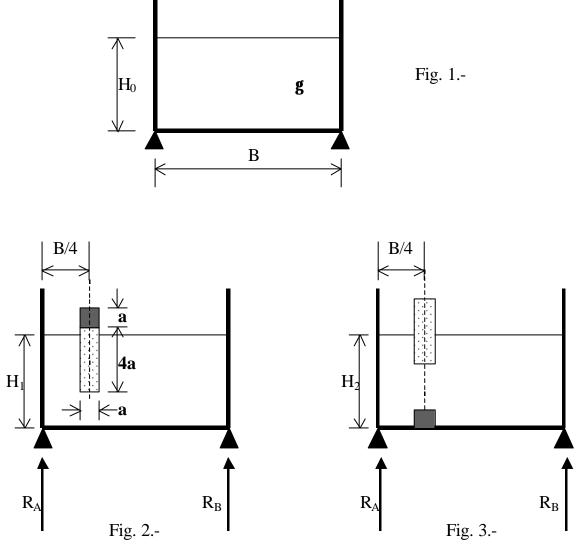
## UNIVERSIDAD DE CHILE - DEPARTAMENTO DE INGENIERIA CIVIL - DIVISION RECURSOS HIDRICOS Y MEDIOAMBIENTE

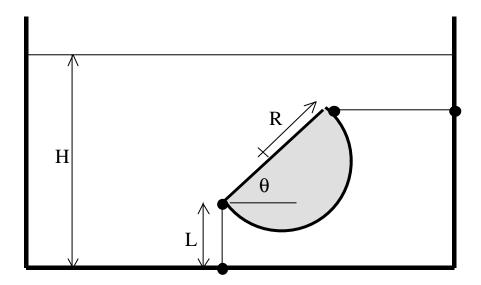

**Problema 2.-** Se tiene un estanque de sección cuadrada, de lado B, con agua hasta una altura H<sub>0</sub>. El estanque se encuentra simplemente apoyado a lo largo de dos de sus aristas, como se muestra en la Fig. 1.

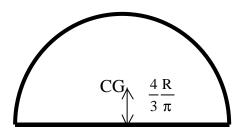
Se introduce un bloque de pluma-vit de base cuadrada (lado a) y altura 4a y sobre él un cubo de aluminio de lado a, en la posición indicada en la Fig. 2. Considerando que el peso específico de la pluma-vit es  $\gamma_{P-V}=0.2~\gamma$  y que el peso específico del aluminio es  $\gamma_{AL}=2.7~\gamma$ , siendo  $\gamma$  el peso específico del agua, se pide:

- a.- La nueva altura del agua en el estanque (H<sub>1</sub>)
- b.- La reacción en los apoyos, R<sub>A</sub> y R<sub>B</sub>.

El bloque de aluminio se cae, quedando los bloques como se muestra en la Fig. 3. Para esta situación, se pide:

- c.- La nueva altura de agua en el estanque (H<sub>2</sub>)
- d.- La nueva reacción en los apoyos, RA y RB.





<sup>©</sup> Prohibida la reproducción sin la autorización de la División de Recursos Hídricos y Medio Ambiente, Departamento de Ingeniería Civil, Universidad de Chile

## UNIVERSIDAD DE CHILE - DEPARTAMENTO DE INGENIERIA CIVIL - DIVISION RECURSOS HIDRICOS Y MEDIOAMBIENTE

**Problema 3.-** Un semicilindro de peso específico  $\gamma_C$ , radio R y profundidad unitaria se encuentra sumergido en un estanque con u líquido de peso específico  $\gamma$ , como se muestra en la figura. Determinar:

- a.- La fuerza neta horizontal y vertical actuando sobre la superficie curva del semicilindro
- b.- La tensión de los cables.





<sup>©</sup> Prohibida la reproducción sin la autorización de la División de Recursos Hídricos y Medio Ambiente, Departamento de Ingeniería Civil, Universidad de Chile