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In the last decades, several auto-
mated visual inspection (AVI) systems
have been developed and applied to a
wide range of products, including wood
(Pham and Alcock 2003). AVI is an auto-
mated form of quality control normally
achieved using a camera connected to a
computer. The AVI framework includes
five processing stages: image acquisi-
tion, image enhancement, image segmen-
tation, feature extraction, and classifica-
tion. A review of AVI research applied to
the inspection of wood boards concluded
that segmentation is often the most time-
consuming part of the process, and that it
usually does not locate all defects prop-
erly. It is necessary to develop new seg-
mentation algorithms that can separate
all defects from clear wood in the image
(Pham and Alcock 1998).

Although most AVI systems for wood
have been developed for gray-scale im-

ages (Pham and Alcock 1996,1998),
some researchers have used color im-
ages (Conners et al. 1985, Brunner et al.
1992, Kline et al. 1998, Funck et al.
2003, Estévez et al. 2003a). Color image
segmentation algorithms can be classi-
fied into one or more of the following
techniques (Cheng et al. 2001): histo-
gram thresholding, feature space clus-
tering, region-based approaches, edge
detection, fuzzy approaches, neural net-
works, physics-based approaches, and
hybrid techniques that combine any of

the techniques just mentioned. Most
color segmentation approaches are based
on gray level (monochrome) segmenta-
tion approaches, which can be directly
applied to each component of a color
space (Cheng et al. 2001). The selection
of a color space is application depend-
ent. Brunner et al. (1992) found that, for
images of Douglas-fir veneer, there is
no advantage in transforming the red,
green, and blue (RGB) color space into
other color spaces. The authors con-
cluded that only two color parameters,

52 APRIL  2005

The authors are, respectively, Research Assistant and Associate Professors, Dept. of Elec-
trical Eng., Univ. of Chile, Casilla 412-3, Santiago, Chile. The authors would like to thank Re-
search Assistant Rodrigo Flores for his valuable help with the experiments and software im-
plementation. This research was supported by Conicyt-Chile under grant Fondecyt 1030924.
This paper was received for publication in September 2003. Article No. 9760.
✳Forest Products Society Member.
©Forest Products Society 2005.

Forest Prod. J. 55(4):52-58.

Abstract
A crucial step in developing automated visual inspection systems for wood boards is image segmentation, which aims to achieve a

high defect detection rate with a low false positive rate (clear wood areas identified as defect areas). In this study, a neurofuzzy color
image segmentation method for wood surface defect detection is proposed. The method is called fuzzy min-max neural network for
imagesegmentation (FMMIS).TheFMMISmethodgrowsboxes fromasetofpixelscalledseeds, to find theminimumboundedrect-
angle (MBR) for each defect present in the wood board image. An automatic method to select seeds from defective regions as starting
points to FMMIS is also presented. The FMMIS method was applied to a set of 900 images of radiata pine boards, which included
samples from the following 10 categories of defects: birdseye and freckle, bark and pitch pockets, wane, splits, blue stain, stain, pith,
dead knots, live knots, and holes. The FMMIS achieved a defect detection rate of 95 percent on the test set, with only 6 percent of false
positives. To measure the quality of segmentation, the area recognition rate (ARR) criterion was computed using as a reference the
manually placed MBR for each defect. The ARR achieved 94.4 percent on the test set. Also a relative index was used to compare the
quality of segmentation between FMMIS and the segmentation module of a previously developed system, based on histogram
thresholding. The results show that FMMIS allows us to obtain significant improvements compared with previous work.



one measuring brightness and another
chromaticity, are required to separate
defects from clear wood. Funck et al.
(2003) compared the performances of
nine segmentation algorithms on images
of Douglas-fir veneer. An algorithm that
combined clustering with region-grow-
ing techniques achieved the best overall
performance.

