and a brain model mask
s will be explained in this section. Then, the brain tissue is selected
sing morphological operators and 3D connected component anal-
sis. The threshold for separating the brain is defined as:

s = TOtsu + �(�gm − TOtsu) (3)

here �gm is an estimation of the mean gray level of the GM, which
orresponds to the highest value in the histogram of the image
asked with M1 (Fig. 1(b)). This definition is similar to the one

roposed by Shan in Shan et al. (2002), where � was fixed at 0.7.
e have extended this definition, leading to a more flexible thresh-

ld that can be adjusted depending on the image. � must be high
nough to separate the brain from other tissues, while preserving
he removal of brain tissue. To achieve this, the ideal Ts for each
mage is estimated applying thresholds computed with increasing
alues of � as follows.

Given a value of �, the threshold Ts is computed using (3). Then,
s is applied to the image masked with M1 (Fig. 1(b)), and the result-
ng image is binarized. In this binarized image, small connections
etween brain and surrounding tissue may still remain. To elimi-
ate them, a binary opening is applied 2 times to the mask, using a
D spherical structural element with a 3 mm radius. Next, the mask,
2 (Fig. 1(d)), is obtained by performing a 3D connected component

nalysis using a square connectivity equal to one, and keeping the
argest element. The mask should have brain shape and therefore,

o evaluate whether enough tissue has been removed, the resulting
olume element is compared with the brain model mask which is
binary mask of the ICBM452 5th-order warp atlas from the Lab-
ratory of Neuro Imaging at UCLA (Rex et al., 2003) (Fig. 1(c)). The

non-brain tissue. In step (III), the gray levels of different tissues are modeled using
Gaussian functions. This modeling is used to compute two thresholds, TGLow and
TGHigh, which are used, together with morphological operators, in the image (e). The
result of this final step is a rough-segmented image (f).
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Fig. 3. Example of non-brain tissue in mask M2. A large volume of M2 lies outside
the model. This volume Vout

M2
is represented in light gray and corresponds to non-
06 F.J. Galdames et al. / Journal of Neu

odel mask is registered to the mask, M2 before the comparison.
ssuming the model mask and M2 have the same orientation, a
imple and direct transformation with 6 parameters is used for the
egistration; 3 translations and 3 scaling operations. In the coordi-
ate axis, the transformation matches the limits of the upper part of
he brain. Because usually there are tissue remnants that can cause
rrors when simply the “bounding box” (limits of the whole vol-
me in the three coordinate axis) of M2 is used, a careful selection
f the limits is performed as follows:

The rules to find the connected volume representing the brain
re designed to ensure that the head will always be recognized;
ence the upper reference limit is the top of the mask in the axial
irection (sagittal and coronal cuts in Fig. 2(a) and (b)). The lower
eference limit is defined as the axial position, Lbottom, of the bot-
om of the frontal lobe (sagittal cuts in Fig. 2(a) and (b)). To identify
his landmark, a set of sagittal slices in the center of the skull is
nalyzed, because remaining tissue may be in the lateral parts of
he head (e.g., the eyes). The center of the mask bounding box is
onsidered to be the center of the skull; and the slices at a dis-
ance from the center less than 1/30 of the bounding box’s lateral
ength are selected (Fig. 2(a) and (b)). The bottom of the frontal
obe is identified in a profile constructed by projecting the selected
lices laterally (Fig. 2(c)). The profile is inspected in a caudal direc-
ion starting from the top of the head. At each step, the maximum

alue found on the profile, vmax, is updated and compared with
he current value, vc . We estimate that the axial position Lbottom of
he bottom of the frontal lobe is the first axial slice where the cur-
ent profile value, vc , has a significant difference from the current

ig. 2. References used to register (a) the Rough-segmentation Mask M2, and (b) the
odel Mask. This registration is used to estimate the value of � in the computation

f threshold, Ts . The limits used to compute the registration are marked with red
oxes. The bottom of the frontal lobe, Lbottom, is used as the caudal limit, which is
ound using the central sagittal slices marked in coronal and axial cuts ((a) and (b)).
frontal profile (c) of the lateral projection of the central slices is used to identify the
ottom of the frontal lobe, the first axial slice where vc < vmax − (vmax − BBymin)0.2.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of the article.)
brain tissue that must be removed. In this case, Eq. (5) is not satisfied, therefore the
threshold Ts must be increased by using a higher value of � in Eq. (3).

maximum value, vmax. An appropriate difference is 20% of the skull
length in the posterior-anterior direction. To estimate the length of
the skull, vmax is taken as the anterior limit, and BBymin, the poste-
rior bound of the mask bounding box, is taken as the posterior limit.
Therefore, Lbottom (Fig. 2(c)) is reached in the first slice where:

vc < vmax − (vmax − BBymin)0.2 (4)

The anterior reference limit for the registration is vmax. The pos-
terior reference limit is the posterior limit, Bpost, of the projection
of the central slices at the slice where vmax was found (Fig. 2(c)).
The lateral reference limits are the bounding box lateral limits of
the upper part of the mask, from the top of the head to the bottom
of the frontal lobe, Lbottom (axial cuts in Fig. 2(a) and (b)).

After registration, M2 is compared to the model mask (see Fig.
1(d)) to check whether the non-brain tissue has been properly
removed. If the volume (number of voxels) of M2 lying outside the
model mask, Vout

M2
(light gray in Fig. 3, is small enough compared to

the volume of the model mask, VM (dark gray and white in Fig. 3, it is
assumed that the tissue removal is successful. Therefore, an empir-
ical threshold of 0.08 is used, and the following condition should
be satisfied to accept the tissue removal:

Vout
M2

VM
< 0.08 (5)

Eq. (5) determines whether enough non-brain tissue has been
removed to proceed with the histogram analysis. The volume of
mask M2 that lies outside the model after registration, Vout

M2
, is an

estimate of the non-brain tissue. When Vout
M2

is large compared to the
model’s volume VM, a significant part of non-brain tissue is present
in the mask M2. Fig. 3 shows an example in which the volume Vout

M2
is large because the mask M2 includes non-brain tissue. This non-
brain tissue must be removed before performing the next step of
our method. To remove the tissue, the threshold Ts is increased in
Eq. (3) by using a higher value of � in the set � = {0.1, 0.2, . . ., 0.9}.
If (5) is satisfied, no more values of � are tested and the current mask
M2 is used in the next step of the rough-segmentation (Fig. 1(e)).
The first value of Ts is lowest to avoid removing brain tissue. More-
over, if some brain tissue is removed in this step, it is recovered
in the second deformation of the mesh as is explained in Section
2.2.3.3.

After the procedure described above, some parts of other tissues,

such as dura, still remain around the brain. Thus, other thresholds
are required, and they are computed by assuming that those tissues
belong to a class depending on their gray levels. The classes are
modeled by Gaussian functions, and the resulting model is used
to compute the new thresholds (Section 2.1.3) and as part of the
information to guide the deformable model (Section 2.2).
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Fig. 4. Histogram as a probability density function and approximated by Gaussian
functions. The black dashed line represents the real image histogram, p(i), and the
solid red line is the approximated histogram, p′(i, v). The approximated histogram
is the sum of the estimated normal distributions of the gray levels of classes C1
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green line, left), C2 (yellow line, center) and C3 (blue line, right) (Section 2.1.3). (For
nterpretation of the references to color in this figure legend, the reader is referred
o the web version of the article.)

