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1 Introduction

When studying fluids it is frequently the case that the construction of a
reasonable approximate theory becomes an elusive endeavor. The harder and
interesting these problems are the better it is to have exact results, coming
directly from the microscopic kinetics, both to test the existing theoretical
approaches and to gain insights to new ones. To progress in the formulation
of fluid dynamics it is desirable to be free from having a precise and realistic
description of a particular fluid. The latter is an interesting but different
problem.

Hydrodynamics is the main tool to describe fluids from the macroscopic
point of view in a wide variety of applications. The basic assumption of hy-
drodynamics is that changes in a fluid take place smoothly or slowly so that
the system can be considered to be in a state of local thermodynamic equi-
librium. When the condition of smooth/slow variation is not fully satisfied
one can expect the fluid to deviate from the predictions of hydrodynamic
calculations. For example, if X is a hydrodynamic field (e.g., temperature)
it can be said that X varies smoothly if ξ = ℓ|∇X |/X is negligible, where ℓ
is the mean free path of the particles of the fluid or that X varies slowly if
ξ = τ ∂X

∂t is negligible where τ is the mean free flight time. The use of kinetic
theory becomes essential if ξ cannot be taken to be zero.

Kinetic theory, on the other hand, gives a more fundamental theory but
it has been well developed only for rather dilute systems. The first steps in
the formulation of kinetic theory reduces the direct hamiltonian dynamics
first to Liouville’s equation and then to an infinite set of integrodifferential
equations, known as the BBGKY hierarchy. Since there is no systematic way
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of applying something like perturbation theory to such system of equations,
their analysis has been, and still remains, a patchwork of ingenious techniques
that are designed to cover special parameter regimes.

Special mentions deserve Boltzmann’s and Enskog’s equations. The for-
mer can be validated in the so called Boltzmann-Grad limit of low density
and finite mean free path, Grad (1958). Enskog’s equation has a larger do-
main of validity and it was originally written for a gas of hard spheres but it
can be extended to other cases. For example when the hard spheres interact
via a square well potential the collision term on the right hand side of the
kinetic equation becomes rather involved but it can be worked out explicitly.

Once one of these kinetic equations is stated the challenge is to find ap-
proximate solutions. Perhaps the most widely used method is that of Chap-
man and Enskog. This method is based on a perturbative expansion about
equilibrium where the small parameters are the rth-order spatial derivatives
of the density, hydrodynamic velocity and temperature fields. The zeroth or-
der solution is Maxwell’s equilibrium distribution, the first order gives Euler’s
ideal hydrodynamics and the second order provides a version of Navier Stokes
equations with linear transport equations and explicit expressions for the
transport coefficients. The third order was derived by Burnett in 1935 and
will not concern us here.

In hydrodynamics the transport equations are part of the so called consti-
tutive equations in the sense that they are needed to make the hydrodynamic
equations a closed (self-contained) system of equations.

Harold Grad in 1958 presented a different way to construct approximate
solutions to Boltzmann’s (eventually Enskog’s) equation, Grad (1958). In his
approximate solution he does not expand in gradients of the first five mo-
menta of the velocity distribution (density n, hydrodynamic velocity v, and
temperature T ) as in the Chapman-Enskog method, but he rather uses a self-
consistent approach additionally involving higher momenta and no gradients
of them. In particular he works out in detail the case when the distribution
function f is written in terms of n, v and T and also the traceless and sym-
metric part of the pressure tensor, pij , and the heat flux vector q, which in
3D totals 13 momenta (8 momenta in 2D and 1+d(d+5)/2 in dimension d).
From this method nonlinear transport equations stem naturally.

Decades ago there was no way to separate the tests of new developments
in kinetic theory from the challenge to describe particular fluids. Presently it
is possible to get semi-experimental results from microscopic computational
simulations using molecular dynamic (MD) techniques in which the micro-
scopic interactions are part of the data and they are not bound to being
realistic.

These lectures give a partial view of the study of the behavior of simple
fluids from a microscopic point of view by means of kinetic theory. See Chap-
man, Cowling (1970), Hansen, McDonald (1986), Lifshitz, Pitaevskii (1993),
Résibois, de Leener (1977), Ferziger, Kaper (1972) combined with the meth-
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c molecular velocity
C peculiar velocity, c − v

f(r, c, t) distribution function
fG Grad’s distribution
fM Maxwell’s distribution
g(r) radial distribution function
H function of the density that appears in the equation of state
k themal conductivity
kB Boltzmann’s constant
ℓ mean free path
n local number density (number of particles per unit volume)
n̄ global number density, N/LXLY

N number of particle
p hydrostatic pressure
IP pressure tensor
Pij components of IP
q heat current

T (r) temperature field
v hydrodynamic velocity
vth thermal velocity

Table 1. Glossary of main latin symbols used in the text.

ods of microscopic computational simulations: Allen, Tildesley (1989), Cic-
cotti, Hoover (1986), Ciccotti, Frenkel, McDonald (1987) taking advantage
of recent efficient algorithms and strategies of molecular dynamics, Rapaport
(1980), Lubachevsky (1991), Maŕın, Risso, Cordero (1993), Cordero, Maŕın,
Risso (1995).

1.1 Background Generalities on Molecular Dynamics

Molecular Dynamics (MD), in the sense of these lectures, is a computer sim-
ulation technique which traces the microscopic Newtonian time evolution of
a systems of N classical particles in the phase space of all of them. In com-
bination with appropriate ensemble or time averaging, the technique gives a
solution to the Liouville equation without having to make any assumptions
concealed neither behind hydrodynamics nor in the standard formulation of
kinetic theory (Bolztmann’s, Enskog’s or other).

MD simulations offer us a unique opportunity to test every hypothesis
that has been made (or is going to be made) about the behavior of fluids.
Because of the intrinsic complexities of kinetic theory, MD simulations have
become an essential tool.
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α thermal expansion coefficient
χ Enskog collision factor
η shear viscosity
γ adimensional strain rate
Γ total collision rate, Nν/2
κ thermal diffusivity
λ Aspect ratio LX/LY

ν collision frequency
ρ mass density, m n
ρA local area density of a two dimensional gas
ρ̄A global area density of a two dimensional gas, σ2/4n
σ diameter of hard particles

Table 2. Glossary of main greek symbols used in the text.

Making stationary regime MD simulations will usually involve only a few
hundred particles and for this reason one has to be careful, because the
physics that takes place near the walls may play a non-negligible role. In
fact, the fraction of particles that – at any moment – are close to the walls is
O( 1√

N
), where N is the total number of particles in the numeric experiment.

It is perhaps interesting to recall that the many important and historical
findings were made (by Alder and Wainwright) with systems of about 100
particles mainly at equilibrium. Today many interesting findings involving
steady state hydrodynamics behavior are commonly made with systems of
about 2000 particles as in Mareschall et al.

The fundamental importance of MD simulations rests in the fact that
they provide essentially exact, quasiexperimental data on well defined mod-
els. As there is no uncertainty about the form of the interaction potential,
theoretical results can be tested unambiguously in a manner that is gener-
ally impossible with data obtained in experiments with real fluids. It is also
possible to obtain information on quantities of theoretical importance that
are not readily measurable in the laboratory.

1.2 Hard Particle Systems

Hard Disks. We shall often concentrate in simple bidimensional systems.
These systems will consist of N particles of mass m — either bare hard disks
or hard disks interacting with a square well potential. The system will be
inside a rectangular box of size LX × LZ , aspect ratio

λ = LX/LZ (1)
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Real
fluids

Expermients Simulations Theoretical
derivations

Theoretical
predictions

Experimental
results

Exact results
from models

Comparisons Comparisons

Models

Testing theoryTesting models

Fig. 1. Diagram adapted from Allen and Tildesley (1989). With realistic inter-
actions it is interesting to compare experiment and simulation results to test a
particular model. With any suitable interaction the comparison of the theoretical
predictions with the simulational results tests the theory itself. Much work is done
within the limits of the dashed line rectangular box above.

The bulk area density is

ρ̄A =
πNσ2

4LXLZ
(2)

where σ is the diameter of the hard core of the particles.
The interaction of the particles with the walls will be discussed in §1.3.

The equation of state of a system of hard disks has to have the form

p LXLZ = N H(ρA) kBT (3)

where ρA = ρA(r ) is the local area density. In general the dependence on T ,
on the right hand side, is not trivial, but when the interparticle interaction
does not introduce an energy scale a dimensional analysis shows that the
pressure has to be proportional to the temperature T . The function H(ρA)
is as much known as the virial coefficients for this system Kratky (1978)
[XX hay otra ref que agreg’o un coef]. A practical and simple approximate
expression (Henderson (1975), Barker, Henderson (1976)) is

H(ρA) =
1 +

ρ2

A

8

(1− ρA)2
(4)
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More accurate equations of state are found in Maeseo, Solana (1993).
The radial distribution function g(r) (defined later in §1.4) at contact

χ = g(σ+) is a function of the density,

χ(ρA) =
H − 1

2ρA

=
1− 7ρA

16

(1− ρA)2
(5)

and the specific heat coefficients are

cv =
kB

m
, cp =

kB

m
(1 + H(n)α T ) (6)

In the last expression α is the thermal expansion coefficient

α = − 1

n

(

∂T

∂n

)−1

p

=
H

T (nH)′
(7)

where the prime indicates derivative with respect to n.

A time scale to measure the relaxation time of a system comes from an
estimation of the thermal diffusion time accross the system. The temper-
ature diffusion equation is nkB∂T∂t = −∇ · q. Accepting Fourier’s law of
heat conduction: q = −k∇T , where k is the thermal conductivity, it is seen
that ∂T∂T = (k/nkB)∇2T , which implies a temperature diffusion time for a
system in L× L box:

tdiff =
n kB L2

k
=

m cp N

k

=
N kB

k
(8)

1.3 Characteristics of the Simulations and the Simulator

The Simulations. The type of simulations we deal with in the present lec-
tures have the following common characteristics.

– the only degrees of freedom of the particles are translational
– the collisions among particles are perfectly elastic, hence conserving mo-

mentum and energy
– the diameter of the hard core of the particles is σ: the energy potential

is infinite for r < σ
– the particles may additionally interact among themselves with a square

potential of depth −ǫ in the range σ < r < ασ, (α > 1). The parameter
α is the adimensional range of the interaction

– the interaction with the walls depends on the case under study. They
may be, for example,

o specular collisions (adiabatic slip walls)
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o thermal slip collisions (stress free boundary condition): the particles
bounce back conserving their tangential velocity while the normal
velocity is sorted out from a Maxwellian distribution characterized
by a given temperature T .

o thermal nonslip collisions: both components of the velocity are sorted
from a heat bath at temperature T and the sign of the tangential
component is randomly chosen.

o thermal nonslip moving wall: same as the thermal nonslip wall except
that a value v0 is added to the tangential velocity to simulate that
that wall is moving orthogonal to its normal.

o periodic walls: a particle that hits a wall reenters the system through
the opposite wall with the same velocity. In this case there can be
collisions between particles which are at different sides of a periodic
wall.

o etc

– the basic data to run a simulation are: the number of particles N , the
aspect ratio λ = LX/LZ of the rectangular box and the bulk area den-
sity ρ̄A defined in (2). Other data are needed in each specific class of
simulation.

To simulate a fluid one usually wants that the mean free path be signifi-
cantly smaller that the size of the box, otherwise boundary effects influence
the whole system. This condition implies N ≫ 1/ρ̄A. Further, if the simula-
tion is going to be compared with ideal gas results then, loosely speaking,
one may say that the mean free path has to be much larger than the size of
the particles implying that ρA ≪ 1.

For a gas of disks, the requirement that the equation of state deviates
by less than 5% from the ideal gas equation (H = 1) implies that the area
density satisfy ρ̄A ≤ 0.025. Additionally requiring that, for a system in a
L × L square box , the the mean free path satisfies ℓ/L ≤ 0.05 yields that
the number of particles has to be N ≥ 1570.

The Simulator. In the following we describe a strategy to make efficient
simulations of systems of several thousand particles interacting via a piece-
wise constant potential. A performance of several million collisions per hour is
perfectly attainable in present day standard workstations. These algorithms
are particularly appropriate for kinetic studies at a microscopic level in situ-
ations near or far from thermodynamic equilibrium.

In the case of piecewise constant potentials the particles move free of each
other except at discrete times when they suffer impulsive forces or events.
The evolution of each particle between events follows Newton’s equations of
motion with whatever external field (e.g., gravity) may exist but free from
interparticle interactions. The events take place whenever a particle hits one
of the steps of the potential energy function. Applications of this type of
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simulations are illustrative and inspiring since the beginning of molecular
dynamics till present days. The basic steps of a simulation of this type are
sketched in Fig. 2.