In AVI systems for wood there is usu-
ally a trade-off between the defect detec-
tion rate (true positives) and the rate of
clear wood areas detected as defects (false
positives). Kline et al. (1998) found that
actual clear wood areas classified as de-
fects were the primary cause for yield
reduction of their prototype color AVI
system. The image scanning system was
very sensitive to the natural variations in
the color of clear wood of red oak, and
tended to identify defects that were not
truly present. Pham and Alcock (1996)
developed a system for segmenting gray-
scale images of birch wood. The system
consisted of four modules: global adap-
tive thresholding, multi-level threshold-
ing, row-by-row adaptive thresholding,
and vertical profiling. The results on 75
images showed a defect detection rate of
93 percent. The system had difficulty
distinguishing some sound knots and
hard rot from clear wood areas. In a sub-
sequent work, a post-processing step was
performed after segmentation to remove
false objects and combine areas that rep-
resent the same defect, using fuzzy logic
and neural network techniques (Pham
and Alcock 2003). In another study, a
low-cost color AVI system for classi-
fication of defects in radiata pine boards
was developed (Estévez et al. 2003a).
The image segmentation was performed
by histogram-based multiple threshold-
ing. The defect detection rate achieved
was 95 percent. This high rate of defect
detection was achieved at the expense of
increasing the rate of false-positives,
i.e., dark grain lines segmented as de-
fects. One conclusion of that study was
the need to enhance the segmentation
process.

Artificial neural networks have been
widely applied to pattern recognition
tasks. A survey on image processing with
neural networks reported several types
of neural networks that have been ap-
plied to perform image segmentation:
multilayer perceptron, self-organizing
maps, Hopfield networks, probabilistic
neural networks, radial basis function
networks, cellular neural networks, con-
straint satisfaction networks, and

RAM-based neural networks (Egmont-
Petersen et al. 2002). On the other hand,
fuzzy set theory provides a mechanism
to represent and manipulate uncertainty
and ambiguity. Fuzzy operators, proper-
ties, mathematics, and inference rules
(if-then rules) have found considerable
applications in image segmentation
(Cheng et al. 2001). The flexibility of
fuzzy sets and the computational effi-
ciency of neural networks have caused a
great amount of interest in the combina-
tion of both techniques. Among the neuro-
fuzzy approaches, Simpson (1993) intro-
duced the fuzzy min-max (FMM) clus-
tering neural network, where clusters are
represented as hyperboxes in the n-di-
mensional pattern space. The fuzzy set
hyperboxes are defined by pairs of min-
max points, and a membership function
is defined with respect to these points.
The learning algorithm is a three-step ex-
pansion-contraction process, which has
the ability to learn online and in a single
pass through the data.

In this work, we propose a color im-
age segmentation method based on
FMM neural networks. The new method
is called fuzzy min-max neural network
for image segmentation (FMMIS). The
first step of the method is the automatic
selection of starting pixels from defec-
tive regions. With this aim, a histogram-
based study of the color intensities from
defective regions and grain line regions
of radiata pine boards is performed. In
the second step of the method, rectangu-
lar boxes are grown from the initial set
of pixels with the objective of enclosing
the defective regions. The performance
of the FMMIS method on the test set of
pine board images is measured using the
following criteria: confusion matrix, area
recognition rate (ARR), average process-
ing time, and segmentation quality. The
relative ultimate measurement accuracy
(RUMA) index (Zhang 1996) is used to
compare the quality of segmentation be-
tween FMMIS and the segmentation mo-
dule of our previously developed AVI
system (Estévez et al. 2003a). Prelimi-
nary work on FMMIS applied to the seg-
mentation of knots has been reported
elsewhere (Estévez et al. 2003b).

Methods

Wood image database
A data set of 900 color images (320 by

240 pixels) of radiata pine (Pinus
radiata D. Don) boards was drawn from
the University of Chile database

(Estévez et al. 2003a). The imaging sys-
tem consisted of a National Television
Standards Committee (NTSC) color
video camera, a frame grabber from Im-
aging Technology, and a 333-MHz PC
Pentium-II, 128 MB RAM. Lighting was
a mixture of frontal halogen lights and
fluorescent lamps (see Estévez et al.
2003a for details). Spatial resolution was
1.46 pixels/mm in both cross-board and
down-board directions. Each image was
manually labeled according to its largest
defect, into one of the following 10 de-
fect categories: birdseye and freckle, bark
and pitch pockets, wane, splits, stain,
blue stain, pith, dead knots, live knots,
and holes. The data set, which corre-
sponded to 90 images per category, was
partitioned into two sets: 600 images for
the training set and 300 images for the
test set. The training set was used to ad-
just the FMMIS parameters. Also, 200
images from the training set were used
to make the histogram-based color in-
tensity study with samples taken from
defective regions and clear wood re-
gions. The performances of FMMIS and
the segmentation module of our previ-
ous AVI system were measured on the
test set.