.1.3. Histogram modeling by Gaussians
Elimination of non-brain tissue is performed in this stage by the

pplication of thresholds computed using a Gaussian approxima-
ion of the image histogram. The brain tissue is also selected using

orphological operators and 3D connected component analysis
Fig. 1(III)). Based on gray level analysis, it can be assumed that
mage tissues belong to four classes that follow normal distribution
Shan et al., 2002; Kovacevic et al., 2002; Chiverton et al., 2007)
Fig. 4):

C1: Background noise, cerebrospinal fluid and dura. It may form
a peak in the histogram, but often does not.
C2: Gray matter. It forms the central peak in the histogram.
C3: White matter. It forms the peak at the right side of the his-
togram.
C4: Other tissues with high gray value. Consist of very few voxels
and never forms a peak.

An approximated histogram is constructed modeling these
lasses with Gaussians. Because class C4 has very few voxels, only
lasses C1, C2, and C3 are modeled. Therefore, the approximated
istogram is:

′(i; v) =
3∑

k=1

pk exp

(
−1

2

[
i − �k

�k

]2
)

(6)

here i is a gray level, �k is the mean gray level of class k = {1, 2, 3},
k is the probability for a voxel of class k to obtain intensity �k, �k is
he standard deviation of the Gaussian function that represents the
lass k, v = (�k, �k, pk) is the vector of parameters of the Gaussian
unctions, and p′(i; v) is the probability that a voxel has intensity,
, using the vector of parameters, v. Thus, the values, �k, should
orrespond to the main peaks in the image histogram. The param-
ters of the Gaussian functions are adjusted such that p′( · ; v) fits
he image histogram. Therefore, the vector of optimal parameters
∗ = (�∗

k
, �∗

k
, p∗

k
) is:
∗ = argmin
v

W−1∑
i=0

[
p(i) − p′(i; v)

]2
(7)
nce Methods 206 (2012) 103–119 107

where W is the number of gray levels or bins in the histogram.
This minimization is performed using the Levenberg–Marquardt
algorithm (Moré, 1978), which is especially suitable for minimiz-
ing functions that can be expressed as a sum of squared residuals.
The initial vector of parameters for the minimization is computed
using a non-parametric smoothing method. This method is based
on kernel density estimation (Rosenblatt, 1956) which is a technique
used to estimate the probability density function of a random vari-
able. In our case, this variable is the image histogram, p(i). Thus, the
kernel density estimation is:

p̂(i; h) = 1
Nh

W−1∑
j=0

p(j)K
(

i − j

h

)
(8)

where K is the kernel function, h is the bandwidth parameter of the
kernel (Eq. (9)), and j is the internal variable of the summation over
all the W gray levels. The commonly used normal distribution with
mean 0 and variance 1 is used as the kernel function:

K
(

i − j

h

)
= 1√

2�
e−(i−j)2/2h2

(9)

In this way, the variance is controlled indirectly through param-
eter h. This parameter controls the amount of smoothing of p̂(i; h),
i.e., when h is high, p̂(i; h) will be smoother. Since the image his-
togram is seen as a probability density function, the peaks of each
class correspond to main function modes. In order to localize the
modes of the function, the parameter, h, is adjusted to obtain a
smooth function whose number of peaks is equal to the number of
modes we want to identify. The larger the value of h, the smoother
the estimation p̂(i; h) and the fewer the number of local maxima.
The adjustment of h to obtain a desired number of local maxima,
m, is explained as follows.

First, two limit values for h are fixed: hhigh and hlow. Since
m modes should be found, hhigh must be high enough to obtain
m̂ < m modes when it is used in the estimation, and hlow must
be low enough to obtain m̂ > m modes. Then, h is adjusted
iteratively, providing a value, ht at each iteration, t, starting with
h0 = (hhigh + hlow)/2:

1. Compute p̂( · ; ht ) (Eq. (8))
2. Compute the number of modes m̂ in p̂( · ; ht )
3. if m̂ ≤ m then

hhigh = ht

else
hlow = ht

end if

4. Compute ht+1 = hhigh+hlow
2 .

5. if m̂ = m and
∣∣ht − ht+1

∣∣ < 0.001 then

return p̂( · ; ht+1)
else

go to step 1.
end if

The class C1 does not always show a peak. Therefore, to compute
the initial vector of parameters to adjust p′(i; v), the best method
is to find the peaks of classes C2 and C3. Because �2 and �3 are
the highest peaks in the histogram, they can be located using the
algorithm described above. Using these estimations of the mean
gray levels, the initial vector of parameters v = (�k, �k, pk) for the
adjustment of the Gaussian functions (Eq. (7)) is obtained: v =
[�2 0.75, �2, �3, W/6, W/6, W/6, p̂(�2 0.75), p̂(�2), p̂(�3)]. This
initial vector is used in the Levenberg–Marquardt algorithm to per-
form the minimization of Eq. (7), and obtain the optimal vector of
parameters v∗ for the approximated histogram, p′( · , v) (Eq. (6)).

Fig. 4 shows the image histogram, p(i) (black dashed line), and the
approximated histogram, p′(i; v∗) (solid red line) formed by the sum
of the Gaussian functions representing the gray level distributions
of classes C1 (green line), C2 (yellow line), and C3 (blue line). Because
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Fig. 5. (a) Coronal and (b) axial slice of the MRI. (c) Extractio

lass C2 represents the gray matter and class C3 the white matter,
t can be assumed that the mean value and standard deviation of
he GM and WM gray level are, �gm = �2, �gm = �2; and �wm = �3,
wm = �3, respectively.

Two final thresholds, TGLow and TGHigh, are computed using the
stimated gray level distribution of the tissues (Shan et al., 2002):

GLow = �gm − 2.5�gm TGHigh = �wm + 2.5�wm (10)

A new mask is computed using these thresholds (Fig. 1(f)). The
ask is composed of all voxels, in the image masked with M2, hav-

ng a gray level, i, that satisfies: TGLow ≤ i ≤ TGHigh. With the purpose
f disconnecting the remaining tissues with gray levels similar to
he brain, a binary opening is used in the mask. The opening oper-
tor is applied once, using a 3D spherical structural element with a
adius of 5 mm. Then, to identify the brain, a 3D connected compo-
ent analysis is performed in the mask, using a square connectivity
qual to one. The largest element is kept, and it forms the mask, M3.
he original image masked by M3 is the final rough-segmentation
f the brain. Fig. 5 shows two orthogonal slices of the MRI rough-
egmentation, in which tissues have been eliminated, except for
he cerebral parenchyma (Fig. 5(c)).

.2. Segmentation by deformable models

The final segmentation is carried out by deformable mod-
ls, using the original and the rough-segmented images. The
eformable model is based on a simplex mesh. A detailed descrip-
ion of simplex meshes is given by Delingette in Delingette (1999),
here it is reported that simplex mesh properties make them suit-

ble for a wide range of segmentation tasks. In our segmentation,
generic mesh, M, is deformed to reach the GM-CSF interface.

irst, this generic mesh is geometrically adjusted using an affine
ransformation computed by identification of landmarks in the
ough-segmented image. Next, the mesh is deformed using the
ough-segmented image, and then by using the original image. The
eformation of the model is carried out following three steps.

.2.1. Initial mesh generation
The ICBM452 5th-order warp atlas (Rex et al., 2003) (Labo-

atory of Neuro Imaging (LONI) at UCLA) was used to build the
eneric mesh, M. This atlas represents an average of the inten-
ities and anatomical shapes of T1-weighted MRI images of normal
oung adult brains. A mesh with genus 0 was built using the well
nown marching cubes algorithm (Lorensen and Cline, 1987) on

he ICBM452 atlas. The result of the marching cubes algorithm is a
riangulation; however, a triangulation can be transformed into a
implex mesh by applying a dual operation (Galdames and Jaillet,
010) (see Fig. 7(c)). The generic mesh does not include the sulci
e cerebral parenchyma by the rough-segmentation method.

or gyri in details; but these structures are incorporated during the
mesh deformation. The geometric adjustment of the generic mesh
to the rough-segmentation volume is explained in the next section.