0a) An initial state is given, namely positions and velocities for
all particles and

0b) the list of all possible future events, or FEL (future event

list), is initialized.

1) The next event is determined from the FEL;
2) if necessary, positions and velocities are updated to the in-

stant of this event;
3) the collision rule that defines the model is applied to the

state of the particle(s) involved in the event;
4) new events have to be predicted for the particles that have

been involved in the present event;
5) the new predicted events are inserted (scheduled) into the

FEL and go back to step (1).

Fig. 2. Basic cycle in an event driven simulation.

A typical action at step 2 for particles moving in the presence of an
acceleration of gravity g could be

rk ←− rk + vkτk +
1

2
gτ2

k

vk ←− vk + gτk

where τk is the time interval between the previous event and the present one.
This type of dynamics is called event driven, because it proceeds by time

steps τk that are dictated by the dynamics itself instead of proceeding via
time steps δt predefined in the algorithm as it is done whenever continu-
ously varying potentials are used. The enormous advantage of event driven
simulations is that — because of their efficiency — it is possible to explore
significant parts of the evolution of the system.

One of the important bottlenecks of these simulations could be step (1)
unless the next event is determined through a carefully written algorithm.
A breakthrough in efficiency was given by Rapaport (Rapaport (1980)). A
different strategy which is efficient in a wider range of densities is found in
Maŕın, Risso, Cordero (1993).

The FEL is important because — as we have argued — these simulations
proceed jumping analytically from one collision (or event) to the next. And
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the next event is determined using a binary tree as part of the FELs structure.
But since predictions have to be updated as the simulation proceeds the
binary tree is not only called for to pickup the next event but also when new
information has to be inserted in it. This may be costly. In our strategy we
have been able to reduce the number of accesses to the binary tree to about
one access for every particle involved in each collision (Maŕın, Risso, Cordero
(1993)). We know of no other algorithm which can attain this performance.
Some improvements were introduced in Maŕın, Cordero (1995).

Cells and a new type of event. To determine the next event without risking
the possibility of a mistake it is apparently necessary to know first the times
when every possible collision would take place. This means particle-particle
as well as particle-wall events. There are O(N2) such times and they would
have to be compared to get the smallest one. In typical situations most of
the predicted events never happen since the particles involved change their
direction of movement at previous collisions. In this sense we could say that
many predicted events become invalidated.
Since the beginning of the history of
event driven simulations the conve-
nience of dividing the system in cells
was clear (Alder, Wainright (1959)).
A particle belongs to a cell if its
center is inside the cell. The lin-
ear size D of the cells is chosen so
that a particle cannot interact but
with particles which are in its own
cell or in the neighboring cells. For
example, in a bidimensional system
broken in square cells a typical cell
is surrounded by eight others. The
neighborhood of a particle k is the
cell where k is plus the set of neigh-
boring cells.

D

σ

A particle a belongs to
the cell where its center
is. The neighborhood of
a will usually contain 9
cells.

For hard disks of diameter σ, for example, the linear size D of a cell has to
satisfy, D > σ to make the previous concepts consistent.

A new type of event is introduced: crossing a cell wall. This event has
no physical meaning of course. Their occurrence does not alter the physical
evolution of the system but it can be realized that now there is no need to
predict events involving a particle i and objects (other particles or a wall)
beyond its neighborhood since there is at least one event involving i and an
object in its neighborhood prior to any event with objects outside it.

To make this point clear suppose the rare situation when the next physical
event involves the collision between two particles that are far beyond their
respective neighborhoods. From the algorithms point of view this event is
preceded by several cell wall crossings. Each one of these events — artifacts
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of the algorithm — implies that at step 4 above, new events are predicted for
one of these particles. After a sequence of cell wall crossings the two particles
will see each other and the actual collision will correctly be predicted.

Hence predictions for each particle i at step 4 are made only between
objects belonging to the neighborhood of i. After i suffers a collision all
predictions for it have to be renewed whereas if i makes a cell wall crossing
its neighborhood changes and new predictions are added: those involving i
and objects in the new cells belonging to the neighborhood of i.

Since each neighborhood contains a number of particles which is indepen-
dent of the size of the system, the total number of events that have to be
predicted for the whole system is O(N).

The five steps mentioned above have to suffer some minor obvious mod-
ifications because this new type of event is introduced. For example, if the
present event is a cell wall crossing there is no need to apply any collision
rule.

The future event list (FEL). To search for the next event efficiently one has
to keep future events in order. Binary search is a standard strategy, Knuth
(1973). For example when looking for a word in a dictionary we proceed
roughly as follows: we cut the dictionary in two equal halves, make a com-
parison to decide in which half is the target word, then break the chosen part
in two again and so forth. The search time is O(ln2 N) if there are N words
in the dictionary.

There are many variants of the strategy sketched above. Which strategy
should be chosen depends on other aspects of the problem. In the case of
our simulations three functions act on the FEL: (a) getting the next event;
(b) inserting new predicted events and (c) erasing invalidated events. Binary
trees in general allow for efficiently implementing the operations (a) and (b),
but erasing is not trivial and it may be time consuming. A careful assessment
of these problems and experimenting with some of the structures put forward
in the literature we chose, in Maŕın, Risso, Cordero (1993), the structure that
we pass to describe. It will be seen that with our algorithm there is no need
to make eliminations within the binary tree.

For each particle i is associated a single linked list Li containing the future
events Ei(x) predicted for particle i with an object x (another particle or a
wall). When an event Ei(k) is predicted for particle i at step 4, it is inserted
in the list Li and it is not inserted in the list Lk. Namely, each future event is
entered only once to the FEL. These Ei(x) are structured variables containing
the necessary information associated to the specific event. In particular they
contain the time when the event is scheduled to happen.

Each one of these N lists has a local minimum event, the event in the
list that has the lesser schedule time. These N local minima are the only
events that enter the binary tree. The determination of the local minimum
for particle i and its insertion into the binary tree is performed regardless of
the existence of other possible events Eℓ(i) within the FEL.
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The binary tree structure that we use is that of a complete binary tree
(Knuth (1973)) or CBT. It is a binary tree of K levels. At level 0 is the root,
at level 1 are its two children, at level n there are 2n nodes, children of the
nodes at the previous level. K is determined by the number N of particles:
2K−1 < N ≤ 2K , so that the lowest nodes (leaves) are exactly N and they
are partly at the incomplete level K and the rest at level K−1. Each particle
is associated to one and only one of these lowest nodes or leaves once and for
ever.
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Fig. 3. a) Complete binary tree (CBT) for 10 particles. The local minima times
are in parenthesis. b) The CBT upgraded after the local minimum of particle 4 was
changed to the value 0.18.

Since only the local minima enter the CBT, each particle-label in it has
associated the time at which the corresponding local minimum is scheduled
to happen. The logic of the CBT is the same one used in many sports tour-
naments: to each competitor there is associated a fixed leaf node. The name
of the winner of each individual match (i.e. comparison of the associated
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times) is transcribed to the parent node. The same rule is recursively applied
upwards in the tree and in this way each internal node has the label of the
particle with lesser time of its two children. The label of the absolute winner
reaches the root of the tree. This is the particle whose local minimum should
be the next event. During the simulation the form of the CBT and the labels
of the leaves remain unaltered, while the labels at the internal nodes change
dynamically.

When a particle i suffers a collision, its list Li is erased and replaced by the
list of new predictions involving i. This is done at step 4. On the contrary, if
particle i crosses a cell wall, then its neighborhood changes. Events involving
i with other objects in the new cells are added to the list Li.

In the two situations described in the previous paragraphs it is necessary
to reobtain the local minimum for i which is then inserted into the binary
tree replacing the old one. Matches are performed along the natural path
from leaf i towards the root of the CBT. It is easy to check that O(ln N)
matches are performed as part of step 5.

At this point it is necessary to clarify that only the labels i identifying the
particles associated to the local minima enter the binary tree and not the full
structures Ei(x). Inserting and deleting is efficient because it is an operation
over the lists Li. In fact we have established in Maŕın, Risso, Cordero (1993)
that the cost of picking the next event and scheduling n new events for each
particle are O(1) and O(n − 1 + lnN) respectively. That is, we have been
able to reduce the number of accesses to the binary tree to about one access
for every particle involved in each collision. As we said before, we know of no
other algorithm which can attain this performance.

In the case of continuos potentials a totally different strategy has to be
followed. Typically they are based on Verlet’s algorithm. A quite recent ref-
erence from which the literature can be traced back is Glikman et al (1996)

Measurements. The system has to be relaxed before starting measure-
ments in a study of stationary regimes.

To make observations during the simulations we have divided the system
in cells to observe its behavior. These cells must not be confused with the
cells of the central algorithm. The routines make a careful balance of mass,
momentum and energy in each cell (these are densities) and what comes in or
out across each wall of every cell (integrated fluxes). The measured quantities
are then averaged in time in every cell or wall depending on whether they
are densities or fluxes.

Nomenclature: We distinguish a flux vector J (which could also be called
a current density) from an integrated flux across a surface S, Φ =

∫

J · dS.
But when no confusion is possible the word flux is used to mean either a flux
vector or an integrated flux.
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Measuring densities. In principle this means evaluating

ϕ̄ =
1

τ

∫ t0+τ

t0

ϕdt (9)

during the simulation. Since our simulations are driven by discrete events
these averages are in practice evaluated in the form

ϕ̄ =
1

τ

∑

k

∫ tk

tk−1

ϕdt (10)

where the tk are a subset of the event times that we shall call the interesting
events associated to ϕ. To understand the idea of an interesting event we give
two examples.

To determine the density in a cell A we want to average the number of
particles in A. With this aim the only interesting events are those corre-
sponding to particles crossing from one cell to the next. No collision event
is interesting in this case. The integrals appearing in (10) trivially reduce to
mk−1(tk − tk−1).

To determine the average kinetic energy in every cell, in the case of a
system of bare hard disks, all events are interesting except for the collisions
that occur between particles belonging to the same cell.

Measuring fluxes. To get an integrated flux, Φw =
∫

w J · dS, across a cell
walls w it is necessary to keep track of every exchange, per unit time, of
mass, momentum and energy across the wall w. The instantaneous flux of a
quantity ϕ at the time tk is given by ϕ(tk) δ(t−tk), where ϕ is the magnitude
of the transfered property. Averaging in time yields

Φw(ϕ) =
1

τ

∫ τ

t−τ

ϕ(tk) δ(t− tk) dt =
1

τ

∑

k

ϕ(tk) (11)

These exchanges can occur simply because a particle crosses from one cell
to the next contributing to the kinematic transport, or they occur because
there is a collision involving particles which are in different cells (exchanging
momentum, for example) contributing to collisional transport. The simulation
can keep separate track of the kinetic and collisional contributions of every
flux vector being studied.
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Special care has to be taken when the
exchange ϕ(tk) occurs between two par-
ticles that belong to cells which only
share a corner as A and D in the fig-
ure. This is a problem because fluxes
need to be defined through walls and
not corners. In the figure we represent
the collision of two particles belonging
to diagonally neighboring cells A and
D.

.

A

B

C

D

Collision between two
particles that belong to
cells that share only a
corner.

1.4 The Radial Distribution Function

For completeness sake we have included this section where tha radial distgri-
bution function and Enskog’s collision factor χ are defined.

In equilibrium statistical mechanichs it is standard to define distribution

functions ρ
(ν)
N (r1, ..rν) normalized to

∫

ρ
(ν)
N (r1, ..rν)dr1..drν =

N !

(N − ν)!
(12)

of which 1
N ρ

(1)
N (r) is the probability density to find a particle about the

position r. Similarly 2
N(N−1)ρ

(2)
N (r, r′) is the probability density of having

one particle about r and another about r′. From these first two functions the
pair correlation function is defined as

g
(2)
N (r1, r2) =

ρ
(2)
N (r1, r2)

ρ
(1)
N (r1) ρ

(1)
N (r2)

(13)

For an isotropic fluid this last function depends only on the magnitud
of the relative position vector r = |r1 − r2|. In such case the function g(r)
is known as the radial distribution function. It can be seen that for large
r the function g tends to 1 + 1

N . The radial distribution function has a
typical oscilating form and it can be found in many textbooks on statistical
mechanics.