Color of defects
and grain lines

Experiments were carried out with 200
images of radiata pine boards, 20 for
each defect category. For each image,
samples were taken from windows of
pixels belonging to defective regions and
to grain lines. This was performed by
manually placing the windows inside
the regions of interest, from where the
color intensity levels for the three RGB
color channels were recorded. The win-
dow size used depended on the size of
the object being analyzed. Once the
sampling of the 20 boards for each cate-
gory was finished, histograms were built
for the intensities of pixels from defec-
tive regions and grain line areas, for each
category and for each color channel. Be-
cause variable window sizes were used,
the numbers of pixels from defective
and grain line areas were not necessarily
equal in each category. To make the his-
tograms, the number of samples per cat-
egory was chosen as the minimum value
between the number of pixels from de-
fects and the number of pixels from grain
lines. The aim of this study was to obtain
a range of color intensities that allow us
to select pixels from defective regions,
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as starting points of the proposed seg-
mentation method.

Neurofuzzy color image
segmentation method

The first step of the proposed seg-
mentation method is to automatically lo-
cate initial pixels, called seeds, within
the defective regions. Once the seeds are
determined, they become the input data
for FMMIS. The seed locations in the
image are determined by an adaptive
thresholding method, which is based on
certain features of each wood board im-
age. This allows us to take into account
the great variability of the wood’s color.
The features used are the mean color in-
tensity value, µ, and the minimum color
intensity value, η, of the image for each
channel (t = R, G, B).

For each color channel of the board
image, a cumulative histogram, H, is
constructed as follows:
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where n is the intensity level (0 ≤ n ≤
255) and ht is the histogram of the board
image for channel t. Since ht (i) = 0 for
all i < ηt, the sum in Equation [1] starts
from i = �t. From the cumulative histo-
gram an adaptive intensity level is de-
fined as:

θ α µt tH= ( ) [2]

where 0 ≤ α ≤ 1 is a user-defined value.
Typically α ≤ 0.01, since only a few pix-
els belonging to defective regions are
searched for as seeds, and usually the
defect areas cover less than 10 percent of
the image. If the color intensities were
constrained to be between ηt and θ t ,
only the darker defects would be de-
tected. But usually there are several de-
fects on the same board, some brighter
than others. To take into account this
fact, an extra color intensity level, ξt , is
defined as:
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For each board, the seeds are taken
from the following intensity range:
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where λt is a user-defined threshold for
each channel. The rationale underlying
this parameter is that when all the de-
fects in a board image are not too dark,

the addition of an extra color intensity
level (ξt) is not useful, and it may con-
tribute to the detection of grain lines.

The second step is the FMMIS meth-
od, which places hyperboxes defined in
the 2D geometric space by pairs of min-
max points for each spatial coordinate of
the image (rectangular boxes in the case
of 2D images). Each hyperbox fuzzy set
has an associated membership function
that describes the degree of membership
(spatial proximity) of a given pixel to a
hyperbox in the [0,1] interval. Seeds
contained within a hyperbox have full
membership value, and the more sepa-
rated they are from the min-max bounds
of the hyperbox, the lower their mem-
bership values. When an input pattern
(new seed) is presented, the hyperbox
with the highest degree of membership
is found and expanded to enclose the in-
put pattern. The hyperbox expansion is
accepted only if the region contained by
the expanded hyperbox is similar in color
to the region enclosed by the hyperbox
before the expansion.