2.2.2. Mesh geometric adjustment
After rough-segmentation, a global matching of the generic

mesh, M, is carried out using geometric transformations. First, M
is scaled and translated to match the rough-segmented MRI. The
references used to carry out this transformation are found in the
same way as the estimation of threshold Ts that is described in
Section 2.1.2. The caudal limit of the frontal lobe and the bounding
box of the upper part of the brain in M are matched with the same
references in the rough-segmented image.

Next, an affine transformation is carried out minimizing the sum
of the square distances among the mesh vertices and the rough-
segmented MRI edges. The optimal transformation parameters are
found using the Levenberg–Marquardt minimization method. The
distances in the rough-segmented MRI image are pre-computed
using the distance transformation on the edges of the MRI segmen-
tation after binarization. Fig. 6(a) shows the cortex mesh after the
affine transformation.

2.2.3. Simplex meshes applied to brain segmentation
In this section, simplex meshes are introduced, and the theory

for their deformation is explained in relation to brain segmentation.
The model is deformed using information from both rough-
segmented and original images to discriminate between GM and
CSF in order to find the interface between them. The deformation is
directed by local forces computed over the gray levels of the image.

2.2.3.1. Simplex meshes. A general description of simplex meshes
is presented here. A k-simplex is the convex hull of k + 1 indepen-
dent points, e.g., a segment is a 1-simplex, a triangle is a 2-simplex,
and a tetrahedron is a 3-simplex. By definition, a k-simplex mesh
has a k + 1-simplex in each vertex. For example, a 1-simplex mesh
is a contour in which each vertex and its two neighbors define a
triangle. This property defines the connectivity of the mesh where
the vertices of a k-simplex mesh have k + 1 neighbors. The types of
objects that can be represented by these meshes depends on the
mesh connectivity, e.g., a k-simplex mesh with k = 1 can represent
a curve, k = 2 a surface, and k = 3 a volume. To segment the brain
surface, we use 2-simplex meshes. Each vertex of these meshes
has three neighbors, and these four points define a tetrahedron
(Fig. 7(a): Pi, PN1(i), PN2(i), PN3(i)). An interesting feature of 2-simplex

meshes is that they are the topological dual of the triangulations
(meshes of triangles); making it possible to obtain a 2-simplex
mesh by applying a dual operation to a triangulation, and vice versa
(Fig. 7(c)). This property is useful because it is more convenient to
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Fig. 6. Examples of deformation steps with the simplex mesh: (a) after geometric
adjustment by affine transformations (Section 2.2.2). (b) After a first deformation to
match the rough-segmentation (Section 2.2.3.2). (c) After a second deformation to
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Fig. 7. (a) Local geometry of a 2-simplex mesh. The tetrahedron formed by a vertex,
Pi and its 3 neighbors, PN1(i) , PN2(i) , PN3(i) , is shown. These four points (vertex Pi and its
neighbors) define the circumscribed sphere of the tetrahedron, with center Oi and
radius Ri . Also, the three neighbors define the circle with center Ci and radius ri . (b)
oughly match the cortex surface (Section 2.2.3.3). (d) After a refined third defor-
ation to match the sulci and gyri (Section 2.2.3.4). (e) Zoom image of the final

eformation that shows the mesh following the sulci and gyri.

epresent a surface with a triangulation for some tasks, e.g., render-
ng, computing intersections, or constructing volumetric meshes.
ereafter, we will refer to 2-simplex meshes simply as simplex
eshes.
As mentioned, each vertex of a simplex mesh positioned at Pi

as three neighbors, positioned at PN1(i), PN2(i), PN3(i). The vertex
nd its neighbors form a tetrahedron (see Fig. 7(a)). It is possible
o compute the tetrahedron’s circumscribed sphere with center,
i, and radius, Ri, defined by these four points, and the circle with
enter Ci and radius ri defined by the three neighbors. The three
eighbors also define a plane with normal −→

Ni , which includes the
ircle with center Ci. With these geometric entities, the simplex
ngle �i ∈ [−�, �] can be defined (see Fig. 7(b)):

in(�i) = ri

Ri
sgn

(−−−−→
PiPN1(i) · −→Ni

)
or∥∥OiCi

∥∥ (−→ −→)

os(�i) =

Ri
sgn OiCi · Ni (11)

here sgn is the sign function and (·) is the inner product. Therefore,
he simplex angle �i is defined in every vertex Pi by means of its
Simplex angle, �i shown in a cut passing through the vertex Pi and the axis of the
sphere −−→

OiCi . (c) 2-Simplex mesh (dark dots) and its dual triangulation (white dots).

neighbors PN1(i), PN2(i), PN3(i), and it does not depend on the position
of the neighbors within the circle they define. The simplex angle and
the height L (Fig. 7(a)) of Pi over the plane defined by its neighbors
are related by:

L(ri, di, �i) = (r2
i

− d2
i
) tan(�i)

�
√

r2
i

+ (r2
i

− d2
i
)tan2(�i) + ri

� =
{

1 if
∣∣�i

∣∣ < �/2

−1 if
∣∣�i

∣∣ > �/2
(12)

where di = ‖CiP
⊥
i

‖, and P⊥
i

is the projection of Pi over the plane
defined by its neighbors. Since the simplex angle is scale-invariant,
it can be seen as a local and scale-invariant measure of the height, L,
of Pi over the plane defined by its neighbors. Moreover, the simplex
angle is related to the surface curvature at Pi. It is possible to approx-
imate the curvature at Pi by the curvature of the sphere that best
fits the surface in a neighborhood around Pi. If the neighbors PN1(i),
PN2(i), PN3(i) of Pi are considered, this sphere is the circumscribed
sphere of the tetrahedron formed by the four points (Fig. 7(a)),
and its mean curvature is Hi = 1/Ri. This mean curvature at point Pi
can be expressed in terms of the simplex angle (Delingette, 1999)
using (11): Hi = sin (�i)/ri. Other important geometric entities of the
simplex meshes are the metric parameters ε1i, ε2i, ε3i. These param-
eters are the barycentric coordinates of the projection, P⊥

i
of the

vertex, Pi on the triangle defined by its neighbors (Fig. 7(a)):

P⊥ = ε P + ε P + ε P ε + ε + ε = 1 (13)
i 1i N1(i) 2i N2(i) 3i N3(i) 1i 2i 3i

The position of a vertex projection on the plane defined by its neigh-
bors is defined by (13), and the height of the vertex over this plane
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tices are pushed toward their target points by the external force.
To accomplish this, the external force, −−→

Fexti
is computed using the

μ σ

μ σ
10 F.J. Galdames et al. / Journal of Neu

y (12). Therefore, the metric parameters and the simplex angle
ompletely determine the position of the vertex as follows:

i = ε1iPN1(i) + ε2iPN2(i) + ε3iPN3(i) + L(ri, di, �i)
−→
Ni (14)

The simplex mesh deformation can be controlled by internal and
xternal forces. The external forces are computed from the image,
nd push the mesh to the desired borders. The internal forces are
omputed from the mesh, considering for a smooth deformation
nd keeping the mesh regularity.