For hard spheres of diamter σ the value of g at contact, namely g(σ+) is
called the Enskog collision factor χ,

χ = g(σ+) (14)

and it depends on the density of the system and therefore on position. If the
potential is less trivial χ depends on the temperature as well. This factor χ
will appeare in many expressions starting from §2.
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In in kinetic theory one encounters integrals of the form

I =

∫ ∞

0

φ′(r)g(r)F (r)mdr (15)

for which it is often useful to define the auxiliary function

y(r) = e−βφ g(r) (16)

where β = 1/kBT and φ is the interparticle potencial, for then the above
integral can be transformed to

I =

∫ ∞

0

φ′ e−βφ g(r)F (r) dr

= − 1

β

∫ ∞

0

g(r)F (r)
d

dr
e−βφ dr (17)

but if the potential φ(r) is a hard sphere potential (zero or infinity), then
the exponential in the integrand is a step function and its derivative is a
delta-function δ(r − σ). Hence I can be writtten as

I = −kBT χ F (σ) (18)

1.5 Problems

The best way to write good programs is to write straightforward routines
without any attempt to be clever. Never mind if it is slow and uses lots of
memory. Once you have checked that it works as it is supposed to work do
not touch it again. If you want to improve it work over a copy with a different
name.

1. Write a program for the 1D movement of two dot particles of masses m1

and m2 respectivelly, moving in a straight line under the effect of gravity
g. They have perfectly elastic collisions among themself and particle 1
hits the floor elastically as well. Normalize you variables so that the total
energy of the system is E = 1 and R = m2/m1. Plot x2 against v2 every
time particle 1 hits the floor. Notice that these points are always within
a parabola. Use, for example, R = 3. Different initial conditions may lead
to different graphs. Carefully explore the graphs for a wide class of initial
conditions.

2. Extend the previous program for N hard rods of length a, unit mass,
moving inside the box: [x = 0, x = L] and without gravity. Take N = 20,
N a/L = 0.75 and make a time average of the local density within every
interval L/100 long. Also determine the average local density relative to
the position of a particle up to 4a away from it. These densities have a
structure. The reason for this is that the probability of having a particle
in a given position depends on the positions of the others. This is the
basic idea of correlations in position. To write the measurement routines
take into consideration what was said under Measuremets in §1.2.
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3. Consider just one particle moving in a straight line under de effect of
gravity, g. The floor moves following z(t) = A cos(ωt) and the particle
bounces back from the floor with velocity v′ = (1 + η)ż − ηv where
0 < η < 1 is the restitution coeefficient and v is the velocity with which
the particle hits the floor. Besides η the other important parameter is

G = Aω2

g . For every value of G take many different initial conditions and
see whether asymptotically the particle looses all its energy and sticks
to the floor or continues bouncing for ever. For a fixed value of η (e.g.,
η = 0.6) plot against G all the possible values of v′ when the asymptotic
regime is a bouncing particle. You will discover a complex structure,
interprete it.

4. Write a program for the evolution of a 2D system of hard disks of diameter
σ. To be able write the future event list of times when any two disks a
and b will hit each other define from the positions and velocities at time
t0 the quantities r = ra − rb, v = va − vb and b = r · v. The two disks
will hit each other at time t1 if ∆ = b2 − v2(r2 − σ2) is positive,

t1 = t0 −
b +
√

∆

v2
(19)

and t1 > t0. Otherwise set t1 =∞. For the rest use the scheme describen
in Fig.2.

2 Primer on Kinetic Theory

2.1 The One Particle Distribution Function

Consider a fluid composed of N unstructured particles. The one particle
state space Γ1 will be described with either position and momentum (r,p) or
position and velocity (r, c). This is a six dimensional space. Divide the space
in small cells labeled by ξ with volume ∆. Considering many macroscopically
equal replicas of the system, call N (ξ, t) the expected number of particles
to be found in cell ξ at time t. For any reasonable fluid these numbers will
decrease exponentially as the velocity coordinates increase. If the cells ∆ are
sufficiently small these occupation numbers, normalized to ∆ through,

f(ξ, t) =
N (ξ, t)

∆
(20)

partly describe the system in great detail. In the limit of very small cells we
get a distribution function f(r, c, t) normalized to the number density n(r, t),

∫

Γ1

f(r, c, t) d3c = n(r, t)

∫

n(r, t)d3r = N (21)
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Even though f gives much information about the system it is far from
giving a complete description of it. It does not describe, for example, the
correlations that usually exist in a fluid as those describen in §1.4. Formally

f(r, c, t) d3r d3c (22)

gives the number of particles expected about the point (r, c ) of Γ1 at a given
instant t. The distribution f is useful to evaluate averages of one particle
quantities. The average is a macroscopic quantity 〈ϕ〉 (r, t):

〈ϕ〉 (r, t) =
1

n(r, t)

∫

ϕ(r, c, t) f(r, c, t) d3c (23)

In this way one defines the hydrodynamic velocity v(r, t) and the peculiar
velocity C(r, t)

v(r, t) =
1

n(r, t)

∫

c f(r, c, t) d3c , C(r, t) = c− v(r, t) (24)

X 〈X〉 name

c v(r, t) hydrodynamic velocity

1
2
C2 uK(r, t) kinetic energy per unit mass

ρCiCj (IPK)ij kinetic part of the pressure tensor

1
2
ρ C2C qK kinetic part of the heat flux vector

Table 3. First momenta of the distribution function

For a gas at equilibrium in d dimensions the distribution function is

fM(r, c, t) = n(r, t)

(

m

2π kB T (r, t)

)d/2

e−mC(r,t)2/2kBT (r,t) (25)

but in general the distribution function f deviates from fM and we will see
examples where this deviation has interesting measurable implications.
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From the notion of f it follows, for example, the hystogram of the number
of particles with rapidity about C =≡ |C| is proportional to Cd−1 fM. A 2D
case at equilibrium is seen in Fig. 4.
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f(

c)

c

N = 24000     area density = 0.16    T=1  

’velocity distr’

Fig. 4. Hystogram of the number of particles having rapidity between C and C+dC
in a 2D system at equilibrium. In the present case the figure corresponds to a
system of 24000 hard disks and area density 0.16 simulated in a personal computer.
Starting with a relaxed system, the figure correspondes to an average over 60 million
collisions.

Formally we will often identify the temperature field T (r, t) as it is under-
stood from quasiequilibrium statistical mechanics: it is related to uK through

uK(r, t) ≡
〈

1

2
C2

〉

=
d

2m
kBT (r, t) (26)

In general the momenta of f(r, c, t) define interesting physical quantities,
as in table 3. Since these momenta are local averages – in the sense that r is
kept fixed – they can be thought of as densities.

2.2 Mean Free Path

A textbook illustration of the use of the notion behind (22) let us see how to
make a rough estimate of the collision frequency in a gas of spheres of diam-
eter σ. Consider a point (r, c1) of Γ1. There are f(r, c1, t) d3r d3c1 particles
about it and let us think of them as the target. Particles that will collide with
this target in the interval (t, t + dt) and having velocity about c2 have to be
at t inside a cylinder with section π σ2 and length |c2 − c1| dt. The number
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of particles about c2 inside this cylinder is π σ2 |c2−c1| dt f(r, c2, t) d3c2. We
are evaluating both distributions at the same point because we are assuming
that the mean free path is much larger than σ. For simplicity sake’s some-
times it is assumed that the two probabilities are independent, but they are
not. As a first approximation Enskog realized that it is necessary to add a
corrective factor which, in a reasonable approximation, is the Enskog factor
χ(r), namely, the radial distribution function at contact described in §1.4.
Hence, the expected number of collisions per unit time and volume is

π σ2 χ(r)

∫

f(r, c1, t) f(r, c2, t) |c2 − c1| d3c1 d3c2 (27)

and the collision frequency ν per particle is then

ν =
π σ2

n(r, t)
χ(r)

∫

f(r, c1, t) f(r, c2, t) |c2 − c1| d3c1 d3c2 (28)

The mean time between collisions is τ = ν−1 and the mean free path is

ℓ = τ vth (29)

where vth = 〈|c |〉 is the thermal velocity.

dimension vth ℓ

2

√

π kBT

2m

1

2
√

2 χn σ
=

π σ

8
√

2χ ρA

3 2

√

2kBT

π m

1√
2χ n π σ2

=
π σ

6
√

2χ ρV

d

√

2kBT

m

Γ ( d+1
2

)

Γ ( d
2
)

Γ ( d+1
2

)√
2χ n σd−1 π(d−1)/2

Table 4. Approximate expressions for the thermal velocity and mean free path for
a gas of hard spheres in diferent dimensions when the distribution is Maxwellian.

The total collision rate for a system of N particles is

Γ =
N

2
ν =

N

2

vth

ℓ
(30)
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and, in case of local thermodynamic equilibrium can be calculated with the
expressions in Tab.4

The total number of collisons in one thermal diffusion time is Ndiff =
Gamma tdiff which, for a dilute gas turns out to be

Ndiff = 2 N2χ ρA (31)

Since the computational time for every collison in O(ln N) running a system
of hard disks for one diffusion time takes a CPU time O(N2 lnN) putting a
stringent cost for simulating large systems.

Dar valores del mundo real para ℓ, ν etc. XX

2.3 On Fluxes and Flux Vectors

Balance equations connect flux vectors J with densities. The flux vector as-
sociated to a microscopic quantity ϕ(r, c, t) can be defined with respect to
an absolute frame of reference or with respect to the frame that moves with
the hydrodynamic velocity v(r, t). The latter is a more interesting quantity
but both are trivially related. The kinetic contribution to the flux vector
associated to a quantity ϕ in the co-moving frame is

J(K)
ϕ (r, t) =

∫

ϕ(r, c, t)f(r, c, t)C(r, t) d3c (32)

In a one componet fluid there is no co-moving mass flux. The kinetic
contribution to the momentum flux vector is obtained choosing ϕ = mCi

and defining a tensorial quantity that was already mentioned in table 3,

IPK(r, t) = m

∫

CC f(r, c, t) d3c (33)

For gases usually all flux vectors which are not of kinetic origin can be
neglected, and therefore assume, for example, that IP = IPK. The hydrostatic
pressure is

p =
1

3
Tr IP (34)

hence the ideal gas equation of state is satisfied,

p = n kBT (35)

The flux vector of the kinetic energy (choosing ϕ = m
2 C2) also defines a

quantity that we already know

qK =
m

2

∫

C2 C f(r, c, t), d3c (36)

The total macroscopic fluxes have further contributions. Consider, for
example, an imaginary surface element d2S cutting the fluid. Whenever a
particle crosses that surface element there is a kinetic contribution to some
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fluxes. Parenthetically, we say that a particle crosses a surface when its center
does so.

If two particles — coming from opposite sides of the surface element d2S

— hit each other and then continue their flight without crossing d2S there
is a contribution to the fluxes, but it is no longer a kinetic contribution but
rather a collisional one. It may also happen that two bound particles cross
d2

S.
In that case there is a contribution to
the potential energy flux. It is seen then,
that fluxes have contributions which
can be either of kinetic origin or due
to the interactions. In the case of the
energy flux (the heat flux) the interac-
tion implies two contributions: one due
to collisions and one that occurs when
there are bound particles. In gases at
normal pressure the kinetic transport
dominates with no competition. Hence
they behave as “ideal gases”. In dense
gases and liquids the different contribu-
tions compete and in solids the kinetic
transport is negligible.

d S
2

Collisional transport through
a surface element d2S.

The concept of a heat flux vector is perhaps intuitive but the physical idea
behind the components of IP is less so. A careful analysis shows that Pii is
the force per unit area in the direction i exerted over the plane perpendicular
to the direction i. For this reason the Pii are called normal pressures. A
non diagonal term Pij is a shear tension in the sense that it represents the
force per unit area in the direction i exerted over the plane perpendicular
to the direction j. The vector (Pi1, Pi2, Pi3) is the net force per unit area
perpendicular to direction i.

Mean Free Path Estimates Let us illustrate the evaluation of a momen-
tum flux vector using intuitive but rough argumets based on the notion of
mean free path. Consider a gas between to parallel plates perpendicular to the
direction ẑ. The upper plate moves with velocity v0x̂ and the lower one moves
with velocity −v0x̂. If v0 is small enough the system stabilizes in a regime
characterized by a hydrodynamic velocity field v = (vx(z), 0, 0). There is, in
particular, a flux of px in the direction ẑ, namely Pxz does not vanish.

To evaluate (IPK)xz = m
∫

CxCz f d3C we will make several simplify-
ing assumptions. Consider the flux accross an imaginary surface S at z =
constant and assume that a particle that crosses S with its velocity forming
an angle α with the normal had its last collision at a distance ℓ from the
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α

Fig. 5. If the top and bottom walls of a gas container are moved in opposite direc-
tions a strain rate ∂vx/∂z is established which triggers a momentum flux. At right
a particle crossing an imaginary horizontal surface with a velocity forming an angle
α with the normal.

crossing point, namely at height z′ = z + ℓ cosα. If it comes from above the
range for α is (0, π

2 ) while if it comes from below it is (π
2 , π).