A fuzzy color homogeneity criterion
is defined to compare the color similar-
ity of two hyperboxes. This is based on a
Z-function (Cheng et al. 2002) of the
Euclidean distance of the mean color in-
tensities of the two hyperboxes, mea-
sured in the RGB space. A user-defined
parameter τ is introduced to control the
required degree of color homogeneity
for expanding hyperboxes. If the expan-
sion criterion is not satisfied, a new
hyperbox is created. An overlap test and
a hyperbox contraction process are used
to eliminate any overlaps formed during
the construction of the hyperboxes. Af-
ter a single pass through all the seeds,
there is a fine-tuning hyperbox expan-
sion process, which allows the hyperbox
to grow if necessary until the defect is
completely enclosed. The last stage is a
hyperbox fusion process that merges
hyperboxes belonging to the same de-
fect, to ensure that each defect present in
the image is contained by only one hyper-
box. A membership function is used to
measure the degree of spatial proximity
and color similarity between two
hyperboxes. If the membership value is
greater than a given threshold D, the
hyperboxes are merged. For more details
about the FMMIS method, refer to the re-
search by Ruz (2003).

Experimental procedure
The parameters of the adaptive thres-

holding method for the location of seeds

as well as the parameters of FMMIS
were adjusted using the training set. The
seeds were ordered in a vector by tra-
versing the image from left to right, top
to bottom. When more than 100 seeds
per image were obtained, this number
was cut in half by taking one every other
component in the seed vector. To esti-
mate the best value of the threshold α in
Equation [2], a receiver operating char-
acteristic (ROC) curve was made. On an
ROC graph, the true positive rate is plot-
ted in the y-axis and the false positive
rate is plotted in the x-axis, depicting the
tradeoff between both rates. Values of α
generating a true positive (defect detec-
tion) rate higher than 90 percent and a
false positive (clear wood areas identi-
fied as defect areas) rate lower than 10
percent were searched for.

The parameters of FMMIS were set to
(see Ruz 2003 for details) γ = 1 (sensi-
tivity parameter), τ = 0.99 (degree of
color homogeneity used in hyperbox ex-
pansion), uR = 195 (fine-tuning hyper-
box expansion parameter), and D = 0.95
(hyperbox merging parameter). Only the
red channel was used in the hyperbox
fine-tuning expansion process since it
performed best at separating defects
from clear wood. This finding agrees
with that of Brunner et al. (1992), who
concluded that knots required only a
measure of brightness for image analy-
sis (red in RGB space). To avoid noisy
inputs, isolated seeds having no neigh-
boring seeds within a window of 21 × 21
pixels were eliminated.

The performance of the FMMIS was
measured on the test set using the fol-
lowing criteria: confusion matrix, ARR,
RUMA index of segmentation quality,
and average processing time. For each of
the 10 defect categories, a confusion
matrix was built as shown in Table 1.
The true positives (TP) are defined as
the number of defects contained by
hyperboxes, i.e., the number of defects
correctly detected. The false negatives
(FN) are the number of defects that are
not contained by hyperboxes, i.e., the
number of non-detected defects. The
false positives (FP) are the number of
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Table 1. — Confusion matrix.a

Object\hyperbox Contained Not contained

Defect TP FN

Grain line FP TN
aTP = true positives; FN = false negatives; FP =

false positives; TN = true negatives.



grain  lines  contained  by  hyperboxes,
i.e., the number of grain lines detected
as defects. The true negatives (TN) are
the number of grain lines not contained
by hyperboxes, i.e., the number of non-
detected grain lines. The ARR was used
to measure the segmentation quality of
the FMMIS. As a reference area, the
minimum bounding rectangle (MBR)
was manually adjusted for each defect
present in the test set. The MBR is the
smallest rectangle that contains all the
pixels of a defect. Because most defects
are not rectangular, the MBR contains
all the pixels that belong to the defect
plus some clear wood pixels. The ARR
criterion takes into account that not nec-
essarily all the pixels contained by a
hyperbox belong to defective regions.
This criterion allows us to compare the
area of the hyperbox built automatically
by FMMIS with the area of the manually
placed MBR. The ARR is defined as:

ARR
ukp

tp

unp

tp
= − −








 ×1 100% [5]

where tp is the total number of pixels in
the MBR; ukp is the number of unrecog-
nized defect pixels, i.e., the absolute dif-
ference between the defect pixels con-
tained within the MBR and the defect
pixels contained within the hyperbox
determined by the FMMIS method; unp
is the number of unrecognized non-de-
fective pixels, i.e., the absolute differ-
ence between the clear wood pixels con-
tained within the MBR and the clear
wood pixels contained within the hyper-
box determined by the FMMIS method.

