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We describe the collective behaviour of a system
of many inelastic spherical particles inside a box
which is being periodically vibrated. The box is
shallow, with large horizontal dimensions, while
the height is less than two particle diameters. The
vibrations are not symmetric: the time the box is
moving up is, in general, different from the time it
is moving down. The limit cycles of isolated grains
are largely affected by the asymmetry of the vibration
mode, increasing the size in phase space of the
chaotic regions. When many grains are placed in the
box, the phase separation between dense, solid-like
regions, coexisting with fluid-like regions takes place
at smaller global densities for asymmetric vibration
profiles. Besides, the order parameter of the transition
takes larger values when asymmetric forcing is used.

1. Introduction

Granular systems, characterized by the dissipative
collisional dynamics of macroscopic objects, still defy
our understanding. When energy is injected at a high
enough rate to compensate for the dissipated energy,
dynamical states are generated. Granular media, in many
aspects, resemble molecular fluids. However, the energy
dissipated at every collision permanently keeps those
systems in a non-equilibrium state. The origin of the
non-equilibrium states is that energy injected by one
mechanism—for example, collisions with the walls—
is dissipated by a different one, interparticle collisions.
A necessary condition for equilibrium would be detailed
balance which is not present in our system.

It has been shown that varying the injection
mechanism generates non-equilibrium states with
different properties. For example, the shear viscosity
varies from case to case. Compare the outcomes in [1-4],
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where the inelastic hard sphere model is used in all cases, but the driving mechanism is different.
Hence, it is interesting to study the different behaviours of the system when different energy
injection mechanisms are used.

A particular geometry to study granular systems that has gained interest is the quasi-two-
dimensional (Q2D) configuration. In this case, grains are put in a shallow box: large horizontal
dimensions and a rather small vertical one. The box is vertically vibrated and the spherical grains
gain energy colliding with the top and bottom plates. This energy is partly transferred to the
horizontal directions through collisions.

Using shallow boxes has many advantages. In experiments, it allows the dynamics of the
granular layer to be fully visualized by imaging the system, as all particles can be seen and
recorded with a camera from the top. This makes it possible to accurately study the system
in a microscopic way, as particle positions and velocities can be measured for most particles at
any time. Also the collective behaviour can be captured [5-10]. Implied by the energy injection
mechanism, the horizontal kinetic energy of the grains can be quite different from the vertical
kinetic energy [11,12].

When the height of the box is less than twice the particle diameter, we have a particular and
relevant case: no two particles can be on top of one another. Here, gravity does not play a direct
role in the horizontal dynamics and the indirect effects can be controlled and reduced by means of
increasing the dimensionless acceleration of the box. More importantly, gravity is perpendicular
to the eventual directions of phase separation, allowing one to discard many known mechanisms.
Nevertheless, experiments and simulations have shown that segregation can also take place
between grains that differ in size or mass [12,13].

It has been observed that a particular phase separation takes place in shallow boxes: grains
form solid-like regions surrounded by fluid-like ones having high contrasts in density, local order
and granular temperature [5,6]. This phase separation is driven by the negative compressibility
of the effective two-dimensional fluid [7] and, depending on the height of the box, it can be either
of first or second order [14,15].

In the present article, we study the role that the energy injection plays in the phase separation
in Q2D systems. To do so, keeping the material properties and geometry of the system
unchanged, we vary the waveform profile of the vibration. That is, we change the pure sinusoidal
profile, where the upward and downward phases are symmetric, to asymmetric profiles where
both phases take different times. Under these conditions, we first analyse the dynamics of
isolated grains looking for the limit cycles that each one of them develops. For the case of
an isolated particle with no top wall, see [16-19]. Next, we consider dense regimes where the
grains interact so that phase separation may take place. It is found that asymmetric vibration
profiles increase the size of the chaotic regions in phase space and also facilitate phase separation.
Our main tools are event-driven molecular dynamics simulations, making use of our own quite
efficient strategy [20-25] (see also [26]).

2. The model
(a) System set-up

The grains are inelastic hard spheres with rotational degrees of freedom. These particles are in
a vertically vibrated shallow box: namely we consider granular systems in a box with a height
of the order of two particle diameters and much larger horizontal dimensions. Collisions are
characterized by normal and tangential restitution coefficients as well as friction coefficients.