The contribution to the flux from above or below the surface is then

Cx(z′) = Cx(z) + ℓ cosα
∂Cx

∂z

= Cx(z)− ℓ cosα
∂vx

∂z

and the integral to be evaluated is

IPK =

∫

Cz

(

Cx(z)− ℓ cosα
∂vx

∂z

)

f d3C

= −ℓ
∂vx

∂z

∫

Cz cosα f d3C

= −ℓ
∂vx

∂z

∫

C2
z

C
f d3C

= −η
∂vx

∂z
(37)

which corresponds to Newton’s law of viscosity with a shear viscosity coeffi-
cient

η3d ≈
2

3σ2

√

m kB T

π3
(38)

This is a rough result estimated via these mean free path arguments. To get
(38) the distribution was assumed to be the Maxwellian fM given in (25).

In the same fashion one can study the case of a gas between to parallel
plates at different temperature. In this case there is a regime with a heat flux
vector perpendicular to the plates. Making similar simplifying assumptions
the result is

qz = −k
∂T

∂z
Fourier’s law (39)
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where the thermal conductivity k, in this rather crude picture, turns out to
be

k = cv η (40)

and cv = 3kB/2m.
When more subtle techniques are used to derive the transport coefficients

the results are different by factors which are O(1). For example, the lowest
order result using the Chapman-Enskog method for d = 2 or 3 are

ηd =
2 + d

2d+1 σd−1

√

mkBT

π
(41)

kd =
d (d + 2)2 kB

2d+2 σd−1

√

kBT

mπ
(42)

Note that both coefficients, η and k, have the form of a constant times√
T . This is a well known property of transport coefficients for low density

gases.

2.4 Application, Thermal Slip: I

Let us consider a gas in a box such that two opposite walls (that we conven-
tionally call top and bottom as there is no gravity) have different temperature:
Tb and Tt respectively and Tb > Tt. If the box were infinitely wide the gas
would stabilize to a homogeneous temperature profile T (z). To simplify let us
assume that the lateral walls have precisely that temperature profile. It will
be seen that the gas spontaneously slips parallel to the lateral walls towards
the hotter zone, Ibsen, Soto, Cordero (1995). Later on we will be able to
quantify this movement and compare the theoretical predictions with simu-
lational results. It will be seen that the important adimensional parameter
for the effect to be noticeable is ℓ|∇T | / T .

The phenomenon is basically the following. Because there is a heat flux
q accross the gas (q parallel to ẑ) the distribution function f(r, c, t) is
anisotropic. The gas particles hitting a point P , at height z, of a lateral
wall are coming from this anisotropic distribution f and, in particular, the
mass flux approaching P and forming and angle α with the normal at P (see
Fig.6) has an intensity that depends on α in a non trivial way.

Once the particles hit the wall at P they get in contact with a heat bath at
temperature T (z) and the velocity distribution of the out-coming flux (from
the wall point P ) should be nearly Maxwellian. For simplicity sake it will be
assumed that this out-coming flux is exactly Maxwellian and hence isotropic.

Since we will compare the theoretical predictions with results obtained
with 2D simulations, the derivation too is made for a 2D system. A rough
estimate of the mass flux incoming to the wall forming an angle between α
and α + dα with the normal is

dJ(incoming) = m n(z) vth(α)

(

cosα
− sin α

)

dα
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T top

T bottom

α
z

Fig. 6. At left a schematic representation of the system of particles in a square box
with temperature Tt ant the top and Tb at the bottom. At right a particle hitting
the right wall with velocity c forming an angle α with the normal to the wall.

dJz = −
√

2m p
sin α

√

kBT (α)
(43)

where we have made use of the expression for vth given in table 4 and that
the gas satisfies the ideal gas equation of state p = nkBT . In a gas with
a temperature gradient neither the density n nor the temperature T are
uniform but the pressure is uniform. What is implicit above is the simplifying
hypothesis that all the particles that hit the wall at P had their last collision
at a distance ℓ from P . Since they come forming an angle α with the normal
they come from a height z′ = z + ℓ sin α and at that height the temperature
is what we have called T (α) in (43). It follows then that

T (α) = T (z) + ℓ sin α
dT

dz
(44)

and hence
1

√

T (α)
=

1
√

T (z)

(

1− ℓ sin α

2T (z)

dT

dz

)

(45)

The contributions to the vertical flux from α and −α do not cancel but
rather give

dJz(α) + dJz(−α) ∝
√

m p sin2 α

T

dT

dz
(46)

The net mass flux is obtained integrating over α obtaining that it is propor-
tional to

p√
kBT

ℓ

T

dT

dz
(47)

Dividing this expression by the mass density ρ = m n yields the velocity of
the gas in contact with the lateral wall

vz ∝
ℓ

T

dT

dz
vth (48)
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Noticing that ℓ ∝ 1/(n kBT ), vth ∝
√

kBT and that the Fourier law of heat
conductivity (q = −k∇T ) implies that dT/dz ∝ q/

√
kBT it is concluded that

vz ∝ q/(n kBT ), namely

vz ∝
q

p
(49)

Analyzing the signs with care shows that the gas is pushed tangential to the
wall in the direction opposite to the direction of the heat flux. This sign is
derived in §2.7.

As seen from (48) this thermal slip is noticeable if the characteristic length
associated to the temperature variation: T/|∇T | is not much larger than
the mean free path ℓ which requires either that the density be low or the
temperature gradient be large or both. But there is no restriction regarding
the size of the box, it can be arbitrarily larger than the mean free path.

Thermal slip is a boundary condition that has to be imposed to the hy-
drodynamic equations to study gases in boxes with walls having large tem-
perature gradients parallel to them.

2.5 Boltzmann’s Equation

Studying a statistical systems of unstructured particles satisfying a Hamil-
tonian dynamics it is possible to justify that the equation for the one particle
distribution function f(r, c, t), in the case of low density, is that of Boltzmann,

(

∂

∂t
+ c1 · ∇r1

+ F · ∇c1

)

f1 =

∫

(f ′
1 f ′

2 − f1 f2) g b db dǫ d3c2 (50)

where F is the net instantaneous external force per unit mass acting on
particle ‘1’, b is the impact parameter variable, ǫ is the azimuthal angle of
the collision and

f1 = f(r, c1, t)

f2 = f(r, c2, t)

f ′
1 = f(r, c′1, t)

f ′
2 = f(r, c′2, t) (51)

g = c2 − c1

g = |g |
c′1 = c1 + g · k̂ k̂

c′2 = c2 − g · k̂ k̂ c

c

g

g’

c’

k

1

1

2

2c’

where k̂ is the unit vector in the direction of c′1 − c1.

A list of the – not necessarily independent – assumptions needed to justify
Boltzmann’s equation are microscopic Hamiltonian dynamics, large number
of particles, low density, short range interactions, inexistence of bound par-
ticles, uncorrelated particle-particle collisions, negligible spatial gradients of
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the distribution function in the atomic scale, negligible action of the external
forces during the collision time.

The assumption that the collisions are uncorrelated brings up irreversibil-
ity.

2.6 Grad’s Solution

Harold Grad in 1958 presented an original way to construct an approximate
solution to Boltzmann’s equation, Grad (1958). In his approximate solution
he does not expand in gradients of the first five momenta of the velocity
distribution (density n, hydrodynamical velocity v, and temperature T ) as in
the Chapmann-Enskog method, but he rather uses a self-consistent approach
involving higher momenta and no gradients of them. In particular he works
out in detail the case when the distribution function f is written in terms of
n, v and T and also the traceless and symmetric part of the pressure tensor,
pij , and the heat flux vector q, which in 3D totals 13 momenta.

Grad’s approximate solution of Boltzmann’s equation, fG, is obtained
assuming that the distribution for a nonequilibrium system gets – in a first
approximation – a corrective factor, linear in the the momenta IP and q,
multiplying Maxwell’s distribution:

fG = (1 +A : p + B · q) fM (52)

where p is the symmetric and traceless part of the pressure tensor IP,

Pij = n kBT δij + pij (53)

Grad proved that to have a solution to Boltzmann’s equation consistent
with the correct momenta, shown in table 3, the specific distribution of the
form (52) with d = 2 or 3 is

fG =

[

1 +
m

p kBT

(

mC2

(2 + d) kBT
− 1

)

C · q +
m

2p kBT
p : CC

]

fM (54)

2.7 Application, Thermal Slip: II

Let us consider again the phenomenon of thermal slip under the same con-
ditions as before only that we consider specifically a two dimensional dilute
gas of disks. Instead of making use of mean free path arguments as in §2.3
— which appeal to the intuition though render rough results — we make
use of Grad’s distribution (54) specialized to 2D and neglect the contribution
coming from stress

fG =

(

1 +
m

p kBT

(

mC2

4kBT
− 1

)

C · q
)

fM (55)
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Fig. 7. At left the velocity field in the simulation with N = 1444, n = 0.05 and
Tt = 0.1. At right the thermal slip velocity field in a simulation with lateral walls
made with particles with their own dynamics.

Accepting that in the bulk of the system the distribution fG describes well
the actual distribution, a natural simple assumption is that the distribution
frw near the right wall is

frw =

{

fG if Cx > 0
fM if Cx < 0

(56)

and an entirely similar distribution near the left wall. Note that 56 defines a
distribution only to lowest order as

∫

frw d2c = n +O(q).
With frw it is direct to calculate Pxz = ρ 〈CxCz〉 and the result is

q
8

√

2m
π kBT which we identify, according to Newton’s law, with −η dvz/dx,

therefore
q

8

√

2m

π kBT
= −η

dvz

dx
(57)

Assuming that the hydrodynamic velocity goes to zero exponentially with the
distance to the wall, proportional to exp[−x/ℓ], the right hand side above can
be approximated to −η vz/ℓ and (57) can be solved for vz,

vz = − ℓ

η
Pxz

= −1

8

q

p
(58)
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We have made use of the expression for ℓ given in table 4 and η from (41)
with d = 2. Equation (58) is consistent and more precise than our previous
result (49). The minus sign indicates that the gas slips near the lateral walls
towards the hotter regions. Fig. 7 shows at left the velocity field obtained in
a simulation with 1444 particles.

In a preliminary simulation [A], defined below, we determined the temper-
ature profile to impose on the lateral walls in the final simulation [B]. This
was achieved running simulation [A] with periodic lateral boundary condi-
tions and temperatures Tb and Tt. The fluid stabilized in [A] with a vertical
temperature profile T (z). This profile was imposed in the final simulation [B]
to the hard nonslip thermal lateral walls.

|vz | |q/8p|

N = 1444
n = N/L2 = 0.05 0.015 ± 0.002 0.016 ± 0.003

Tt = 0.1
ℓ ≈ 7.0 L ≈ 170

N = 8100
n = N/L2 = 0.01 0.014 ± 0.003 0.020 ± 0.001

Tt = 0.1

Table 5. Units were chosen so that the particle’s diameter is σ = 1, the particle’s
mass is m = 1, the Boltzmann’s constant is kB = 1 and the temperature scale is
fixed by Tb = 1.

With the simulational results we measure independently the velocity vz

of the gas in contact with the lateral wall, the pressure p and the heat flux
q. The observed results for two simulations are summarized in table 5.

Equation (56) is the main hypothesis that lead to the quantification of
this phenomenon. From the point of view of the simulation the hypothesis
is concealed in the collision rule with the lateral wall: particles forget the
velocity with which they hit the wall and come out with a velocity sorted
out from a (isotropic) Maxwellian distribution. In case there is any doubt
that the phenomenon exists at all there is a second simulation where no
such hypothesis is introduced (Risso, Cordero). In this new version there is
a realistic wall in the following way. The square box has periodic vertical
walls, but between two relatively close parallel vertical lines we placed 420
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particles in a nearly close packing arrangement. They could not leave the
space between the two lines, therefore they formed a vertical wall with its
own dynamics. These two lines play the role of the effective surface cohesion
between particles forming a solid. The rest of the box contained the usual
dilute gas of 1444 particles. The gas particles had no intereaction with the
vertical lines but they could hit the particles of the vertical wall. For both
types of particles the horizontal walls had tempratures Tb and Tt. As before
we measured the velocity field of the gas and obtained the time average seen
in the graph at right in Fig 7.

2.8 Enskog’s Equation

Enskog theory of transport arises from an extension of Boltzmann’s formal-
ism by means of introducing corrections that account for the effects of having
a molecular diameter that it is no longer small compared with the mean free
path. A major consequence is that the collisional mechanisms of momen-
tum and energy transfer — which is negligible at lower densities — becomes
important. In fact, collisional transfer can be as important or even more im-
portant than kinetic transfer. The contribution of the collisional transfer, in
Enskog’s theory, comes in when the correlations in position are introduced
in the basic kinetic equation in an approximate way. In spite of these re-
strictions, Enskog’s formalism — which was developped for the case of hard
spheres — is the best systematic description that yields transport coefficients
in the context of kinetic theory, Ferziger, Kaper (1972). Gass applied it to
the 2D case of hard disks, Gass (1971).