The performances of FMMIS and the
segmentation module of our previously
developed AVI system (Estévez et al.
2003a) were compared on the test set.
Confusion matrices like the one shown
in Table 1 were constructed for both
methods, but using the criterion of
whether a defect was detected or not. To
compare the segmentation quality of both
methods, the RUMA index for the per-
cent area of the defect correctly seg-
mented, was computed as:

RUMA
R S

RA

A A

A

=
−

×100% [6]

where RA denotes the area obtained
from a reference image and SA denotes
the area measured on the segmented im-
age. The values of RUMAA are inversely
proportional to the quality of the seg-
mentation results: the smaller the val-

ues, the better the quality regarding the
feature used. The three described mea-
sures were made considering the 10
largest objects for each image. This con-
straint only affects the birdseye and
freckle category that usually have more
than 10 objects per image.

The seeded region growing (SRG) al-
gorithm proposed by Adams and Bischof
(1994) was implemented for comparison
purposes. For the wood application, an
adaptive thresholding method similar to
that described by Equations [1] and [2]
was used to locate seeds automatically.

The neurofuzzy color image segmen-
tation method and the SRG algorithm
were implemented in MATLAB 6.5 on a
PC Pentium IV, 2.4 GHz, 512 MB RAM.
The average processing time was mea-
sured for each image, starting from the
seed selection process and following with
the respective segmentation method.

Results
As mentioned in the methods section,

200 images (20 per defect category)
from the training set were used to per-
form a histogram-based color intensity
study. Figure 1 shows the resulting his-
tograms for the red channel, where the
dark lines represent the histograms gen-
erated from clear wood pixels and the
light lines represent the histograms gen-
erated from defect pixels. The histo-
grams overlap for most defect catego-

ries, except for the split and hole catego-
ries. The categories that showed greater
overlap with clear wood were birdseye
and freckle (Fig. 1a), blue stain (Fig.
1b), stain (Fig. 1c), and live knots (Fig.
1d). In general, the blue channel pre-
sented more overlapping than the other
channels. For this reason, only the red
and green channels were used to select
starting seeds for the FMMIS method.
The parameters of the adaptive thres-
holding method were set to λR = 175 and
λG = 130 in Equation [4]. To set the
threshold α in Equation [2], the ROC
curve shown in Figure 2 was plotted, us-
ing five different values of α. The best
tradeoff was obtained for α = 0.007,
reaching a TP rate of 95 percent and an
FP rate of 5 percent on a subset of the
training set. On average, the number of
selected seeds per image was about 100,
i.e., 0.1 percent of the total number of
pixels of an image.

Figure 3 illustrates the step-by-step
application of FMMIS to an image of a
radiata pine board. Figure 3a shows an
image that contains a dead knot as a
principal object and two pockets as sec-
ondary defects in the upper left part of
the image. Figure 3b shows the seeds as
white dots located within the defective
regions. Figure 3c shows three rectangu-
lar boxes determined by the FMMIS
method, after a single pass through all the
seeds. Figure 3d shows the three boxes
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Figure 1. — Histograms from defective regions (light line) and clear wood regions
(dark line) for the red channel. The samples correspond to wood boards containing
the following defect categories: a) birdseye and freckle; b) blue stain; c) stain; and d)
live knots.



after the fine-tuning expansion process.
Figure 4 shows the rectangular boxes
created by FMMIS on image samples
of each of the 10 defect categories con-
sidered.