Now, we describe how the mesh can be deformed. The dynamics
f the model are controlled by means of a Newtonian law of motion:

∂2
Pi

∂t2
= −�

∂Pi

∂t
+ �

−−→
Finti

+ 
−−→
Fexti

, (15)

here m is the mass unit of a vertex (usually 1; Delingette, 1999),
is a damping factor, Pi is the position of vertex i, −−→

Finti
represents

he internal force at vertex i, −−→
Fexti

represents the external force, �
s a weight for the internal force, and  is a weight for the external
orce. The weights � and  control the influence of each force on the
eformation. Considering discrete time and using finite differences

n Eq. (15), we obtain:

t+1
i

= Pt
i + (1 − �)

(
Pt

i − Pt−1
i

)
+ �

−−→
Finti

+ 
−−→
Fexti

(16)

The internal force of a simplex mesh can be locally determined
y the simplex angle, �i and the metric parameters ε1i, ε2i, ε3i. The

nternal force is a spring force between the position of the vertex Pi
nd a target position P∗

i
in which the vertex, i, would have simplex

ngle �∗
i

and metric parameters ε∗
1i

, ε∗
2i

, ε∗
3i

. Thus the internal force

s −−→
Finti

= −−→
PiP

∗
i = P∗

i
− Pi. In this way, the mesh local curvature can be

ontrolled by the simplex angle, and the vertex position relative to
ts neighbors by the metric parameters. If we use (14) to express
he vertex position, the internal force can be written as:
−→
inti

=
(

ε∗
1i

−−−−→
PiPN1(i) + ε∗

2i
−−−−→
PiPN2(i) + ε∗

3i
−−−−→
PiPN3(i) + L(ri, di, �∗

i ) −→
Ni

)
(17)

In our work, the metric parameters are fixed to 1/3, to obtain a
egular mesh. The target simplex angle, �∗

i
can be fixed in a value

r computed at each iteration in a neighborhood around the vertex
o obtain a curvature continuity constraint (Delingette, 1999). We
erform different mesh deformations, and in each one, a different
efinition of the external force −−→

Fexti
and �∗

i
is used. In each defor-

ation, (16) is iterated until the mean displacement of the mesh
ertices is less than 0.01. These deformations are explained in the
ollowing sections.

.2.3.2. First mesh deformation. After the geometric adjustment
Section 2.2.2), the mesh, M, is deformed in order to match the
ough-segmentation borders more accurately. In (15), the exter-
al force definition is important as it allows driving the mesh to
he image’s natural edges. Its computation is achieved by using the
ormal profile to each vertex, in a way similar to Active Shape Mod-
ls (Cooper et al., 1995; Weese et al., 2082). However, as reported
n this paper, an elastically deformable model is used, avoiding the
eed for a training set. A set of sampling points is defined over each
ormal profile of length 2l as:

i,j = Pi + jı
−→
Ni (18)

here ı is a sampling distance, and j = {[− l/ı], [− l/ı] + 1, . . .,
l/ı] − 1, [l/ı]}. Fig. 8 shows the normal profiles for a specific mesh.
target point, xtarget

i
, defined as the first point inside the mask, M3,

s searched in each profile, starting from l to −l. Thus, using the
arget point, the external force, −−→

Fext is defined in each vertex as:

i

−→
exti

=
[

∇M3(xtarget
i

)∥∥∇M3(xtarget
i

)
∥∥ · (xtarget

i
− Pi)

]
−→
Ni (19)
Fig. 8. Profiles normal to the mesh surface at each vertex. The measures of the image
gray level used to guide the mesh deformation are taken along these profiles.

where ∇M3(xtarget
i

) is the gradient of M3 at xtarget
i

, i.e., the gradi-
ent of the mask border. In this way, the vertex is pushed to the
rough-segmentation border more strongly if the normal of the
mask border is in the same direction as the mesh normal.

Because an affine transformation was used in the previous mesh
geometric adjustment, it can be assumed that the mesh did not
lose its general shape. Therefore, to avoid an excessive mesh defor-
mation if there are errors in the rough-segmentation, the initial
simplex angles of the mesh are preserved as target simplex angles,
�∗

i
during the deformation. Thus, the simplex angle of every ver-

tex, �i is computed after the geometric adjustment and used in this
deformation as �∗

i
(Eq. 17). An example of the adjustment result to

the rough-segmentation is shown in Fig. 6(b).
After this first deformation, the mesh matches the rough-

segmented image borders. Because the rough-segmentation is
designed to remove most of the non-brain tissue, the mesh lies
mainly in the WM or near the GM-CSF interface.

2.2.3.3. Second mesh deformation. The second deformation is com-
puted using the original MRI, and the goals are to find the GM-CSF
interface, and correct the mesh in those areas where the rough-
segmentation eliminated brain tissue. Therefore, the mesh moves
mainly inside the WM or near the GM-CSF interface in this defor-
mation.

In a similar manner to the first deformation, a target point, xtarget
i

is computed in each vertex profile (see (18)). To compute the tar-
get point, rules based on the image gray level are applied, as will
be explained later in this section (Fig. 9). In each iteration, the ver-
Fig. 9. Flow diagram of the rules to compute the simplex mesh external forces. The
inputs, represented by circles, are measures of the image gray level taken over the
normal profile of each vertex (Fig. 8). The outputs, at the end of the diagram, are the
equations used to compute the target point, xtarget

i
of each vertex.
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Fig. 10. Example of brain tissue recovery by the second deformation. (a) The rough-
segmentation of an image in which the cerebellum has been removed because of
a bias problem in the image. (b) Mesh registered with the rough-segmentation by
geometric transformations. (c) Mesh deformed using the rough-segmented image.
This first deformation removes a great part of the cerebellum because it is based in
F.J. Galdames et al. / Journal of Neu

arget points and including an exponential decay if the target point
s further than a distance, DF:
−→
exti

= (xtarget
i

− Pi)ˇ (20)

here

=

⎧⎪⎨
⎪⎩

1, if
∥∥xtarget

i
− Pi

∥∥ < DF

1

exp
(∥∥xtarget

i
− Pi

∥∥ − DF

) , if
∥∥xtarget

i
− Pi

∥∥ ≥ DF

(21)

Fig. 9 shows a flow diagram of the rules employed to compute
he target points. First, whether the vertex Pi is outside the WM is
stimated. This is carried out by computing two values: an estima-
ion of the WM gray value in each profile

wm(i) = max
j=[−l/ı],...,0

I(xi,j), (22)

nd the minimum gray level value over a distance, dmin in the
irection, − −→

Ni :

min(i) = min
j=[−dmin/ı],...,0

I(xi,j) (23)

If Imin(i) ≤ 0.66 Iwm(i), it is assumed that the vertex, Pi is in the
SF or the GM. In this case, another measurement is made over a
istance, dmean in the direction, − −→

Ni :

mean(i) =
∑0

j=[−dmean/ı]I(xi,j)

[dmean/ı] + 1
(24)

Using Imean(i), it is possible to determine whether the vertex,
, is near the GM. If Imean(i) has a low value, the vertex, i, is in
he CSF far from the GM. In this case, Pi must be pushed to reach
he GM. Imean(i) is analyzed using the mean value �gm and stan-
ard deviation �gm of the GM gray level computed in Section 2.1.3.
ccordingly, if Imean(i) < �gm − 8�gm, the vertex is pushed inward.
ince each vertex is pushed over its target point, the target point is
efined as:
target
i

= Pi − dp
−→
Ni (25)

here dp is a distance that controls the applied force. Otherwise,
f Imean(i) ≥ �gm − 8�gm, it is assumed that the vertex is near the
nterface between the GM and CSF, and must be pushed into it.
his interface can be detected looking for a high gradient in the
earch profile. A function, F, based on both image and mesh, is
efined as Fi(x) = −−→

Ni · ∇I(x), where I(x) is the gray value of the
mage normalized between the values [0,1] at point x, and ∇ is
he gradient operator. Then, the target point (Weese et al., 2082) is
efined as:
target
i

= Pi + arg max
j=[−l/ı],...,[l/ı]

[Fi(xi,j) − Dj2ı2]ı−→
Ni (26)

here D is a weight to give less importance to points that are far
rom Pi. In contrast, if Imin(i) > 0.66 Iwm(i), it is assumed that the ver-
ex Pi is inside the WM. In this case, another measure is performed
ver a distance, dmax, in the profile:

max(i) = max
j=0,...,[dmax/ı]

I(xi,j) (27)

The purpose of Imax(i) is to determine whether the eyes are in
ront of P(i). An area with high gray level values characterizes the
egion behind the eyes, where the optic tracts are located. We esti-
ated a threshold for Imax(i) to be 130% of the WM intensity. If

max(i) > 1.3 Iwm, it is assumed that the eyes are in front of Pi, and the
M border is found using (26); otherwise, the vertex Pi is inside the

M and must be pushed to reach the GM and the GM-CSF interface.

he vertex is pushed defining the target point xtarget
i

as:

target
i

= Pi + dp
−→
Ni (28)
the rough-segmentation. (d) Mesh after the second deformation. This deformation
recovers the cerebellum because the forces push the vertices if they are inside the
brain tissue.