Enskog’s equation perfects Boltzmann’s equation (50) by including effects
implied by the finite size of the particles and correlations in position among
them as it was already described in §2.2. If Boltzmann’s equation has the
form Df = J [ff ], Enskog starts from an equation having the same left hand
side as (50) but the right hand side is different,

Df =

∫

{

χ(r +
σ

2
k̂, t)f(r, c′1, t)f(r + σk̂, c′2, t)

−χ(r− σ

2
k̂, t)f(r, c1, t) f(r− σk̂, c2, t)

}

σ2 g · k̂ d2k d3c2 (59)

To get Enskog’s equation the right hand side is transformed expanding
the functions χ and the distributions f about the position r up to first order
in the gradients. Enskog’s collisional operator then has the form

JE = J0 + J1 + J2 (60)

J0 is Boltzmann’s operator J multiplied by χ, J0 = χ J while the other two
Jk are

J1 = σ3

∫ {

χk̂ ·
(

f ′

1∇rf
′

2 + f1∇rf2

)

+
1

2

(

k̂ · ∇rχ
) (

f ′

1f
′

2 + f1f2

)

}

g · k̂ d2k d3c2
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(61)

J2 =
σ3

2

∫ {

χk̂k̂ :
(

f ′

1∇r∇rf
′

2 − f1∇r∇rf2

)

+
(

k̂ · ∇rχ
)

k̂ ·
(

f ′

1∇rf
′

2 − f1∇rf2

)

+

1

4

(

k̂k̂ : ∇r∇rχ
) (

f ′

1f
′

2 − f1f2

)

}

g · k̂ d2k d3c2

where the fk are to be understood as in (51) and Enskog’s equation finally
reads

Df = J0[ff ] + J1[ff ] + J2[ff ] (62)

If the system is uniform, the distribution function f does not depend on
position and the terms J1 and J2 vanish identically leading to an equation
almost equal to Boltzmann’s except that now the right hand side is J0 instead
of J .

From a conceptual point of view one should remark though that the hy-
pothesis behind Enskog’s equation are almost the same as those made explicit
in §2.5 except that for Enskog’s equation the size of the particles is consid-
ered and the correlations in position are somehow taken into account (sixth
hypotheris in §2.5). The 3rd (low density) and 7th (spatial gradients of f)
hypothesis are not so strongly stated in the present case. This new equation
is suitable to describe a gas of hard spheres up to relatively high densities
and hence it describes noble gases like Argon relatively well.

Using Chapman Enskog method of approximation, the lowest order values
predicted for the viscosity and thermal conductivity for a gas of hard spheres
are

η(0) = 1.0160
5

16σ2

(

mkBT

π

)
1

2

, k(0) = 2.522 cv η(0) (63)

In terms of these quantities Enskog’s theory predicts

η =
1

χ

[

1 +
4 (bρ χ)

5
+ 0.7614 (bρ χ)2

]

η(0) (64)

k =
1

χ

[

1 +
6 (bρ χ)

5
+ 0.7574 (bρ χ)

2

]

k(0) (65)

where b ρ ≡ 2
3 π n σ3 is the co-volume of the molecules and where the virial

expansion for χ is

χ = 1 + 0.6250bρ + 0.2869(bρ)2 + 0.115(bρ)3 + . . . (66)

In the 2D case Enskog’s theory yields the following thermal conductivity
k and the shear viscosity η for the hard disk system

k =
2.058 kB

σ χ

√

kBT

m π

[

1 +
3

2

(

2ρAχ) + 0.8718(2ρAχ)2
)

]

(67)
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η =
0.511

σ χ

√

mkBT

π

[

1 +
(

2ρAχ) + 0.8729(2ρAχ)2
)]

(68)

2.9 Problems

1. Write a program that defines a large set of N velocity vectors {c1, ..cN}.
In every iteration of a loop the program takes at random two of these
vectors, ca and cb and replaces them by vectors c′a and c′b using a rea-
sonable collision rule with an impact parameter chosen at random. Study
the evolution of the distribution of velocities starting, for example, with
every c a unit vector checking that it converges to a Maxwellian rather
fast. You may also study the evolution of Boltzmann’s H function.

2. In a similar fashion as the viscosity η3d was derived in (38), derive the
conductivity k3d.

3. Starting from (52) derive (54) for d = 2 and d = 3 requiring that the
different momenta of the distribution are those of table 3.

4. Modify the program for the 1D gas that you wrote in Prob.1.2 so that in-
stead of rods you have point particles with the following particle-particle
collision rule: v′1 = v2 cos θ + v1 sin θ and v′2 = v1 cos θ − v2 sin θ with θ
chosen at random every time. The case θ = 0 corresponds to elastic col-
lisions. The collision with the two extreems is specular. Notice that the
energy is conserved. Measure the velocity distribution function. Is is a
Maxwell distribution in the limit of a very large system?

5. Write a program for a 2D system circular particles of diameter σ of two
kinds: A and B. Make each particle interacts with others of its own kind
as hard disks while an A with a B do not repel each other but get a
potential energy −ǫ while the distance r between their centers is less
than σ. This is a crude model of screened ions and electrons. Working
with a small system check that you can get gas, liquid and solid sort of
fases.

3 Standard and high order balance equations

3.1 The BBGKY Hierarchy and the General Balance Equations

None of the densities (23) or flux vectors (like IP or q) defined above can be
evaluated unless the distribution function f(r, c, t) is known. A basic problem
then is to know how to obtain this distribution. The task can be formulated
in many different ways. Directly from Newton’s equations for every particle
it is possible to derive the Liouville equation for a Hamiltonian system and
from there a hierarchy of equation for distributions f (n)(r1, c1, ..., rn, cn, t)
normalized to

∫

f (ν)(r1, c1, ..., rν , cν , t) d3r1 d3c1..d
3rν d3cν =

N !

(N − ν)!
(69)
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satisfy

∂tf
(ν) +

ν
∑

a=1

(ca · ∇ra
+ Fa · ∇ca

) f (ν) = −
ν

∑

a=1

∫

Fa,ν+1 · ∇ca
f (ν+1)dyν+1

(70)
where

Fab ≡ −
1

m
∇ra

φab (71)

are the interparticle forces and f (ν) d3r1 d3c1..d
3rn d3cν is the probability of

having n particles of the system of size N about the point (r1, c1, ..., rν , cν)
regardless of where the rest of the particles are. This system of coupled equa-
tions is known as the BBGKY hierarchy and it is exact. Naturally f (1) is the
distribution f that we have been using before.

Assuming that the particles interact pairwise, making use of the first two
equations of the hierarchy and without making any approximation whatso-
ever it is possible to find balance equations associated to quantities ϕ which
are additively conserved during binary particle-particle collisions

ϕ1 + ϕ2 = ϕ′
1 + ϕ′

2 (72)

They are mass, momentum and energy. The exact balance equations that
follow have the typical form of the equations of hydrodynamics

Dρ

Dt
= −ρ∇ · v

ρ
Dv

Dt
= ρF−∇ · IP (73)

ρ
Du

Dt
= −∇ · q− IP : ∇v

where
D

Dt
≡ ∂

∂t
+ v · ∇ (74)

is the convective derivative and the pressure tensor is the sum of a kinetic
and a potential contributions

IP = IPK + IPφ

IPK = m

∫

CC f(r, c, t) d3c

(75)

IPφ = −1

2

∫

r12 r̂12 φ′
12

∫

n2 (r1 − (1− µ)r12, r1 + µr12, t) dµ d3r12
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and φ12 ≡ φ(r12) is the interparticle potential that is being assumed to be
central and n2 is

n2(r1, r2, t) ≡
∫

f (2)(r1, c1, r2, c2, t) d3c1 d3c2 (76)

On the other hand the energy density is

u = uK + uφ

uK =
1

2

∫

C2 f(r, c, t) d3c (77)

uφ =
1

ρ

∫

φ(r12)n2(r1, r2, t) d3r2

while the contributions to the heat flux vector are

q = qK + qφ1 + qφ2

qK =
1

2
ρ

∫

C2 C f(r, c, t) d3c

qφ1 =
1

2

∫

φ(r12)C1 f (2)(r, c1, r2, c2) d3r2 d3c1 d3c2 (78)

qφ2 = −1

4

∫

φ′(r12) r̂12 (C1 + C2) r12

×
∫

f (2)(r1 − (1− µ)r12, c1, r1 + µr12, c2, t) dµ d3r2 d3c1 d3c2 |r1=r

The vector qφ1 is a contribution to the potential energy flux vector while
qφ2 contains the derivative of the potential and therefore it is related to the
interparticle forces.

As we have already mentioned, the balance equations (73) are hydrody-
namic equations. They are an exact and open set of equations in the sense
that they are equations for the five fields ρ, v and u but — in this context
— the quantities IP and q are unknowns and we have not provided equations
for them within this hydrodynamic context.

To formulate hydrodynamics it is necessary to have expressions for u,
IP and q in terms of the five hydrodynamic fields ρ, v and T . The extra
expressions are usually refered to as the constitutive equations.

If the particles had, for example, rotational degrees of freedom there would
be an independent balance equation associated to angular momentum.

3.2 Dilute Systems: Balance Equations and Higher Momenta

Starting from Boltzmann’s equation it is possible to derive a generic balance
equation associate to any quantity ϕ

∂t(n 〈ϕ〉)− n 〈∂tϕ〉+∇r · (n 〈ϕc〉)− n 〈c · ∇ϕ〉 − nF · 〈∇cϕ〉 =
∫

ϕ(c1) (f ′
1f

′
2 − f1f2)σ2g · k̂ d2k d3c1 d3c2 (79)
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In particular if ϕ is a quantity additively conserved in collisions then it
is possible to prove that the right hand side of (79) vanishes identically and
the resulting balance equations only contain kinetic contributions. They are

Dρ

Dt
= −ρ∇ · v

ρ
Dv

Dt
= ρF−∇ · IPK (80)

ρ
DuK

Dt
= −∇ · qK − IPK : ∇v

But (79) can be used with any quantity. We have seen that the momenta
that follow the first five ones (namely n(r, t), v(r, t) and T (r, t)) of f(r, c, t)
namely IP and q play a significant role.

The choices ϕ = m
(

CiCj − 1
3C2δij

)

and ϕ = mC2C yield balance equa-
tions for IP and q respectively. If we further assume that the distribution
function is Grad’s distribution fG then the balance equations have explicit
forms shown below. These balance equations for the case d = 3 are found in
Grad’s article Grad (1958), equations (28.19) and (28.20). We have derived
them for d = 2 in the hard disk case. They can be condensed for d = 2 or 3
as:

∂pij

∂t
+

∂

∂xk
(vkpij) +

2

d + 2

(

∂qi

∂xj
+

∂qj

∂xi
− 2

d
δij

∂qk

∂xk

)

+

prj
∂vi

∂xr
+ pri

∂vj

∂xr
− 2

d
δijprs

∂vs

∂xr
+ (81)

p

(

∂vi

∂xj
+

∂vj

∂xi
− 2

d
δij

∂vr

∂xr

)

+
1

τ
pij = 0

∂qk

∂t
+

∂

∂xr
(vrqk) +

d + 4

d + 2

∂vk

∂xr
qr +

2

d + 2

∂vr

∂xk
vr+

2

d + 2

∂vr

∂xr
qk +

kBT

m

∂pkr

∂xr
+

d + 4

2m
pkr

∂(kBT )

∂xr
− pkr

ρ

∂Prs

∂xs
+ (82)

d + 2

2m
p
∂(kBT )

∂xk
+

d− 1

d τ
qk = 0

where τ is

τ =
2 + d

2d+1

1

σd−1 p

√

mkBT

π
(83)

As Grad has pointed out, in the absense of gradients the above equations
are τ ∂pij/∂t + pij = 0 and d

d−1 τ∂qk/∂t + qk = 0 clearly indicating that τ is
a relaxation time. But τ is proportional to the mean free flight time, ℓ/vth.
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As an illustration of their use consider the first equation, neglect time
variations and all gradients except for the velocity gradient. It follows that

pij = −ηd

(

∂vi

∂xj
+

∂vj

∂xi
− 2

d

∂vr

∂xr
δij

)

(84)

where the shear viscosity ηd for hard spheres in dimension d turns out to
be τ p which simplifies to (41). Similarly, from (82) the thermal conductivity
for hard spheres in dimension d is d (d + 2) kBT p τ/(2(d − 1)m) which is
equivalent to (42).