The FMMIS global and per category
performances on the test set are summa-
rized in Table 2. The TP rate achieved
95 percent of the total defects present in
the test set with 10 defect categories,
while the FP rate corresponded to 6 per-
cent of the total grain lines present in the
test set. The global area recognition rate
achieved was 94.4 percent. The best re-
sults were obtained for the pocket, pith,
dead knot, live knot, and hole catego-
ries, which presented a TP rate higher
than 95 percent, an FP rate lower than 5
percent, and an ARR higher than 95 per-

cent. The wane category achieved a per-
fect TP rate and ARR rate but an FP rate
of 10.2 percent. Likewise, the split cate-
gory achieved a TP rate of 100 percent,
an ARR of 90.6 percent, and an FP level
of 11.8 percent. The worst performances
were obtained for the birdseye and
freckle, stain, and blue stain categories,
where the TP rate was lower than 95 per-
cent, the FP rate was higher than 5 per-
cent, and the ARR was lower than 95
percent. In contrast, the global perfor-
mance of the segmentation module of
our previous AVI system, which uses his-
togram-based multiple thresholding, ob-
tained a TP rate of 94 percent with an FP
rate of 32 percent on the same test set.
None of the categories achieved an FP
rate lower than 10 percent.

The RUMAA criterion was computed
to compare the segmentation quality of
the FMMIS and the segmentation mod-
ule of our previous AVI system. Figure
5 shows the mean value of the RUMAA
index, using 30 images per category.
For all defect categories, the mean val-
ues of the RUMAA index for FMMIS
were smaller (better) than those for the
segmentation module of our previous
AVI system. A paired t-test showed that
there are significant statistical differ-
ences for all categories (p-value lower
than 0.05), except for the birdseye and
freckle and split categories (p-value
higher than 0.05).

The last column of Table 2 shows the
average processing time for FMMIS, in-
cluding the seed selection process,
which reached 0.11±0.04 seconds per
image. In comparison, the SRG algo-
rithm of Adams and Bischof (1994) ob-
tained an average processing time per
image of 3.03±1.30 seconds, on the same
test set, i.e., FMMIS was 27 times faster
than SRG. Moreover, the SRG algo-
rithm achieved a poor segmentation on
the birdseye, stain, blue stain, and split
categories (TP < 50%). Only the pocket,
wane, and pith categories achieved a TP
rate higher than 90 percent and an FP
rate lower than 6 percent.

Discussion
The segmentation module of the AVI

system previously developed obtained a
TP rate of 94 percent and an FP rate of
32 percent. The last figure should be
compared with the FP rate of 6 percent
achieved by FMMIS. This FP rate may
be further reduced by filtering out boxes
containing only clear wood regions. The
RUMAA criterion showed that FMMIS
segmented a larger proportion of the ac-
tual area of the defect than the segmen-
tation module of our previous AVI sys-
tem, for all categories except for the
birdseye and freckle and split categories,
which are statistically indistinguishable
concerning the area of the segmented ob-
jects. The better segmentation quality of
FMMIS is due to its ability to segment
the complete area of the object instead
of performing partial segmentation.

Table 2 shows that the worst FP rate
performance corresponded to the split
category. This is due to the constraint to
grow boxes along the main reference
system, while many splits are diagonal.
For diagonal splits, the boxes would
cover a large non-defective region, as
can be seen in Figure 4g. A possible
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Figure 2. — ROC curve plotting TP rate versus FP rate for five different values of the
parameter α, as shown on the curve. The best tradeoff is obtained for α = 0.007.

Figure 3. — Example showing the step-by-step application of the proposed color im-
age segmentation method: a) original image containing a dead knot at the center
and two pockets at the upper left; b) seeds are shown as white dots located within
the defective region; c) three boxes created by FMMIS after a single pass through all
seeds; and d) the same three boxes after the fine-tuning expansion process.



way of dealing with this problem is to
add a box rotation stage, to allow a better
fit of the box over objects that do not fol-
low the orientation of the main reference
system.

The last column of Table 2 shows the
average processing time per category.
The slowest segmentation times corre-
sponded to the stain, blue stain, wane,
and pith categories. This can be ex-
plained because the FMMIS processing
time depends on the number of seeds as
well as the number of boxes created.
Sample boards of the stain, blue stain,
wane, and pith categories have typically
the largest defects, and therefore tend to
contain more seeds. Boards of the birds-
eye category have typically the greatest
number of defects per image.