In the second deformation, the mesh should be adjusted more
precisely. Therefore, it is allowed more freedom in the deforma-
tion by defining the target simplex angle, �∗

i
, using a curvature

continuity constraint (Delingette, 1999) computed over a neigh-
borhood, QS(i), of size, S, around each vertex. The neighborhood,
QS(i), is defined as all the vertices that can be connected to Pi by a
path formed with S edges. Fig. 6(c) shows an example of the mesh
obtained after the second deformation.

The rough-segmentation is designed to eliminate the non-brain
tissue to be able to find landmarks to register the generic mesh, M,
with the image (Section 2.2.2), but in some cases part of the brain is
also removed. Therefore, the purpose of the second deformation, in
addition to reaching the GM-CSF interface, is to correct the mesh in
those areas where the rough-segmentation eliminated brain tissue.
Fig. 10 shows an example in which part of the brain was removed in
the rough-segmentation and recovered in the second deformation.

2.2.3.4. Third mesh deformation. A final deformation is carried out
removing parts of the CSF that may remain outside the cortex or
in the sulci, by mesh refinement, and using similar forces to those
described in the previous section. There are many well-known algo-
rithms to refine triangulations. Therefore, the simplex mesh is first
transformed into a triangulation using the method described in
Galdames and Jaillet (2010). This method is based on the compu-
tation of the dual mesh vertices by an interpolation that uses a

direct minimization of the distance to both vertices of each face
and the tangent planes in these vertices. After the dual transforma-
tion, the triangulation is refined using the butterfly scheme (Zorin
et al., 1996), and re-transformed into a simplex mesh (Galdames
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Fig. 11. Correction performed in the binary mask. (a) Image masked by the binary
mask built using the final deformed mesh. The image includes a zoom of the marked
12 F.J. Galdames et al. / Journal of Neu

nd Jaillet, 2010). To deform the refined mesh, similar forces to
hose described in the previous section (Section 2.2.3.3) are uti-
ized. The difference is that the value of Iwm(i) is modified if it is
ery different from the estimation of the WM gray level in the
ough-segmentation stage. The objective of this correction is to
ake sure that vertices over sulci will be pushed into the sulci.

here are cases in which the estimation of the WM local gray level
wm(i) is excessively low when the vertex is over a large sulcus,
specially over the sagittal sinus. Moreover, in this stage the mesh
as reached the cortex as a result of the second deformation; there-

ore, it is more important to push the vertices into the sulcus. If
wm(i) < �wm − 2�wm, its value is replaced by Iwm(i) = �wm − 2�wm.
ig. 6(d) shows an example of the final segmentation.

.2.3.5. Mesh self-intersections control. Mesh deformations follow-
ng complex shapes such as cortex sulci and gyri, may generate
rrors due to mesh self-intersections. A self-intersection may cause
he surface normal vector to point toward inside the mesh instead
f outward. This error in the normal vector causes the mesh to
e pushed in the wrong direction, because the forces that deform
he mesh depend on the surface normal vector. The mesh internal
orces avoid these intersections to some degree, but in some cases
hey are not sufficient.

To prevent these self-intersections, their occurrence is checked
nd corrected every I = 10 iterations. The vertices that form a
ace of a simplex mesh are not co-planar; therefore, there are no
lanes available to compute the intersections easily. Consequently,
he simplex mesh is first transformed into its dual triangulation
Galdames and Jaillet, 2010) to have a mesh formed by planar faces.
hen, the intersections between triangles can be computed easily.
ecause the topological dual triangulation is used, each triangle
orresponds to a vertex of the simplex mesh (Fig. 7(c)). Therefore,
f an intersection is detected in a triangle, the position of the corre-
ponding simplex mesh vertex must be corrected. After all triangles
ith intersections have been detected, areas enclosed by these tri-

ngles are computed. The triangles of these areas have completely
rossed a part of the mesh. Therefore, the position of the simplex
esh vertices related to triangles in the enclosed areas must also

e corrected.
Consequently a set, G, is formed with the vertices related to

ntersected triangles and triangles enclosed by intersections. To
orrect the intersections, a Laplacian smoothing is applied to the
ertices of G and to a neighborhood around them. The smoothing is
pplied in stages k = {1, 2, . . . } to make sure of the self-intersection
roblem correction, while changing the rest of the mesh as little as
ossible. In each stage, the Laplacian smoothing is applied 50 times
r until the mean displacement of the vertices is less than 0.001.

Another detection of self-intersections and enclosed areas
s performed at the end of each stage. If there are still self-
ntersections, another set, G, is formed in the next stage and a
aplacian smoothing is carried out. The neighborhood around G
epends on the stage, k, defining increasing neighborhoods to pro-
ide more freedom if the intersections were not corrected in the
revious stage. Thus, in a stage k, the neighborhood Q S(G) of G is
f size S = k, where Q S(G) is defined as all the vertices that can be
onnected to any vertex of G by a path formed with S edges.

.2.3.6. Conditional morphological operators. The purpose of the
kull stripping method is to classify voxels in the image as brain
r non-brain tissue. After the mesh deformation, a binary mask is
uilt using the final mesh. Voxels inside the mesh are classified as
rain tissue and as non-brain tissue those voxels outside the mesh.

ecause, the mesh has no sub-voxel resolution to perform an effi-
ient deformation, some voxels in the surface of the mask can be
isclassified. To refine the classification of these voxels, conditional
orphological operators are applied to the mask, using a structural
rectangular area. (b) Image masked by the mask after correction by conditional mor-
phological operators. Misclassified voxels in the surface of the mask are corrected
by the conditional morphological operators.

element of 3 × 3 × 3 voxels. The conditional morphological opera-
tors employ thresholds computed using the statistical gray level
model built in the rough-segmentation (Section 2.1.3) and gray
level estimates in the neighborhood of the voxel. First, a conditional
erosion is performed two times. This operation applies erosion only
if the gray value in the original image is below a threshold. The
threshold is the same employed in the mesh deformation, thus
the voxels with gray levels in the original image i ≤ �gm − 8�gm,
can be eroded in the binary mask. This erosion removes voxels of
CSF that were misclassified as brain. Then, a conditional dilation is
performed one time in the binary mask using the same structural
element. The conditional dilation is applied only if the gray value in
the original image is above a threshold. The threshold is determined
using the maximum gray level in the original image of the voxels
inside the structural element: Ise

max. The value of Ise
max is an estimate

of the gray level value of the brain parenchyma in the neighborhood
of the voxel. If the voxel is far from the parenchyma (e.g., in a sulcus)
the threshold of the conditional erosion is used. Then, the voxel may
be dilated if its gray level is i > max(Ise

max − 5�gm, �gm − 8�gm). This
dilation recovers misclassified voxels of brain tissue. Fig. 11 shows
the correction performed in the binary mask.