The balance equations (81) and (82) written above can take the place
of the necessary constitutive equations to have a complete hydrodynamic
picture, but they really are dynamic equations. And contrary to the usual
relation for these higher momenta, they do not relate linearly IP and q with
the gradients of v and T .

Further on we will need the nonlinear nature of these higher balance
equations to be able to explain some of our observations.

4 Thermal Conductivity

4.1 Introduction

In the following we are going to carefully study the behavior of the conduc-
tivity k in the absence of strain. The conductivity

k(ρ, T ) = k0(ρ)
√

T (85)

of a two dimensional system of N hard disks enclosed in a rectanguler LX ×
LZ box, by means of molecular dynamics when the system has vanishing
hydrodynamic velocity field (a pure conductive regime). Because the system
of hard particles has no intrinsic energy, the temperature scale can only be√

T if the Fourier law is applicable.
The transport coefficients of a system of hard disks are necessary also to

analyze in depth simulational results such as, for example, Bénard’s convec-
tion with hard-disk systems as in Mareschall et al, Rapaport (1988), Risso,
Cordero (1992).

During our simulations we can measure separately the collisional from the
kinetic contributions. Determining the conductivity in this way, however, is
lengthy and noisy. We have prefered to measure the net heat flux qZ accross
the system as it would be done in real expriments and define an effective
conductivity keff which is the result of the conductivities that the layers of
the stratified system have.

XX Tal vez los jumps debieran estar antes, tratados en detalle, todos

juntos.
An important technical detail comes from a known temperature jump that

occurs at the walls when the system is subjected to a temperature difference
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∆T . Because of this jump it is necessary to correct the temperatures at the
walls by defining a new difference ∆T ⋆.

The system. The basic parameters that define the system are: the number
N of hard disks; their mass m, diameter σ, the size LX ×LZ of the box, the
acceleration of gravity g, the temperature at the bottom and top walls Tb and
Tt = Tb −∆T . It will be helpfull to use the reduced temperature difference

Ct ≡
∆T

Tb
(86)

Due to the important compressibility of this gas a significant density
gradient would develop had we not added an accelaration of gravity g in the
direction of the temperature gradient.

A note of warning: having a temperature gradient and acceleration of
gravity we could trigger free thermal convection. In Sec. 5 we analise this
phenomenon. In the mean time it suffices to know that the simulations where
performed far from the convective zone in parameter space.

The disks have elastic collisions among themselves, the vertical walls are
perfectly elastic (adiabatic), while the upper and lower walls simulate con-
tact with heat baths at the temperatures Tb and Tt. When a particle hits a
horizontal wall the tangential component of the velocity is conserved while
the normal component is sorted from a Maxwellian distribution associated
with the temperature of that wall.

4.2 Heat Flux and the Effective Conductivity

Since the Fourier law of heat conduction states that q = −k∇T we define an
effective simulational bulk conductivity by

ksim =
q LZ

∆T
(87)

Since the system has an important temperature gradient we directly compare
the effective conductivity obtained by means of the simulations using (87)
with the effective conductivity ktheo that stems from Enskog’s theory that
we explain in the following paragraph.

Since k depends on the local values of the density and temperature (see
(67)) we define, in a striaghtforward manner, a theoretical conductivity ktheo
for the system as the net effect of the conductivity of all the infinitesimal
horizontal slices i, of width δ, in which the system can be thought to be
devided

ktheo =





1

Nslices

Nslices
∑

i=1

k−1
i





−1

(88)

The limit δ → 0 is understood. For our purposes, however, we have used
(88) with slices of finite width to evaluate each ki(ρA, T ) from (67) and used
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the observed values of ρA and T in each slice. The logic behind (88) is the
same one as used to obtain the effective resistance (r = 1/k) of a system of
resistors (the horizontal slices with resistance 1/ki) connected in series.

4.3 Simulational Conditions

To run these simulations the set of possible control parameters is rather large:
g, ∆T , the bulk area density ρ̄A, N and the aspect ratio λ. As we have already

mentioned, the condition to have a flatter density profile is Fr ≈ H(ρA) . In

our simulations we took N ranging from 100 to 8100, λ = 1 and in most
simulations ρ̄A = 0.2 and N = 1521 while Fr and Ct were used as control
parameters.

To make these observations a 15 × 15 standard observation mesh of cells
used. To determine the length of the simulations we considered the thermal
difussion time tdiff ∼ L2

Z/κ (where κ is the thermal difussivity) measured in
number of collisions. Working all the details Risso, Cordero (1996) it turns out
that there are about 8ρAN collisions per disk in one diffusion time. Typically
we used a relaxation time of about 10tdiff which, for the case of N = 1521
and a density of ρ̄A = 0.20, means 24000 disk-disk collisions per disk. After
relaxing the system measurements were carried out during the last 10 to 40
diffusion times.

It was checked that the equation of state (3) is satisfied at equilibrium
even for large values of g, Fr in the range 0.3−1.7 with Ct up to its maximum
value Ct − 1. This is illustrated in the Fig. 8

The wall temperature jump off equilibrium. Once a conductive regime is es-
tablished, the measured temperature difference in the bulk is smaller than
the externally imposed difference ∆T . This is a well known effect: Tenen-
baum, Ciccotti (1982), Trozzi, Ciccotti (1984), due to a temperature dis-
continuity at the walls. A similar effect is observed in real, dilute systems,
Hirschfelder, Cursti, Bird (1954). This temperature discontinuity is related
to the collision rate and the temperature difference. In fact, the discontinuity
of T (r) near hard walls is an effect of the stochastic thermalization at the
walls. A simple derivation of it is the following. The relation between the
externally imposed temperature difference and the measured temperature
difference can be estimated assuming local thermodynamic equilibrium and
taking into consideration the rate of energy exchange in collisions with the
thermalizing walls. Calling T ⋆

b and T ⋆
t the temperatures near the lower and

upper walls inside the fluid, the flux of energy across the walls can be written
as qb = 3

2ΓbkB(Tb − T ⋆
b ) and qt = 3

2ΓtkB(Tt − T ⋆
t ), where Γj (j = b, t) are the

disk-wall collission rates at the two thermalizing walls (XX explanation
needed). The factor 3

2 comes from the velocity distribution of the particles
hitting the wall. In the stationary regime it is necessary, from Fourier’s law, to
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Fig. 8. Profiles of pressure (2), density (+) and temperature (3) versus the height
z for a system with N = 1521, ρ̄A = 0.2, Fr = 1.56 and Ct = 0.624. The ratio
pLXLZ/NHkBT (×) is also ploted

have qb = qt = keff (T ⋆
b − T ⋆

t )/LZ and from this, if the imposed temperature
difference is ∆T , the effective difference ∆T ⋆ is

∆T ⋆ = (1 + ε)−1 T

ε ≡ 2

3

(

1

Γb
− 1

Γt

)

keff
kBLZ

(89)

Keeping the aspect ratio λ and ρA fixed, ε vanishes in the limit N →∞.
For a system of N = 1521, ρA = 0.2, Ct = 0.5 and LZ = 78σ the previous
result yields ∆T ⋆/∆T ≈ 0.85 which is the value that we observe.

From the concept of ∆T ⋆ it is direct to define C⋆
t and Fr⋆ and these are

the quatities to be used, for example in (87), to make comparisons with the
conductivity predicted by Enskog.

4.4 Simulations and Theoretical Prediction

Numerically solving the Navier Stokes (NS) equations under hydrostatic con-
ditions making use of (a) Henderson’s equation of state, (b) Fourier’s law,
(c) the conductivity k(ρA(z), T (z)) taken from Enskog’s theory, (d) the effec-
tive temperature values T ⋆

t , T ⋆
b and (e) the condition that ρ̄ALZ =

∫

ρA(z) dz,
it is possible to find the theoretical density, temperature and pressure profiles.
Comparing these profiles with those obtained from the simulation for typical
values of the imposed Fr and Ct the agreement is excellent. We remark that
these comparisons are not made only when ρA is approximately uniform —
namely when Fr∗ ≈ H(ρ̄A) — but also when the density varies significantly
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with height. When comparing our observations with theoretical results (be-
low), we make some remarks regarding this agreement. Note that near the
top and bottom walls (z = 0 and z = LZ) the density profile is distorted by
boundary effects.

The Effective Conductivity k. Figure 9 shows a comparison of the values of k
versus C∗

t obtained from the simulations with N = 1521, ρ̄A = 0.2 and Fr∗ ≈
1.56 using (87) with the theoretical conductivity, (88). To get the results
summarized in figure 9 we have used seven different simulations for each Ct,
starting from microscopically different initial conditions but macroscopically
equivalent (same density and velocity profiles). Note that because of the
statistical fluctuations in the measured values of T ⋆

t and T ⋆
b the values of C⋆

t

show a dispersion for every externally imposed Ct. For C∗
t < 0.3 only one

simulation was made for every Ct. Note that the observed values of k are
systematically larger than the theoretical values.

0.0
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0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ct*

k-sim, k-theo 

k-sim/k-theo  

Fig. 9. Conductivities ksim, (+) and ktheo, (2) and the ratio (3) versut C∗

t for
a system with N = 1521, ρA = 0.2, Fr = 1.56. The dotted line indicates the mean
value 1.044 of the ratio

For a remarkably wide range of values of C⋆
t the ratio ksim/ktheo is nearly

constant (figure 9) in spite of the large temperature variations across the
system. This can be understood from (88) — assuming that the density is
about uniform (and equal to ρ̄A) — because one can then derive that

keff ≈
k0(ρ̄A)LZ
∫

dz√
T (z)

(90)
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To evaluate the ratio ksim/ktheo the same temperature profile is used in the
numerator and denominator and therefore this factor cancels out. Only the
ratio between the k0’s remains.

For the case ρ̄A = 0.2, Fr⋆ = 1.56, N = 1521 (leaving out cases for which
the signal/noise ratio is too small, i.e., C⋆

t < 0.5), the extrapolation from
these simulational results yields ksim/ktheo = 1.044± 0.004.

Comparison with the theoretical profiles. In the following we put forward an
interpretation to explain why the observed profiles fit so well the theoretical
predictions while the observed conductivity shows an indisputable difference
with Enskog’s prediction. In other words, how is it possible to have a dis-
crepancy in the conductivity without having one in the profiles?

From a theoretical point of view we know that k has the form (85) and any
correction can be written as a corrective factor C(ρA) affecting the particular
k0 given in (85).
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Fig. 10. Observed values for the ration ksim/ktheo for the systems with N = 1521.
The last point represents the value of this ratio reported in Mareschal, Krebs (1995)

First let us notice that the local conductivity enters the formalism only
through the energy balance equation that in hydrostatics simply is ∇·q = 0,
namely, ∇ · (k∇T ) = 0. Since the only coordinate that matters is z the last
equation is

(k T ′)′ = 0 or
T ′′

T ′
= −k′

k
(91)

If we use (85), k = k0

√
T , then the T -profile equation is

T ′′

T ′
+

T ′

(2T
=

k′
0

k0
=

1

k0

dk0

dρA

ρ′
A

(92)
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Making the change k0 → C k0 in the last expression amounts to changing

1

k0

dk0

dρA

→ 1

k0
dk0

dρA
+ 1

C

dC

dρA

(93)

adding a term C−1 dC/dρA on the right hand side. From the factor k0 in (67)
one can get that k−1

0 dk0/dρA grows smoothly from 3.44 at ρA = 0.15 to 9.0
at ρA = 0.55 while, from the data summarized in Fig. 10, one can estimate
that about ρA = 0.2 the value of C−1 dC/dρA is about 0.013. Namely, the
observed correction to the conductivity would affect the temperature and
density profiles by less than 0.3%.
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Fig. 11. The ratio between the observed theoretical values for the thermal conduc-
tivity do not show detectable size effects.

On size effects. Figure 11 shows the ratio ktheo/ksim for N = 100 300, 900,
1521, 2500 and 8100. For N = 100, 300 and 2500 only one initial condition
was taken while Ct was changed (hence no error bars in these cases). For
N = 8100 only two initial conditions were considered while for N = 900 and
1521 seven different initial conditions were considered. The cases N =900,
1521 and 8100 indicate that the ratio is slightly increasing with N but for
the excessive computational cost we disregarded the possibility of making
more simulations with N = 8100 or simulations with larger N . We draw no
conclusions.
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Other values for the density. Though we have not made a systematic study of
the conductivity as a function of the density we obtained the ratio ksim/ktheo
for different densities (ρ̄A = 0.1, 0.2, 0.3, 0.4 and 0.5) in the case of a system
of N = 1521 particles with Fr⋆ = H(ρ̄A). These ratios are plotted in figure
10.

