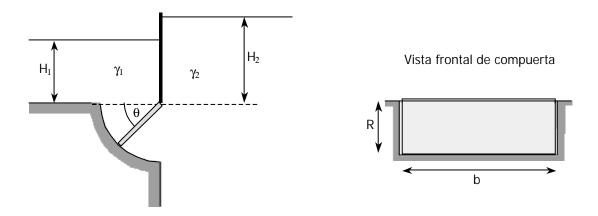
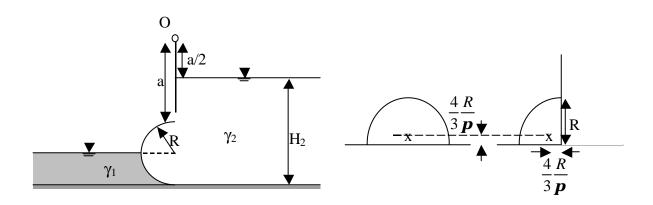

Sem. Primavera 2001 Aux.: Héctor Maulén Carlos Reiher

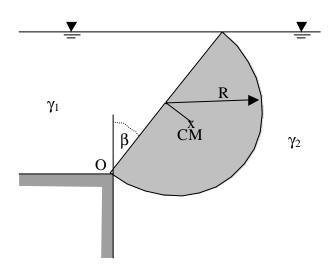

AUXILIAR 3 25 de Septiembre del 2001

- 1. En la figura se esquematiza un cuerpo hueco de sección triangular, que se encuentra flotando en un líquido de peso específico γ . Sobre él cae un chorro que descarga un caudal Q del mismo fluido, debido al cual el cuerpo comienza a hundirse. Se pide:
 - a) Determinar el estado de equilibrio inicial
 - b) Determinar después de cuanto tiempo de caída del chorro el cuerpo se hunde


Datos: L = 20 [cm] b = 1 [m] $\gamma_c = 1.5 \text{ [ton-f/m}^3\text{]}$ Q = 2 [lt/min] $\beta = 60^\circ$ e = 1 [cm] $\gamma = 1.0 \text{ [ton-f/m}^3\text{]}$

2. Para el sistema de dos estanques esquematizado en la figura, se pide encontrar una ecuación para el ángulo θ de equilibrio de la compuerta, la cual es de forma rectangular y peso W (densidad homogénea), despreciando el efecto del roce entre ella y el muro.

3. ¿Cuál debe ser el peso específico γ_1 para que la compuerta de la figura no gire? La compuerta está rotulada en O y no hay roce entre ellas y el suelo. La compuerta tiene un ancho de 1 m.



4. Para el sistema de la figura determinar el ángulo β de equilibrio de la compuerta semicilíndrica de peso W y longitud unitaria, articulada en O que separa los líquidos de pesos específicos γ_1 y γ_2 .

Datos:

R=1 [m]
$$\gamma_1 = 1.2$$
 [ton-f/m³] $\gamma_2 = 0.8$ [ton-f/m³] W=2 [T]

$$CM = \frac{4}{3} \frac{R}{\mathbf{p}}$$

