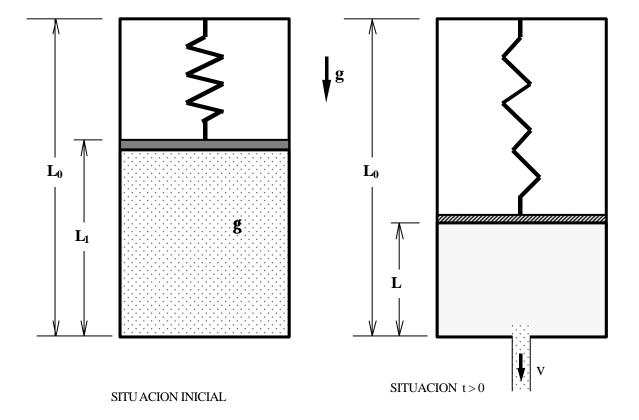
CI31A - MECANICA DE FLUIDOS

Semestre Otoño 2002

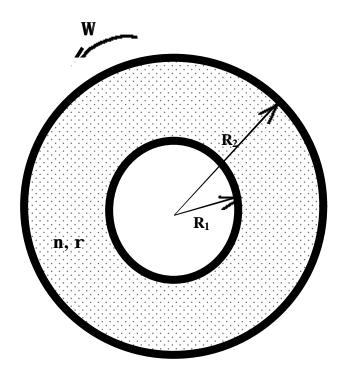
Prof: Aldo Tamburrino Prof. Auxiliares: Alberto de la Fuente, Santiago Montserrat


CONTROL 2

Problema 1.- Un recipiente tiene una pared de peso despreciable que separa a un líquido de peso específico γ. La pared puede deslizar debido a la acción de un resorte, como se muestra en la figura.

El largo natural del resorte es L_0 e inicialmente se encuentra comprimido una longitud L_1 . Si en t=0 se abre un agujero de área S en el fondo del estanque, se pide:

- a.- Determinar el volumen de agua en el estanque en función del tiempo ($t \ge 0$)
- b.- Determinar el caudal que sale del recipiente en función del tiempo
- c.- El tiempo que demora en vaciarse en estanque

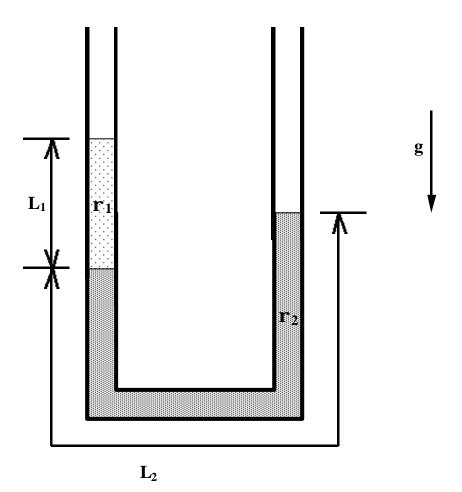

Considerar que la velocidad de salida del líquido está dada por $v = \sqrt{2g\left(L + \frac{p}{\gamma}\right)}$, donde p es la presión que ejerce el resorte sobre el líquido. El área transversal del recipiente es A y la constante elástica del resorte es k.

[©] Prohibida la reproducción sin la autorización de la División de Recursos Hídricos y Medio Ambiente, Departamento de Ingeniería Civil, Universidad de Chile

UNIVERSIDAD DE CHILE - DEPARTAMENTO DE INGENIERIA CIVIL - DIVISION RECURSOS HIDRICOS Y MEDIOAMBIENTE

Problema 2.- Entre dos tubos concéntricos de radios R_i y R_2 existe un fluido de viscosidad cinemática ν y densidad ρ . Determinar el torque T que debe aplicarse al tubo exterior para que gire con velocidad angular Ω constante mientras el tubo interior se mantiene fijo. Considerar los tubos de largo unitario.

[©] Prohibida la reproducción sin la autorización de la División de Recursos Hídricos y Medio Ambiente, Departamento de Ingeniería Civil, Universidad de Chile


UNIVERSIDAD DE CHILE - DEPARTAMENTO DE INGENIERIA CIVIL - DIVISION RECURSOS HIDRICOS Y MEDIOAMBIENTE

Problema 3.- Un tubo en U de diámetro D contiene dos líquidos como se muestra en la figura. Si se desplaza la superficie libre de su posición de equilibrio y se deja que el líquido oscile libremente, se pide:

a.- Determinar la ecuación del movimiento

b..- Si $\rho_1 < \rho_2$, ¿qué frecuencia de oscilación es mayor: la de un tubo que contiene sólo un líquido de densidad ρ_2 con volumen $1/\pi D^2(L_1+L_2)$, o la de un tubo con dos líquidos como el de la figura?

Considere que el movimiento del fluido es irrotacional. El líquido de densidad ρ_1 está siempre en la rama vertical izquierda.

[©] Prohibida la reproducción sin la autorización de la División de Recursos Hídricos y Medio Ambiente, Departamento de Ingeniería Civil, Universidad de Chile