3. Databases and experiments

For the purpose of measuring the performance of our proposed
SMHASS method, we use the most commonly used MRI databases:

• 20 simulated T1W MRI images from the BrainWeb web-
site (Cocosco et al., 1997; Aubert-Broche et al., 2006), with 1 mm
isotropic voxel size. This database has the ground truth segmen-
tations for 12 tissues available, including GM, WM and CSF.

• 18 real T1W MRI images from the Internet Brain Segmentation
Repository (IBSR) (Center for Morphometric Analysis, 1995), slice
thickness 1.5 mm. This database has a manual segmentation of
the GM, WM and CSF available.

• 40 real T1W MRI images from the Segmentation Validation
Engine (SVE) (Shattuck et al., 2009) website, with 1.5 mm slice
thickness and in-plane voxel resolution of 0.86 mm (38 subjects)
or 0.78 mm (2 subjects). There are no ground truth segmentations
available for this data set. However, segmentation masks can be
sent to the website for performing an online comparison with
manually edited brain mask volumes.

Our SMHASS method was validated by comparing its perfor-

mance with that of three of the best methods in the literature. These
methods are as follows.

The Brain Extraction Tool (BET) (Smith, 2002) that segments
the brain using deformable models. The image is binarized using
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stimations of the minimum and maximum intensities of the brain.
ext, the center of the head is estimated in the binarized image and

he deformable model is initialized with a sphere shape in this posi-
ion. The model is deformed using locally adaptive forces. BET v2.1
s free and available in the FMRIB FSL software library (FMRBI, 2012;
enkinso et al., in press). The recommended default parameters

ere used for the evaluation: fractional intensity threshold = 0.5,
hreshold gradient = 0.

The Brain Surface Extractor (BSE) method (Shattuck et al., 2001)
ses Marr–Hildreth edge detection to identify the border of the
rain. Before applying the edge detector, anisotropic diffusion fil-
ering (Perona and Malik, 1990) is used to de-noise the image.
his spatially adaptive filter smoothes noisy regions while pre-
erving edge boundaries. After applying the edge detection, the
mage is binarized using the computed edges, and the brain is
ound using morphological operators. Binary erosion is applied to
eparate the elements and a 3D connected component analysis is
arried out to identify the brain. Next, a morphological dilation is
pplied to the selected element (brain) to undo the effects of the
rosion, and a closing operation is performed to close the small
oles that may be in the volume. BSE is freely available as part of
he BrainSuit (BrainSuite., 2012) of the Laboratory of Neuro Imaging
LONI) at UCLA. Two sets of parameters were used in our eval-
ations: the default parameters (diffusion iterations = 3, diffusion
onstant = 25, edge constant = 0.64, erosion size = 1), and the param-
ters suggested by Hartley et al (Hartley et al., 2006; Sadananthan
t al., 2010) (diffusion iterations = 3, diffusion constant = 35, edge
onstant = 0.62, erosion size = 2).

The Hybrid Watershed Algorithm (HWA) (Ségonne et al., 2004)
s a hybrid method that combines a watershed algorithm (Hahn
nd Peitgen, 2000), and a deformable surface model (Dale et al.,
999) which includes shape restrictions based on an atlas. First,
watershed algorithm that uses the concept of pre-flooding (the

onnectivity path between two points can contain a lower intensity
han the darker of the two points up to a maximum difference) is
sed to segment the brain. Then, the deformable model is initialized
ith a balloon shape using this segmentation. A first deforma-

ion of the model is carried out using the watershed segmentation
nd global parameter estimations. Next, an atlas is used to ver-
fy the resulting surface and correct it if there are errors. Finally, a
eformation using estimations of local parameters is performed
o find the brain borders. HWA v5 is included in the FreeSurfer
oftware package (FreeSurfer, 2012) developed at the Martinos
enter for Biomedical Imaging. The default parameters and the “-
tlas” option to use basic atlas information to correct the result of
he deformations, were used in our tests. The default parameters
re: weight for the atlas = 0.85; probability of merging = 0.32; pre-
ooding height = 10; seed points using atlas information; template
eforming using atlas information; use of pre-weighting for the
emplate deformation.

To assess the improvement of our segmentation by the
eformable models a comparison between the results of the rough-
egmentation and the refined segmentation was also performed.

The parameters used to segment the three databases with our
MHASS method were determined according to the performance
ver a set of training images from the three databases. Also some
arameters were determined according to anatomical proportions,
nd expressed in millimeters. In the first deformation, l must be
arge enough to find the edge of the rough-segmentation if the

esh is located far away after the geometric adjustment. Besides,
must be large enough to reach the WM in the second and third
eformation, but in these steps the mesh lies very close to the

M or inside it. The distance dmean must be short enough to take
measurement in the vicinity of the mesh, but large enough to

iminish the effect of noise sample. Distance dmax must be large
nough to reach the region behind the eyes if the mesh is in
nce Methods 206 (2012) 103–119 113

its vicinity in the WM, and short enough to avoid reaching the
scalp if the mesh is in the subarachnoid space near the GM. The
parameters for the first mesh deformation using deformable mod-
els were: � = 0.4,  = 0.15, � = 0.65, ı = 0.5, l = 15 mm and DF = 10 mm.
The parameters for the second and third mesh deformations were:
� = 0.4,  = 0.4, � = 0.3, S = 2, ı = 0.5, l = 8 mm, dmin = 4 mm, D = 0.3,
dmax = 5 mm, dmean = 2 mm, dp = 0.5 mm and DF = 1 mm.

The two volumetric measures most used in the literature to
compare the quality of skull stripping methods were employed:
the Jaccard similarity (Jaccard, 1912) and the Dice coefficient (Dice,
1945). These volumetric measures can be computed using the con-
cepts of true positive (TP), false positive (FP), true negative (TN)
and false negative (FN). In our case the TP and FP are defined as
the number of voxels correctly and incorrectly classified as brain
tissue, respectively. Similarly, TN and FN are defined as the num-
ber of voxels correctly and incorrectly classified as non-brain tissue,
respectively. The Jaccard similarity, also termed the Tanimoto coef-
ficient, measures the similarity of two sets, S1, S2, as the ratio of the
size of their intersection divided by the size of their union:

J(S1, S2) =
∣∣S1 ∩ S2

∣∣∣∣S1 ∪ S2

∣∣ = TP
TP + FP + FN

(29)

The Dice coefficient measures the similarity of two sets, S1, S2, as
the ratio of twice the size of their intersection divided by the sum
of their sizes:

�(S1, S2) =
2
∣∣S1 ∩ S2

∣∣∣∣S1

∣∣ +
∣∣S2

∣∣ = 2TP
2TP + FP + FN

(30)

The Dice coefficient is related to the Jaccard similarity by:

� = 2J

J + 1
(31)

The sensitivity and specificity percentages were also computed,
which show the percentage of brain and non-brain voxels recog-
nized respectively:

Sensitivity = TP
TP + FN

Specificity = TN
TN + FP

(32)

4. Results

In the BrainWeb and IBSR databases, the ground truth was
the union of GM and WM using the available segmentations.
Tables 1 and 2 show the performance of the different segmentation
methods using the BrainWeb and IBSR databases, respectively. In
the SVE database, the ground truth is not available, but the segmen-
tation can be evaluated by an independent online assessment that
provides all used volumetric measurements. Additionally, the per-
formance of the other methods is available online for this database.
Table 3 shows the performance of the methods in the SVE database.
In addition to the segmentations using the methods default param-
eters, segmentation performances with different parameters can
be found on the SVE website. The segmentation results with better
performance for each method are also shown in Table 3 marked
with an *.