The diameter o of the particles, the acceleration of gravity ¢ and the mass m of the
particles are used to define the dimensionless expressions in this article, except that time is
measured in oscillation periods, T =27 /w. The horizontal lengths of the box Ly and L, will be
different in different simulations, although in all cases they will be large compared with the
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Figure 1. Configuration of the Q2D granular system. The box is periodic in the horizontal directions, while it is confined by the
top and bottom hard walls. The inner height is h. Grains are placed inside the box, which is vertically vibrated with amplitude A
and angular frequency w.

confinement height /1 =L, which is taken to be between 1.80 and 1.82¢. Simulations to study
the phase separations are done with L, « Ly < Ly, where the system remains homogeneous in
the y-direction, allowing us to measure the density contrast between the solid-like cluster and the
surrounding liquid-like phase. The vibration is characterized by the amplitude A and frequency
o (figure 1). Finally, collisions are characterized by the following mechanical parameters: normal
and tangential restitution coefficients r, and r¢, while the static and dynamic friction coefficients
are us and pq. Their specific values will be given in each case.

(b) Symmetric profiles: sinusoidal versus parabolic

It may seem natural to consider sinusoidal vibrations, but we have studied systems for which the
vibration cycle is characterized by four separate parabolic movements in the sense that the height
depends quadratically in time. The acceleration is piecewise constant, with values a = +8Aw? /2.
This parabolic movement is described in detail in the next subsection. It will be interesting to
observe that for a given vibration frequency, there is a range of amplitudes for which the system
behaves almost as if there were sinusoidal vibrations.

(c) Asymmetric profiles

In our studies, energy is injected to the system by means of vertically vibrating the box using
asymmetric modes where, again, the acceleration is piecewise constant. We define the asymmetry
coefficient B (0 < g < 1), which divides the period in two intervals of size T and (1 — 8)T. In the
first interval, the box moves down with accelerations @ = +2A®»? /8272, while in the second one
the box moves up with accelerations a = +2A0?/(1 — B)?n2.

The heights Z of the top (+) and bottom (—) walls of the box are given by

Zi(t;ﬂ):ﬂ:g + a(t; B)A, (2.1)
where T =t mod T and
W(ﬁzﬂ_%z) O<t=—
#(zr — BT)(2r — 36T) PT o <pr
a(z; B) = 1 A+ BT (2.2)
m(h +(1 =3/t — 1+ HT) pT=7="——
1 1+ BT
A= P12 Qe -@-pADA+HT-27) —F—=t=T
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Figure 2. The function ce(z; B) that defines the box-oscillation profile for different values of the asymmetry parameter 3. For
B < 1/2, the downwards interval takes a shorter time than the upward movement (left) and conversely for 8 > 1/2 (right).
For 8 =1/2, the function «(t; B) resembles cos(2r T /7).

This function is continuous and has continuous first derivatives. The first derivative of «(z; 8)
vanishes at r =0, at t = 8T and at r =T. For g =1/2, this quadratic function roughly resembles
cos(2wt/T) (figure 2).

The control parameters are the asymmetry parameter B, the amplitude A and angular
frequency w =2n/T of the oscillations. The latter is characterized by the dimensionless
acceleration I = Aw?/ ¢ and dimensionless velocity { = Aw/ /g0

3. Asingle particle in the vibrating box

In the case of shallow boxes, it is important to understand first the movement of a single particle.
There are conditions under which the particle ends up in permanent contact with the base of the
box. But if Aw? /g is larger than unity, such a situation cannot occur. Next, it may happen that the
energy injected to the particle by the base is not enough for the particle to reach the upper wall in
the long-term evolution. We consider conditions under which neither of these last two cases can
take place.

If the single particle is left bouncing for a sufficiently large time, its angular and horizontal
translation velocities vanish so that the movement of the particle becomes strictly one-
dimensional and the friction coefficients as well as the tangential restitution coefficient become
irrelevant. There is a wide range of amplitudes and frequencies for which the particle reaches
this quite simple limit cycle characterized by two velocities: the velocities with which the particle
bounces off the two horizontal walls.

Increasing the vibration frequency or the amplitude, the limit cycle of the single particle
reaches a threshold above which the limit cycle suffers a bifurcation. Now the grain bounces twice
at the top and bottom walls before repeating its movement. Hence, the new limit cycle takes twice
the time associated to the limit cycle just before the bifurcation. There is a chain of bifurcations
of this type until the bouncing of the single particle becomes chaotic. Some cases of the resulting
limit cycles are presented in figure 3. All this can be appreciated in figure 4 where it is seen that
other modes appear as the amplitude grows, that is, the particle has more than one bouncing
mode for a given value of the amplitude. Figure 4 includes in red the bouncing velocities when
the vibration is sinusoidal with the same frequency and amplitude as our parabolic vibration.
To our surprise, when g =0.5, the bouncing velocities are almost exactly the same until about
Ao =0.2.