We see that the most important discrepancies with Enskog’s predictions
seem to take place for ρA ≈ 0.2. This may seem strange since one should
think that the discrepancies increase with the density. But from our results it
seems that the higher order corrections that come in beyond Enskog’s theory
go down with the density eventually changing sign. To support this we have
the above results and a recent one Mareschal, Krebs (1995) where the authors
show that for a system at ρ̄A = 0.55 — of particles interacting with a hard
(but not infinitely hard) potential — the ratio of conductivities is 0.93. This
result, seen in Fig. 10 as the last point, roughly follows the tendency of our
results.

4.5 Comments

2 In the above we have assumed that the Fourier law is valid. First we
have been able to obtain excellent agreement between theory and simulations
regarding the density and temperature profiles when the bulk density is ρ̄A =
0.2.
2 Next, we have been able to define an effective conductivity in such a way
that the ratio ksim/ktheo is independent of the temperature difference for a
wide range of density values (ρ̄A from 0.1 to 0.5). This independence from
the temperature difference validates Fourier’s law for the system and justifies
extrapolating the value of the conductivity to the limiting case ∆T = 0 for
different values of the density ρ̄A.
2 The ratio ksim/ktheo however unequivocally differs from unity. For in-
termediate densities (ρ̄A about 0.2) the effective conductivity is larger than
the one predicted by the theory while that difference starts to go down for
larger values of ρ̄A and finally the simulational conductivity appears to be
slightly smaller than the theoretical value when ρ̄A ≈ 0.5.
2 To understand why it is consistent that the profiles (item 1 above) fit
so well while the conductivity does not (item 3), we have observed that the
corrective factor C(ρA) multiplying Enskog’s ktheo has a sufficiently weak
dependence on density — for the case ρ̄A = 0.2 — so that it cannot be
detected in the density and temperature profiles.

5 Compressible Free Thermal Convection

Thermal convection in a fluid heated from below is one of the simplest cases of
hydrodynamic instablity Normand, Pomea, Velarde (1977), Chandrasekhar
(1961). The computational experiments of Rayleigh-Bénard (RB) convection



Microscopic Computer Simulation of Fluids 43

by means of event driven molecular dynamics using hard disks (Mareschal,
Kestemont (1987), Rapaport (1988), Puhl, Malek-Mansour, Mareschal (1989),
Rapaport (1991)) has opened a new way to study dissipative structures that
emerge when the system is driven off equilibrium. For the system of hard
disks the compressibility effects are important in the determination of the
onset of convection curve in terms of the control parameters. In fact, we have
taken this as an interesting problem to be studied in detail.

The study of the linear stability problem for the compressible fluid RB
convection done by Spiegel, Veronis (1976), and the nolinear stability (Gau-
thier, Desmarais, Ioos (1989)) as well as the numerical simulations of the NS
equations (Hurl, Toomre, Massaguer (1984)) have centered their attention in
fluids that obey the ideal gas equation of state but with uniform transport
coefficients. In these studies, contrary to the Oberbeck-Boussinesq (OB) ap-
proximation for incompressible fluids, the density is assumed to vary widely.

In the following we present molecular dynamics results on Rayleigh-Bénard
convection in 2D for a system of hard particles moving in a rectangular box.
The system shows significant compressibility effects. Important density and
temperature variations are observed when different values for the gravita-
tional acceleration and temperature gradient are considered. We have stud-
ied the influence of these effects on the onset of convection and observed
that it takes place for Rayleigh numbers significantly different to the val-
ues predicted by the Oberbeck-Boussinesq approximation. We do not limit
ourselves to cases were g is chosen so as to minimize the density variation
with height as in Mareschal, Kestemont (1987), Rapaport (1988), Rapaport
(1991), Mareschal, Kestemont (1989).

We give an empirical curve describing the onset of convection in terms
of our control parameters. The results are compared with those obtained
from Navier-Stokes equations when considering constant transport coeffi-
cients. There is a qualitative agreement with the theory when the work of
compression is considered.

5.1 Simulational Setting

In principle the system has eight parameters: the number of particles N , the
number density n, the aspect ratio λ, the particles diameter σ, the tempera-
tures Tb and Tt at the bottom and top walls, the acceleration of gravity g and
the mass m of the particles. The units choice σ = 1, m = 1 and Tb = 1 leaves
us with five parameters. We will see the case of a system with N = 1521
particles in a square box (i.e., λ = 1) and number density n = N

L2 = 0.25.
The value λ = 1 guarantees that when there is convection there will be only
one convective roll.

Hence we have only two control parameters that could be taken to be g
and ∆T but instead two adimensional numbers proportional to g/∆T and



44 Patricio Cordero and Dino Risso

g ∆T are chosen to be a Froude number and the Rayleigh number

Fr =
g L

∆T
(94)

Ra =
g α n ∆T L3

ν κ

=

(

∆T

T

)2
N Fr

λ
J(n) (95)

where J(n) denpends on the number density and involves the kinematic vis-
cosity ν and the thermal diffusivity κ; α is the thermal expansion coefficient
(7). T is the mean temperature 1

2 (Tb +Tt) while ∆T = Tb−Tt is the imposed
temperature difference. The considered ranges for our control patameters Ra
and Fr were [100, 2600] and [0.5, 1.7] respectively.

In our series of simulations the thermal diffusion time tdiff defined in
refftdiffXX corresponds to about one million total collisions or about 1300
collisions per particle 1. The system was left to thermalize during 20tdiff and
measurements were taken during a 10tdiff.

5.2 Results

In our simulations one could roughly say that Ra controls the buoyancy force
while the dependence on height of the density and temperature is driven by
the Frounde number Fr.

To be able to measure the intensity of the convection in a simple way we
used, as in the study of phase transitions, an order parameter which we chose
to be C: the integrated circulation of the velocity field, that is, the average
circulation of the velocity field evaluated in concentric paths about the center
of the box. This definition is appropiate because with λ = 1 there can only
be one stable convective roll.

The result of every simulation (Ra and Fr fixed) was classified as non-
convective or convective according to whether the circulation C did or did
not change sign in the last 10 tdiff. There is a strip in the (Ra, Fr) plane in
which the simulations sometimes changed sign. Such strip defines the mar-
ginal stability zone of the system which, for infinite systems and infinitely
long simulations, it is a line.

Two typical plots of the evolution of C in time for rather long simulations
(768 million collisons) can be seen in figure 12. They correspond to Fr = 1.0
and different values of Ra. One of these simulations shows a clear convective

1 XX DINO!! En la subsecci’on simulational conditions se dijo que tdiff
era aprox 24mil DDC/particle con N=1521 y rhoA=0.2, lo que implica
que tdiff equivale a m’as de 18 millones de colisiones. Hay un factor
20 molestando
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Fig. 12. At the top the evolution of the circulation C during 3000 cycles of 256000
collisions each for Ra = 1200 (dots) and for Ra = 810 (continuous line). In the lower
graph is the histogram for the case Ra = 810 showing that the circulation spends
more time at values ±C0. The system has 1600 particles, ρ̄A = 0.25, Fr = 1.0.

regime (Ra = 1200) while the other one (Ra = 810) shows several changes
of sign in its circulation. Still, in the last case the system has a value of C
fluctuating about a nonzero value. As we shall see, this situation is slightly
above the transition from the nonconvective to convective zone.

Figure 12 also shows the histogram for the values taken by C. In the
Ra = 1200 case the curve is a gaussian like curve about a non zero value
while in the second case it is a double peaked curve with maxima about
values ±C.

In the OB approximation with stress free boundary conditions the critical
Rayleigh number, when the aspect ratio is λ = 1, is RaC ∼ 780 while in our
simulations we observe that convection begins to develop for Ra below 700
when Fr is smaller that 1.0 and above 700 otherwise. Let us determine what
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is the critical valur RaC when Fr = 1.0.
Experimental measurements (Berge et al) and theoretical analysis (Nor-

mand, Pomea, Velarde (1977), Chandrasekhar (1961), Gorkov (1957), Malkus,
Veronis (1958)) show that the square of the hydrodynamic velocity increases
linearly with Ra near the onset of convection, v2 = Ra−RaC

RaC
v2
0 therefore in

figure XXXb we have plotted C2 and the time fluctuations (r.m.s) of C
against Ra for simulations with Fr = 1.0. Each point in the figure corre-
sponds to an average over a set of three simulations that differed only in
their initial conditions. Each simulation lasted about 20 million collisions
and the figure shows the average over the last 10 million collisions.

Assuming that after the onset of convection C2 grows linearly with Ra
a linear regression (the straight line in the figure) is used to determine RaC

from the simulational points. The result is

RaC = 712± 56 (96)

As we have mentioned before, one should expect that the fluctuations of
the order parameter have a peak at the transition as in fact it is observed.
Physically this means that near the onset of convection there is plenty of
circulation but it often changes sign, hence giving a negligible average with
strong fluctuations.
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6 Delute Gas Strain Flow

In the present paper the attention is placed on a detail description of a
bidimensional Couette flow and we shall see that Grad’s formalism gives the
tool for a successful description. Our system will be a 2D fluid of hard disks.
Thoughout this section we have set kB = 1.

Several decades ago Green and Kubo introduced a method (GK method
from now on) for the calculation of transport coefficients as time integrals
of time correlation functions of certain microscopic currents Green (1952),
Kubo (1957). With the advent of computational physics it became possible
to apply the GK method to obtain estimates of the transport coefficients for
particular interaction laws. These calculations led not only to the discovery of
the long-time tails of the GK time correlation functions and the divergence of
the GK transport coefficients in 2D but also, for the 3D case to numerous spe-
cific results for self-diffusion, mutual diffusion, bulk and shear viscosity, and
thermal conductivity of model gases and liquids, forming an important basis
for the understanding of both the theory and phenomenology of transport.

The divergence of the 2D transport coefficients has been widely accepted
(Ernst, Cichocki, Dorfman, Sharma, van Beijern (1978)) and they are ex-
pected to diverge because the corresponding correlation integrals are believed
to decay slowly in 2D, as O(1

t ). On the other hand, recent high-precision
simulations as in Hoover, Posch (1995), Posch, Hoover, Kum (1995), Hansen,
Evans (1995), Risso, Cordero (1996) for short range steep repulsive poten-
tial (hard disks in Risso, Cordero (1996)) produced size-independent, though
rate dependent transport coefficients fairly close to the predictions of Gass
(1971) from the 2D Enskog theory, namely, no divergence is detected. The
reproducible finite nature of viscosity in Hoover, Posch (1995) and thermal
conductivity in Hansen, Evans (1995), Risso, Cordero (1996) could be made
understandable if the coefficients only diverge in some unobtainable zero-
range large system limit. Certainly the GK derivation of divergence fails to
hold for finite systems with finite steady state nonequilibrium fluxes. One
should find a bridge from finite to infinite systems, goal that is beyond our
present scope.

MD simulations of Poiseuille or Couette flow in bidimensional dense fluids
composed of hard disks exhibit a non Newtonian behavior (Risso (1994),
Risso, Cordero (1996)) and the Fourier’s law of heat conduction has also been
seen to be violated in the sense that heat flux is observed in directions where
there is no temperature gradient. (The temperature is understood as the local
average of the kinetic energy in the co-moving frame.) To be able to make
a satisfactory theoretical analysis of this behavior we have (a) performed
molecular dinamic simulations of a dilute gas, observing the same behavior
and (b) compared the simulational results with the implications of Grad’s
solution of Boltzmann’s equation.

In this article we report the case of laminar stationary Couette flow. The
flow gets warmer and there is a heat flux from the middle of the channel
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towards the walls. The prediction’s coming from Grad’s distribution describe
quite well our simulational results.

We will analyze the effects of strain in the case of a Couette flow. In
particular we will see results from simulations that clearly indicate that the
usual linear constitutive equations of hydrodynamics cannot be applied.

6.1 The System and a First Glance to the Observations

The system of hard disks is inside a L×L square box, with periodic boundary
vertical (Y direction) walls and the collisions among particles are perfectly
elastic. The collisions with the hard horizontal (X direction) walls are such
that they impose a temperature T0 on the fluid as well as a velocity v0 at the
top wall and −v0 at the bottom wall.

To run our simulations we have used our own algorithm Maŕın, Risso,
Cordero (1993) and the measurement rutines described in Risso (1994). In
every simulation the system was relaxed for about 20 thermal diffusion times
tdiff before local time averages of the main momenta of the distribution (n,
v, T , pij , q) were taken, in some cases for as long as 4000 tdiff).

Units are chosen so that m = 1 and σ = 1 and the temperature T0 at the
horizontal walls was set to T0 = 1. The origin of the Y axis is placed in the
middle of the channel to make more evident the symmetry about y = 0.