Figs. 12 and 13 show a comparison among different segmen-
tations of a IBSR and BrainWeb image, respectively. Fig. 13 also
includes an image of the ground truth segmentation, and a zoom
of the cortex for better comparison. The HWA has a low specificity
in both databases (see Tables 2 and 3), nevertheless, the specificity
of BSE is lower in the IBSR database when the default parameters

are used (Fig. 12(d)). Also, the specificity of BET is low in the Brain-
Web database (Fig. 13(d)) obtaining a low overall performance even
though its sensitivity is good. The best performance was obtained
by our SMHASS method (Figs. 12(f) and 13(g)), followed by BSE in
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Table 1
Performance comparison among different methods using the BrainWeb database (Cocosco et al., 1997; Aubert-Broche et al., 2006). The best results are shown in bold.

Method Jaccard, mean (SD) Dice, mean (SD) Sensitivity, mean (SD) Specificity, mean (SD)

BET2.1 0.812 (0.020) 0.896 (0.012) 0.997 (0.002) 0.964 (0.004)
BSE (def.) 0.823 (0.091) 0.900 (0.061) 0.995 (0.003) 0.964 (0.027)
BSE (Hard.) 0.875 (0.049) 0.932 (0.031) 0.991 (0.004) 0.979 (0.012)
HWA 0.685 (0.017) 0.813 (0.012) 1.000 (0.001) 0.928 (0.005)
SMHASS 0.904 (0.011) 0.950 (0.006) 0.990 (0.003) 0.985 (0.002)

Table 2
Performance comparison among different methods using the IBSR database (Center for Morphometric Analysis, 1995). The best results are shown in bold.

Method Jaccard, mean (SD) Dice, mean (SD) Sensitivity, mean (SD) Specificity, mean (SD)

BET2.1 0.882 (0.092) 0.935 (0.06) 0.985 (0.012) 0.982 (0.019)
BSE (def.) 0.749 (0.152) 0.848 (0.101) 0.988 (0.011) 0.941 (0.049)
BSE (Hard.) 0.848 (0.065) 0.916 (0.038) 0.945 (0.072) 0.984 (0.014)
HWA 0.814 (0.036) 0.897 (0.022) 1.000 (0.000) 0.966 (0.012)
SMHASS 0.905 (0.030) 0.950 (0.017) 0.992 (0.010) 0.985 (0.009)

Table 3
Performance comparison among different methods using the SVE database (Shattuck et al., 2009). The results marked with * are the best on the website for each method,
and the parameters used for these segmentations are given below the table. Best results are shown in bold.

Method Jaccard, mean (SD) Dice, mean (SD) Sensitivity, mean (SD) Specificity, mean (SD)

BETv2.1 0.892 (0.054) 0.942 (0.032) 0.986 (0.006) 0.980 (0.014)
BETv2.1* 0.940 (0.009) 0.969 (0.005) 0.962 (0.012) 0.996 (0.001)
BSEv08a (def.) 0.596 (0.207) 0.727 (0.150) 0.980 (0.014) 0.854 (0.094)
BSEv08b* 0.943 (0.028) 0.970 (0.016) 0.975 (0.033) 0.994 (0.002)
HWA3 0.851 (0.019) 0.919 (0.011) 0.999 (0.000) 0.969 (0.006)
HWA3* 0.854 (0.018) 0.921 (0.011) 0.999 (0.000) 0.969 (0.005)
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SMHASS 0.946 (0.010) 0.972 (0.0

arameters for BSEv08b*: -n 5 -d 15 -s 0.65 -p –noneck; Parameters for BETv2.1*: -

he BrainWeb database; BET in the IBSR database; and BSEv0.8b
nd BETv2.1 in the SVE database.

The BrainWeb database requires a special comment about the
ensitivity index. The ground truths of the BrainWeb database are
igital phantoms to synthesize MR images instead of real segmen-
ation of the brain structures. For the above reason, some tissue of
ther structures, such as meningeal membranes, is also included in
he ground truth for the skull stripping evaluation if all the white
nd gray matter in the digital phantoms is considered as brain
arenchyma. Therefore, a method with sensitivity close to 1 in this
atabase means that there are many false positives in the segmen-
ation. These are the cases of the methods shown in Table 1 which
ave a high sensitivity but a low specificity.

Figs. 14 and 15 are provided by the SVE website and show the
rojections of FN and FP of the best result obtained by each method
n the SVE database (methods marked with an * in Table 3). In
he same way as in the other databases, the HWA has the low-
st specificity with a high number of FP (Fig. 15(a)). Conversely,
he HWA has the highest sensitivity with very few FN (Fig. 14(a)).

able 4
omparison between the rough-segmentation and the refined segmentation by the defor
VE), and improvement was computed as the subtraction of the indices.

Database Step Jaccard, mean (SD) D

BrainWeb Rough-segmentation 0.888 (0.014) 0.
Segmentation 0.904 (0.011) 0.
Improvement 0.016 (0.024) 0.

IBSR Rough-segmentation 0.753 (0.220) 0.
Segmentation 0.905 (0.030) 0.
Improvement 0.152 (0.251) 0.

SVE Rough-segmentation 0.840 (0.044) 0.
Segmentation 0.946 (0.010) 0.
Improvement 0.106 (0.054) 0.
0.987 (0.006) 0.992 (0.003)

ameters for HWA3*: -less.

Nevertheless, it has the worst overall performance (Jaccard and
Dice in Table 3). The best performance is obtained by our SMHASS
method (Figs. 14(d) and 15(d)).

An analysis of variance (ANOVA) and post hoc comparisons were
used to verify the statistical significance (p < 0.05) of the differ-
ences among the results (Jaccard and Dice) of our SMHASS method
and those of others. The Games–Howell method, that assumes that
population variances may be different, was used for the post hoc
comparisons. Using the union of the results obtained in the Brain-
Web and IBSR databases for comparison, SMHASS has a statistically
significant difference with respect to the others. Also, the difference
is statistically significant if the segmentation results in the Brain-
Web and IBSR databases are used together with the results obtained
with the default parameters in the SVE database. The difference is
not statistically significant with only the BSEv0.8b* method if all

the results for the SVE database are taken into account.

We compared the results of our method to those of recent meth-
ods in the literature that use the same publicly available databases.
In Park and Lee (2009), a region growing algorithms is presented,

mable models. Performance was measured in three databases (BrainWeb, INSR and

ice, mean (SD) Sensitivity, mean (SD) Specificity, mean (SD)

941 (0.008) 0.975 (0.005) 0.985 (0.002)
950 (0.006) 0.990 (0.003) 0.985 (0.002)
009 (0.014) 0.015 (0.008) 0.001 (0.004)

841 (0.157) 0.764 (0.229) 0.998 (0.002)
950 (0.017) 0.992 (0.010) 0.985 (0.009)
109 (0.174) 0.227 (0.239) −0.013 (0.011)