Figure 5 presents a qualitative picture of the possible outcomes. Different colours are used to
represent the single period, double period and chaotic motion cases. The comparison shows how
similar is the behaviour with sinusoidal and parabolic profiles, except that for large amplitudes
the parabolic profiles are more regular. In both cases, a band of chaotic motion is present for small
amplitudes.
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Figure 3. A single particle in the shallow box subject to vibrations having the same I™ and ¢ but different values of 8 may
have quite different stationary bouncing modes. In this example, we chose /™ = 18.56 and ¢ = 2.32.
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Figure 4. Bouncing velocities after colliding with the top and bottom walls of the shallow box once the particle has reached
a steady state. (a) Varying the vibration amplitude A in the case of the sinusoidal (red, light grey) and bi-parabolic (blue, dark
grey) symmetric profiles (8 = 1/2). (b) Varying the asymmetry parameter 8 with fixed vibrating amplitude A/o = 0.3. The
asymmetry on the obtained velocities around 8 = 1/2 is due to the presence of gravity. In both figures, = 8./g/0, 1y =
0.8andh =1820.In(b), I" =19.2and ¢ = 2.4. (Online version in colour.)

Using the same analysis, we consider the asymmetric profile, varying the parameter g in
the case where in the symmetric profile the limit cycle consists of a single bounce on the top
and bottom walls. Figure 2 shows that close to the symmetric case (8~ 0.5), the limit cycle is
perturbed, keeping its qualitative behaviour but changing the values of the bouncing velocities.
Further away from the symmetric condition, period doubling and chaos appear. The qualitative
plots in figure 6 confirm this result. The most regular motion is obtained in the vicinity of
B =0.5. For intermediate values of §, figure 6 shows that the effect of gravity is obvious in
the case of smaller values of ¢, while for ¢ large (small g) the structure of the figure is weakly
dependent on ¢.
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Figure 5. Map in the A-¢ plane of the qualitative characterization of the limit cycles for the sinusoidal profile (a) and for the
symmetric 8 = 1/2 parabolic profile (). The possible outcomes are: bouncing only with the bottom wall with period T (red,
grey), bouncing with the top and bottom walls with period T (blue, dark grey), bouncing with the bottom and top walls with
double period 2T (green, light grey) and more complex states (white). In both cases, h = 1.8¢ and r, = 0.8. (Online version in
colour.)
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Figure 6. Map in the A-¢ plane of the qualitative characterization of the limit cycles for different values of 8 using the same
colour coding asin figure 5. From left to right, top: 8 = 0.1,0.2, 0.3, middle: 8 = 0.4,0.5, 0.6, bottom: 8 = 0.7,0.8,0.9. In all
cases, h = 1.8 and r, = 0.8. (Online version in colour.)

4. Phase separation

In the case of systems composed by a single species of granular matter, there are conditions under
which the system separates into high- and low-density zones [7]. The results of the previous
section illustrate a central point: the form of the vibration—determined by the parameter f—has
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Figure7. Top view of a shallow system in a rather narrow box (L, << L) in a typical state for a system with common values for
all the parameters except for the value of . Particles are all the same, but they are represented by black circles if their height is
below half the height of the box, otherwise they are represented by grey circles. From top down, 8 = 0.1, 8 = 05and § =
0.75. The first and third cases have notoriously stable phase separated states, showing large density contrasts. In all cases, N =
410,L, = 90.010, L, = 4.650,h =180, 1, =1, = 091, ;g = 0.10, s = 0.17, 0 =104/g /0 and A = 0.290 implying
¢ =29and I =29.0.
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Figure 8. Density contrast ¢ in the B—N /Ngnolayer Plane for a system with [, =1.80" and L, x L, =900 x 4.650 and
vibration parameters & = w/+/g/0 =3and A=0.290; ¢ = 0.87, I" = 2.61. The inelasticity and friction grain—grain
and grain—wall coefficients are r, = r, = 0.91and ey = 0.10, 1¢s = 0.17. (Online version in colour.)
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Figure 9. (a) Density contrast against N/ Nyonolayer for B = 0.2 (red), B = 0.5 (blue) and B = 0.78 (green). The amplitude
is fixed to A = 0.290, while the dimensionless frequency takes the value & = w/+/g/o = 3. (b) Density contrast against
P for a system with N = 410 grains (N/Nmonolayer = 0.93). The amplitude is fixed to A = 0.29c", while the dimensionless
frequency takes the values & = 2 (black), & = 3 (blue), & = 5(grey), @ =10 (red), & = 15 (brown), & = 20 (green), » =
25 (yellow), & = 30 (magenta), & = 35 (purple) and @ = 40 (cyan). In all cases, L, = 1.80, Ly x [, =900 x 4.650 and
the inelasticity and friction grain—grain and grain—wall coefficients are r, = r; = 0.91and g = 0.10, £s = 0.17. (Online
version in colour.)

an important effect on the way the system behaves. This is illustrated in figure 7 which shows a
characteristic state of a vibrated granular system in a narrow three-dimensional box: depending
on the value of 8, the system may or may not present phase separation. Indeed, with all other
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parameters fixed to a case where the symmetric case would yield a state with no phase separation,
forcing with asymmetric profiles induces phase separation.