The processing time of the seed selec-
tion method was about one-fifth of the
total processing time. Within FMMIS,
the slowest stage corresponded to the
merging process, which depends on the
number of hyperboxes formed. The av-
erage processing time could be reduced
in an order of magnitude by using C pro-
gramming instead of Matlab.

Like region-growing image segmen-
tation techniques, the FMMIS method
uses a few pixels as seeds to grow re-
gions. Nevertheless, FMMIS uses only
the seeds to grow rectangular boxes, and
therefore can easily expand a box to in-
clude a new seed when a color homoge-
neity criterion is satisfied. In contrast,
the region-growing methods grow by ap-
pending to each seed all neighboring pix-
els that have similar properties to the
seed. As a consequence, FMMIS should
be faster than most region-growing meth-
ods, in particular we found that FMMIS
is over 25 times faster than the SRG al-
gorithm in the segmentation of wood
defects.

The FMMIS method allows us to find
the MBR of each defect present in the
wood board images. This can be viewed
as a coarse segmentation, aimed at
quickly locating all the defect areas, and
separating them from clear wood areas.
Since the FMMIS algorithm is very fast
(more than 25 times faster than an alter-
native region-growing method), there is
room for a post-processing step if neces-
sary. A fine-tuning segmentation stage
could be added to find all the pixels
within the MBRs that actually belong to
defect areas. However, for many appli-
cations, the coarse segmentation stage
may be enough, since features extracted
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Table 2. — Performance of FMMIS on the test set.

Defect category TP FN FP TN TP FP ARR Time

- - - - - - - - (%) - - - - - - - (sec.)

Birdseye and freckle 219 20 12 99 91.6 10.8 90.3 0.12

Bark and pitch pockets 34 0 3 112 100.0 2.6 95.3 0.07

Wane 34 0 11 97 100.0 10.2 100.0 0.15

Splits 40 0 18 134 100.0 11.8 90.6 0.11

Stain 40 5 9 103 88.9 8.0 84.9 0.21

Blue stain 46 5 5 65 90.2 7.1 88.2 0.13

Pith 30 0 6 137 100.0 4.2 99.8 0.13

Dead knots 37 1 3 176 97.4 1.7 99.3 0.08

Live knots 43 0 6 140 100.0 4.1 97.1 0.08

Holes 42 0 0 158 100.0 0.0 98.3 0.06

Global (10 categories) 565 31 73 1221 95 6 94.4 0.11 ± 0.04

Figure 4. — Boxes determined by FMMIS on image samples for each of the 10 de-
fect categories: a) birdseye; b) blue stain; c) pocket; d) pith; e) wane; f) dead knot; g)
split; h) live knot; i) stain; and j) hole.



from the MBRs could be directly used to
classify the segmented objects into one
of the 10 defect categories. Once thede-
fects have been located and identified,
the cutting process at the rough mill has
to follow the main reference system, as
the edges of the MBRs do.

Conclusions
The proposed color image segmenta-

tion method achieved a high defect de-
tection rate (95%) with a low false posi-
tive rate (6%) on images of radiata pine
boards. A key part of the method is the
automatic selection of seeds belonging
to defective regions, which is based on
adaptive thresholding. The seed selection
procedure may be easily adjusted to other
kinds of wood, with different illumina-
tion systems, by analyzing the histo-
grams of wood samples.

The results show that significant im-
provements have been obtained, in com-
parison with previous work, regarding
the isolation of defects from clear wood
and the quality of the segmentation of
defects on images of radiata pine boards.
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Figure 5. — Comparison of the quality of segmentation between FMMIS and the
segmentation module of the AVI system previously developed (Estévez et al.
2003a), under the average RUMA index for the area of the segmented objects. Let-
ters on the x-axis correspond to one of the 10 defect categories: birdseye (be),
pocket (po), wane (wa), split (sp), stain (st), blue stain (bs), pith (pi), dead knot (dk),
live knot (lk), and hole (ho).