The control parameters of the simulations were the number of particles,
N = 2539 or N = 7680, the bulk number density n̄ = N/L2, and the tangen-
cial velocity v0 of the upper and lower walls was v0 =0.25, 0.5, 1.0, 2.0, 4.0,
8.0, 16.0, 32.0 64.0, 128.0.

The bulk density n̄ = 4ρA/πσ2 was fixed so that the fraction of area
covered by the disks was 1% (ρA = 0.01). With this choice the nonideal cor-
rections to the equation of state are less than 2%. The number of disks was
chosen so that the ratio c = ℓ/L, where ℓ is the mean free path, be small
enough to keep the boundary effects constrained to a small fraction of the
system and guarantee that far from the walls the fluid has a hydrodynamic be-
haviour. It is known that for a low density gas of hard disks ℓ = πσ/(8

√
2ρA)

and since L = σ
√

N/n̄ then N ∼ π/(32ρAc2). Hence, for N = 2539 we have
c = 0.062 and for N = 7680 it is c = 0.036.

6.2 Balance Equations and Boundary Conditions

In the present article we are interested in 2D fluids therefore we use the
balance equations for that case, in particular we will use (81)and (82) with
d = 2. The pij components are eliminated in favor of the complete pressure
tensor Pij = pij + p δij and the expressions are restricted to the stationary
2D Couette flow with translation invariance in the X direction. All physical
quantities are either functions of the coordinate y or they are uniform. The
hydrodynamic velocity field has componments vx(y) and vy = 0. The mass
balance equation is identically satisfied.
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In the simulations we consider a channel of width L (Y direction) and
periodic in the X direction,with periodicity lenght L. The only parameters
which in principle define each numerical experiment are the number N of
particles, the temperature T0 and velocity v0 and the global number density
n̄ = N/L2. The y coordinate varies from −L/2 to L/2.

One has to bare in mind though that, for finite systems as ours, there are
velocity and temperature jumps which cannot be neglected implying that
the limit of T (y) and vx(y) as y → ±L/2 do not give exactly the values
externally imposed. In the following We use the names T0 and v0 for the
corrected values. Still these are the parameters that in principle should be
used as our control parameters.

To fit our simulational results to the above expressions we have made
the following considerations. (A) Grad’s solution cannot be expected to be
valid near the borders (y = ±L/2), where the interaction with the walls
plays an important distorting role particularly at low densities. (B) Assuming
that Grad’s solution gives the correct behavior of the system in the bulk,
our expressions should reproduce the simulational results using the corrected
values for v0 and T0.

From the two momentum balance equations (73) it follows that both Pxy

and Pyy are uniform. From the balance equations for Pxx and Pyy, (81) it
follows that

p(y) = Pyy −
3

2
γ(y)Pxy

(97)

Pxx(y) = Pyy − 3γ(y)Pxy

where we have introduce γ as an adimensional measure of the strain at
height y

γ(y) = τ(y) vx(y)′ (98)

The rest of the balance equations yield

τ

2
q′x = −Pxy − γPyy (99)

qx + 3γqy = −6τ

m
PxyT ′ (100)

γqx + qy = −3τ

m
PxyTγ′ − τ

m
(4Pyy + 3γPxy) T ′ (101)

τq′y = −γPxy (102)

The primes indicate derivatives with respect to y. The above system of equa-
tion have as unknowns the fields γ, T , qx, qy. The boundary conditions in
principle are

T (±L/2) = T0 (103)

qx(0) = 0 (104)

qy(0) = 0 (105)
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plus two integral conditions expressing that we know the global density n̄
and the velocities ±v0 at the borders

∫

p(y)

T (y)
dy =

N

L
(106)

∫ L/2

−L/2

vx,y dy = 2v0 (107)

In the first integral expression we have made use of the ideal gas equation
of state, p = nT (we are using = 1), in the last expression the integrand is
γ(y)/τ(y).
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Fig. 13. The diamonds represent the observed values of γ versus the coordinate
y/L for a system of N = 7680 particles, area density ρA = 0.01 and imposed lateral
velocity v0 = 1.4. The straight line is the theoretical value. The discrepancy away
from the borders is about XXX

6.3 Expansions

At first glance one cannot hope to find an analytical solution to the above
system of differential equations therefore we expand in terms of a small adi-
mensional parameter ε defined in such a way that it would coincide with γ if
the strain were small and uniform,

ε =
v0

2

√

m

ρA T0 N
(108)

γ(y) = ε + ε3η3(y) + ε5η5(y) (109)
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There is a symmetry related to inverting the sign of v0 (or γ or ε). It is easy
to see that T , qy and Pyy have to be even in ε while qx and Pxy have to be
odd functions of ε.

Since qy vanishes for zero strain its expansion begins with a term O(ε2).
Similarly, since T ′ vanishes for zero strain then T = T0+O(ε2). From this and
(100) it follows that qx = O(ε3). Finally since for zero strain Pyy coincides
with the hydrostatic pressure and the pressure is nT then we set Pyy =
nT0 +O(ε2).

With all the above considerations we have solved the system of equations
and their boundary conditions in a consistent way using expansions up to
ε6. All the algebraic manipulations were done using the symbolic language
Maple. To our surprise the coefficients ηk that appear in the expansion of γ
turn out to be independent of y as if the strain in the bulk of the system were
uniform. We conclude then that, within the theoretical picture constructed
from Grad’s 2D eight momentum distribution function, it is reasonable to
assume that the strain γ is uniform. The nonuniformity observed in Fig 13
when the externally imposed strain is high may be due to boundary effects
and not to a deviation of the theory in the bulk where we believe that Grad’s
distribution is good.

6.4 Closed solution when the strain is uniform

Assuming that γ does not depend on y it is possible to integrate the system
of equations and in particular derive that the following ratios do not depend
on the temperature field

ξ ≡ Pxy

Pyy
=

4 + 3γ2 −
√

∆

3 (4− 3γ2)γ
≈ −γ +

9

4
γ3 (110)

qx

γ qy
= − 18 (2− γ2)

−3γ2 + 4 +
√

∆
(111)

where ∆ = 16 + 120 γ2− 63 γ4. We observe that (111) implies that there is a
heat flux current qx along the Couette channel.

Minor algebraic manipulation of the equations yield a temperature profile
obeying

T T ′′ +
1

2
T ′2 + K = 0 (112)

hence

±
√

K y = T

√

Tmax − T

T
+ Tmax arctan

√

Tmax − T

T
(113)

where

K =
81γ4 − 264γ2 + 16 + (15γ2 + 4)

√
∆

9γ4 − 24γ2 + 16

π σ2 γ2 P 2
yy

2
(114)
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Fig. 14. The T ′ profile for two systems with ρA = 0.01: [N = 2539, γ = −0.063]
and [N = 7680, γ = −0.058]

K is positive for 0 < γ2 < 1/3.

In practice, to integrate (112) we have imposed that T (0) = Tmax and
that dT/dy = 0 at y = 0. In Fig. 14 there is a comparison of the observed
values of T ′ and the correspondig profiles obtained from the above expres-
sions.

Combining these results it is possible to derive that the transversal heat
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Fig. 15. Predicted and observed values of que transversal heat flux qy for the system
with N = 7680 and v0 = 1.4

flux obeys what we could call a Fourier law

qy = −4τPyy

1− 3
4γξ

1− 3γ2 m
T ′ . (115)

in the sense that qy is proportional to ∂T
∂y as in (39) but the effective con-

ductivity, kγ , is seen to depend on the strain rate. In the limit of vanishing
strain, γ → 0, the conductivity is

k0 = −4τ

m
Pyy =

2

σ
,

√

T

mπ
(116)

which is a known first approximation to the thermal conductivity for a dilute
gas of disks of diameter σ derived using Chapmann-Enskog’s method Gass
(1971) or McQuarie (1976) or (42) with d = 2.

We would like to mention that for small strain rate γ the expression (110)
can be written as

Pxy =
1

2σ

√

mT

π
v′x (117)

which is Newton’s viscous flow law, see (41). But (110) gives a quite nonlinear
relation between Pxy and the strain rate.

7 Results

In this section we describe the way we made the observations during our
simulations and then proceed to compare the simulational results with those
coming from the expressions of the previous section.
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Fig. 16. Predicted and observed values of the longitudinal heat flux qx for the
system with N = 7680 and v0 = 1.4 There is no temperature gradient in this
direction.

To observe the hydrodynamic behavior of our system, the box was divided
in Mx ×My rectangular cells. In each cell the time average of the first mo-
menta of the distribution are made. For the system with N = 7680 particles
we took Mx = My = 20, which corresponds to about 19.2 disks per cell and
in the case with N = 2539 we took Mx = My = 23 or about 4.8 disks per
cell.

A summary of the observations. Most quantities show boundary effects.
The temperature field shows isotherms parallel to the flow but the heat flux
is not orthogonal to them: it bends in the direction of the mass flow. The
equation of state is well satisfied all accross the fluid, incluiding the regions
near the walls. Observed discrepancies with the ideal gas equation were al-
ways below 2% and if Henderson’s equation of state (4) is used then the
discrepancies are below 0.1% in the case of the system with N = 7680 parti-
cles. The component Pxy and Pyy of the pressure tensor show no boundary
effects but Pxx does.

Taking advantage of the translation invariance in the X direction, we took
horizontal averages of the observed cell-results getting in this way vertical
profiles for the main momenta.

As we have already mentioned, Pxy and Pyy should be uniform. From
the horizontal averages of Pxy and Pyy their values at each y are obtained
with errors of less than 0.6% and less than 0.07% respectively for N = 2539
particles. For the larger system the errors are smaller. An additional vertical
average over each of the previous profiles show that these two profiles are
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independent of y with a variance of about 0.1% for Pxy and of about 0.008%
for Pyy when N = 2539 and smaller when N = 7680.

Even though we derived that up to 6th order in ε the adimensional strain
γ is uniform, in our simulations for strains as small as ε = 0.06 there is a wide
region near the boundaries of the channel where γ noticeable varies with y.
But in the central region γ is quite uniform. See Fig.13.

From this considerations we see that the theoretical framework presented
in §6.2-§6.4 needs a reassessment because, even though the differential equa-
tions are expected to be valid in the bulk, this is not true near the boundaries.
The closed expressions found in §6.4 should be expected to fit well away from
the walls and the values associated to the boundary conditions (Tmax, v0)
must be adjusted to make this fit.

To adjust our results we proceeded as follows:
(a) As we have seen, both Pxy and Pyy are independent of the coordinate

y. This is in fact observed to be true within a small margin hence we take
averages of the vertical profiles of these quantities. With these averages and
(110) we have determined an effective value γ∗.

(b) From the observed temperature profile and the expression (113) we
have used mean squares to determine the best fit for Tmax. In practice we
get slightly different fits if we eliminate one value of T at each extreem than
if we eliminate two or three etc values. From all these values for Tmax we
obtain an extrapolated final number Tmax.

Having the value for Pyy and γ we have the value of the constant K.
With it and Tmax we get what we have called the theoretical temperature
profile T (y) and therefore its gradient T ′(y). We compare the latter with the
observed
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values in Fig. 14. We have not shown directly T (y) because the agreement
is not very good, the curvature of the simulational profile is larger than the
theoretical one. The T ′ profile, however agrees quite well when the system is
larger and away from the walls.

(c) Finally, from the observed values for Pxy and Pyy, the value γ∗ and the
theoretical profiles of T and T ′ we obtain, using the expressions (97), (111)
and (115) the theoretical profiles for p, qy and qx that are used to compare
with the values directly observed for these quantities.

Figure 13 shows the theoretical values of γ derived from (3) with the
horizontal averages of Pxy and Pyy and the simulational values of γ obtained
from (98), using the local values of p, v′x and T . The figure corresponds to
the case N = 7680 and v0 = 1.4. Away from the walls the predicted value
of γ is γ = 0.0669± 0.0004 which coincides with the observed value within a
2% margin.

In Fig. 14 the finite size effects on the profile for T ′ is shown for two
systems, both with γ ≈ −0.065. The larger system shows a much better
agreement and the range of the distortion near the boundaries is smaller.

Figure 15 shows the value of the transversal heat current qy for the case
N = 7680, v0 = 1.4. Notice that qy, as seen in (115) obeys a Fourier type
of law with an effective conductivity that depends on the rate of strain. The
agreement with the theory is excellent.

In figure 16 we plot the component of the heat flux current qx along the
isotherms for two systems of different size, N = 2539 and N = 7680 with
about the same strain γ ≈ 0.065. It is seen that the agreement is quite good,
particularly for the larger system. It seems that for qx the boundary effects
propagate deeper into the system, but these effects go down as the size of the
system is increased.
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