For a quantitative analysis, we define the contrast observable ¢, which is the ratio between
the smaller and larger observed area densities: ¢ = (max — min)/(#max + fmin)- In the case of the
system shown in figure 7, which is strictly three dimensional, the density is evaluated considering
many transversal strips and calculating the area density in each strip, defined using the projection
of the particles in each two-dimensional strip.

Figure 8 shows that, in agreement with the snapshots in figure 7, the density contrast is
larger when g is away from the symmetric case § =0.5. A transition line can be identified where
there is a steep increase in c. This transition line indicates that away from the symmetric case, a
smaller number of particles is needed to produce the phase separation. This is clearly presented
in figure 9a, where the contrast is shown as a function of the number of particles for three values
of B. A clear transition is observed, with a critical number of particles that is larger for g =1/2.

Figure 9b presents the contrast c as a function of g for a fixed number of particles and different
values of w. The collapse between the majority of the curves shows that the major impact in the
phase separation is the shape of the vibration rather than the energy injection rate.

5. Conclusion

In this article, we have studied the effect of changing the energy injection profile of a box
of vibrofluidized shallow granular media, where the box moves vertically in a periodic way.
With this aim, we modify the oscillation profile. Originally, the profile was symmetric with
piecewise constant accelerations, mimicking a sinusoidal oscillation. This profile was changed to
an asymmetric one, still with piecewise constant accelerations, where the downward and upward
phases take different fractions of the oscillation period: 8 and 1 — B, respectively.

Single isolated grains reach states where the motion is purely vertical. These states can be
periodic in the form of limit cycles with the same period as the box or with a period that is
an integer multiple of the box period. Also chaotic or irregular motion is possible. The effect
of moving towards asymmetric forcing is to increase the region in parameter space where chaotic
motion is observed. Conversely, it is more probable to find regular motion with the same period
as the box for the symmetric forcing.

The asymmetric forcing also has an effect on the phase separation between dense and dilute
regions when many particles are placed in the box. The phase separation takes place for smaller
number of particles when the forcing is asymmetric. The previous result suggests that other ways
of increasing the asymmetry could also be efficient in producing phase separation. As an extreme
case, we consider a sawtooth profile at high frequency and small amplitude, such that particles
always meet the walls at the same position and approaching the particles with a fixed velocity.
Figure 10 shows that indeed phase separation takes place and high contrast states can be attained.

It remains as an open question if there is a relation between the accessibility to chaotic
behaviour for single particles far from the symmetric profile and the enhanced phase separation
in the collective dynamics with many particles.

In [7], it was shown that the origin of the phase separation is a negative compressibility region
in the effective equation of state of the pressure as a function of density p = p(n). This equation
of state emerges as a consequence of the temperature being governed by the density under
high vertical confinement, with T(n) a monotonically decreasing function. Then, equations of
state p =p(n, T) derived from kinetic theory, with positive compressibility can turn into effective
equations of state with negative compressibility and van der Waals loops [27]. An attempt to
understand why it is that for g far from 0.5 a phase separation takes place for lower densities, it
would be necessary to study in the stationary regime the enslaving T(1), which will depend on
B. This analysis needs the study of the limit cycles coupled with the three-dimensional collisions
that transfer energy from the vertical to the horizontal degrees of freedom. This analysis, beyond
the scope of this article, is postponed for a future study.
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Figure 10. Top view of a shallow system in a box of square basis. This is a typical state once phase separation has taken place.
The black/grey colouring is as in figure 7. The limit of infinitely rapid vibration is taken (A — 0, @ — oo, while Aw = Vy =
constant) for a sawtooth profile with no gravity. This state was obtained using N =1732, L, = L, =400, [, =190, 1, =
re = 0.7 (grain—grain), r, = r; = 0.999 (wall—-grain) and s = g = 0.1.

The results of the present article as well as others confirm that the properties of non-
equilibrium systems depend not only on the internal dynamics but also on the energy injection
mechanism. Consistent with this, it should be said that there is no guarantee that the conclusion
drawn here could be valid for other forcing mechanisms.
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