912 (0.027) 0.841 (0.044) 1.000 (0.000)
972 (0.005) 0.987 (0.006) 0.992 (0.003)
060 (0.032) 0.146 (0.050) −0.008 (0.003)
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ig. 12. Comparison among different automatic segmentations of an image from the
re used (d). The HWA (b) also has a low specificity but its sensitivity is better, ob
hen Hartley’s parameters are used (e), does not exceed the BET performance (c). N

hich obtains better overall results than our SMHASS in the IBSR
atabase: Jaccard index (J) = 0.915 and Dice coefficient (�) = 0.955.
esides, its false negative rate (FNR = FN/(TP + FN + FP)) is 0.0620
nd false positive rate (FPR= FP/(TP + FN + FP)) is 0.0229. The FNR
nd FPR of our method in the IBSR is 0.0079 and 0.087, respectively.
herefore, this method has more FN and less FP than our SMHASS.
he above mentioned difference in the indices could be relativized
o some extent because, as stated by many authors, it is more
mportant to preserve the brain tissue instead of removing part
f the CSF. Another method that also uses the IBSR database is the
raph cuts skull stripping (GCUT) presented in Sadananthan et al.
2010), which obtains: J = 0.84 and � = 0.91. The Robust Learning-
ased Brain Extraction (ROBEX) system introduced in Iglesias et al.
2011) is evaluated using the SVE. The indices obtained by ROBEX
re: � = 96.6, Sensitivity = 95.6, Specificity = 97.7. Another method

valuated in the SVE database is the brain extraction based on
onlocal segmentation technique (BeaST) (Eskildsen et al., 2012),
btaining � = 0.9781. The performance of this method is better than
hat of SMHASS. Nevertheless an advantage of our method is that
atabase (a). The BSE method has the lowest specificity when the default parameters
g better overall performance. Although the performance of BSE rises considerably
heless, our SMHASS method (f) has better performance than BET.

no templates are required. The multi-atlas propagation and seg-
mentation (MAPS) technique (Leung et al., 2011) is also evaluated
in the SVE database, obtaining J = 0.955. The performance of the
above mentioned method is also better than that of SMHASS, nev-
ertheless requires a template library and a long computational time
(19 h). Compared to the above mentioned methods, SMHASS pro-
vides an accurate segmentation without removing brain tissue.
On the other hand, the methods with a higher performance than
SMHASS, such as BeaST and MAPS, are based on comparisons with
template libraries and require a large amount of computation, and
obviously need suitable templates for the segmentation. Besides,
our method is mainly based on deformable models and only uses
a simple comparison with an atlas in the rough-segmentation.
Although the execution time is high in the current implementation
(Python), it should drop dramatically by implementing the method

in another language, which will make it faster than the aforemen-
tioned methods. There are other methods published with results on
non-public databases which can not be compared. Moreover, some
authors use different performance measures such as Haussdorff
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Fig. 13. Comparison among different automatic segmentations of an image of the BrainWeb database (b). (a) Shows the ground truth segmentation with a marked zoom
rectangular area. It can be seen that the HWA (c) is the method that leaves more non-brain tissue, mainly CSF. For this reason the HWA has the lowest specificity among
the methods. The HWA has the highest sensitivity, because most of the brain tissue is included in the segmentation. Nevertheless, its overall performance (Jaccard and Dice)
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s lower than that of the other methods. The best performance was obtained by ou
artley’s parameters.

istance or mean symmetric surface-to-surface distance (Iglesias
t al., 2011).

Table 4 shows a comparison between the performance of
he rough-segmentation used as initialization of our method,

nd that obtained at the end of the refined segmentation by
eformable models. The largest improvement was achieved in the

BSR database with an increase of over 10% in the Jaccard and
ice index, followed by the improvement in the SVE database. The
ASS method (g), which also has the highest specificity, followed by the BSE using

increase of the sensitivity index in comparison to that of the speci-
ficity shows that the improvement is mainly because the reduction
of false negatives (FN). The high amount of FN (low sensitivity) in
the rough-segmentation is because it is designed to remove most

non-brain tissue, even if part of the brain tissue is also removed.
The remotion of non-brain tissue provides an optimal starting point
for the segmentation by deformable models. Besides, the removed
brain tissue is recovered in the segmentation by deformable
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Fig. 14. Projections of the FN provided by the SVE website. The FN projections of the
different methods best segmentation results are shown (see Table 3). The methods
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Fig. 15. Projections of the FP provided by the SVE website. The FP projections for
best segmentation results obtained by the different methods are shown (see Table 3).
hown in this figure are: HWA3*, BSEv0.8b*, BSEv0.8b*, and our SMHASS method.
he color scale represents the sum of the FN along the direction orthogonal to the
gure plane.

odels. These two steps are used in our method because our
egmentation by deformable models has a high performance but
equires a good initialization; and the rough-segmentation pro-
ides a good starting point to the deformable model.

The computational time of SMHASS for an image was about
7 min.3 Some of the best new methods have reported hours in
omputational time (Leung et al., 2011). Nonetheless, our imple-
entation was carried out in an interpreted language (Python) that

s slow but suitable for fast prototype development. We performed
simple test of gray level comparisons and computations between
ixels, similar to those used in our method, to compare the compu-
ational time in Python and C++. The results of the aforementioned
est show that the computational time can be reduced about 300
imes if the implementation is in C++instead of Python. Therefore,
e estimate that the computational time can be reduced to less
han a minute with just migrating the code to C++. We are currently
orking on the new implementation in C++. Moreover, the current

mplementation runs as a single thread but can be parallelized to

3 Our SMHASS method was implemented in Python language on a personal com-
uter with an Intel(R) Core (TM)-i7 CPU (2.67 GHz) and 3 GB of RAM. A version
f the implementation is freely available in the website of the PLOMO project:
ttp://liris.cnrs.fr/plomo/skullstripping.html.
The showed methods are: HWA3*, BSEv0.8b*, BSEv0.8b*, and our SMHASS method.
The color scale represents the sum of the FP along the direction orthogonal to the
figure plane.

take advantage of the nowadays common multi-core CPUs. Even
the GPU (De Fontes et al., 2010; Courtecuisse et al., 2010) can be
used to drastically decrease the computational time.

5. Conclusions

Skull stripping methods are designed to eliminate non-brain tis-
sue in magnetic resonance (MR) brain images. This is a fundamental
step for enabling processing of brain MR images. The aim of this
study was to develop a new skull stripping method based on two
steps: the first one a rough-segmentation that employs thresholds
and morphological operators; and the second step a segmentation
based on deformable models. The rough-segmentation is built on
previous work but incorporates new estimations of the optimal
thresholds, based on comparisons with a brain atlas. This rough-
segmentation makes it possible to find an optimal initialization
for the deformable model, providing robustness to the segmen-
tation. The deformable model is based on a simplex mesh, and
its deformation is guided by local image gray levels, and a gray

level statistical model constructed on the rough-segmentation. The
deformation is based on 3 steps which make it possible to use the
rough-segmentation to find the optimal starting point for the defor-
mation; to recover brain tissue ignored in the rough-segmentation

http://liris.cnrs.fr/plomo/skullstripping.html
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nd; to decrease the amount of CSF and sub-arachnoid space in the
egmentation. The result of these steps is an accurate segmenta-
ion that minimizes the amount of non-brain tissue, without losing
rain parenchyma.

Our Simplex Mesh and Histogram Analysis Skull Stripping,
MHASS, method was tested using international MRI databases
vailable on the web: the BrainWeb, the Internet Brain Segmen-
ation Repository (IBSR), and the Segmentation Validation Engine
SVE). We compared our method’s performance to that of three
f the most popular methods in the literature: the Brain Extrac-
ion Tool (BET), the Brain Surface Extractor (BSE), and the Hybrid

atershed Algorithm (HWA). Performance was measured using
he Jaccard index (J) and Dice coefficient (�). Our method achieved
he best performance and the difference was statistically signifi-
ant (p < 0.05): J = 0.904 and � = 0.950, on BrainWeb; J = 0.905 and
= 0.950 on IBSR; J = 0.946 and � = 0.972 on SVE. The obtained seg-
entations were accurate along all databases, and the performance

ariance was low. Incorporating this skull stripping method in a
uture method to segment the whole brain anatomy is an expecta-
ion for future work.
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