
Physica A 257 (1998) 36–44

Nonlinear transport laws for low density 
uids
Patricio Cordero a; ∗, Dino Risso b

a Departamento de F��sica, Facultad de Ciencias F��sicas y Matem�aticas, Universidad de Chile,
Casilla 487-3, Santiago 3, Chile

bDepartamento de F��sica, Facultad de Ciencias, Universidad del B��o-B��o Concepci�on, Chile

Abstract

Hydrodynamics equations derived directly from Boltzmann’s equation and specialized to she-
ared planar 
ow are shown to yield approximate nonlinear laws of heat transport and of viscous

ow. The law of viscous 
ow predicts non-Newtonian e�ects including shear thinning and the
law of heat transport is more general than Fourier’s law: it is not linear and it implies heat 
ow
parallel to the isotherms. These nonlinear transport laws are faithfully corroborated by molecular
dynamic simulations based on straightforward Newtonian dynamics. c© 1998 Elsevier Science
B.V. All rights reserved.
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1. Gas-dynamics: No local thermodynamic equilibrium

Transport in dilute systems subjected to strain is quite nontrivial. The assumption
behind the Navier–Stokes equations that changes in a 
uid take place smoothly so that
the system can be considered in a state of local thermodynamic equilibrium, does not
hold when the length scales associated to gradients are comparable to the mean free
path of the molecules.
To reassess the form of the transport laws in the case of low density systems far

from equilibrium, it is most convenient to go back to kinetic theory. A quite complex
hydrodynamics, that we shall call Boltzmann–Grad gas-dynamics, describing gases
subject to gradients that far exceed the applicability of Navier–Stokes formalism, is
obtained making a formal moment expansion of the distribution function f(r; c; t) and
solving self-consistently for the coe�cients of the expansion [1].
Boltzmann–Grad gas-dynamics involve, besides the density, velocity and temperature

�elds, two additional hydrodynamic �elds: the pressure tensor P and the heat 
ux
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vector q. Since the whole framework is derived from Boltzmann’s equation – the
relationship between the energy density per unit mass, u, and T in dimension d is
simply u=(d=2m)kBT and the pressure equation is that for ideal gases: p= n kBT .
The dynamic equations for P and q are nonlinear and they fully substitute the usual
static linear constitutive equations used in standard hydrodynamics.
The resulting gas-dynamic equations are found in Grad’s article and specialized to

the d-dimensional 
uid of hard disks (d=2 or 3) are in [2,3]. In [3] we were able to
�nd a closed solution to this hydrodynamics in the case of a laminar planar Couette

ow. It was shown, for example, that since the system heats up, there is heat 
ux q
and this 
ux vector has not only a component orthogonal to the isotherms but also has
a component parallel to them. The corresponding thermal conductivities were found in
a closed form. They depend not only on temperature and density but also on the shear
rate. In the same article we found a closed and nonlinear law of viscous 
ow that can
be forced to look like Newton’s law but with a shear viscosity coe�cient which again
depends on the shear rate and presents shear thinning.
The above reference was written before we knew about similar results derived from

the BGK approximation to Boltzmann’s equation [4]. These authors too derive the
existence of a longitudinal component of the heat 
ux. The Couette 
ow of a dilute
system of Maxwell particles under strong strain has also been studied theoretically in
[5,6] using the BGK equation.
The approximate law of heat transport presented in this article for the normal com-

ponent qy resembles expressions already known for dense 
uids, as one can see, for
example in [7] and references therein.
In Boltzmann’s equation the walls of the gas container should either be considered

as external forces acting about the boundaries of the system or, if walls are idealized as
rigid geometric objects, they can be included as boundary conditions. The description
given above does not include walls in any of these variants, therefore we cannot expect
that the present theoretical framework will give a �ne description near the walls.
Section 2 presents Boltzmann–Grad’s gas-dynamic equations in the bidimensional

planar case. In Section 3 the transport laws implied by these gas-dynamic equations
are approximated up to the third order. Section 4 makes some comparisons with our
own molecular dynamic simulations.
From now on we choose temperature units such that kB=1.

2. Bidimensional laminar 
ow

In the following we specialize Boltzmann–Grad gas-dynamics to the 2D laminar and
stationary case when the movement of a 2D hard disk 
uid is between two walls
separated by a distance Ly, parallel to the X -axis. There is gravity g=(g; 0) in the X -
direction. In this case there is x-translation invariance and therefore the only coordinate
that plays a role is the transversal coordinate y. The only nontrivial velocity component
is vx(y) and only its derivative v′x appears in the equations, but we eliminate it in favor
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Table 1
On the left are the values of the parities Ig of the di�erent hydrodynamic �elds as de�ned in the text. On
the right are the Iy parities for the Couette and Poiseuille 
ows, y is the coordinate transversal to the 
ow

Ig ICouettey IPoiseuilley


 − 
 + −
T + T + +
Pxy − Pxy + −
Pyy + Pyy + +
qx − qx − +
qy + qy − −

of the adimensional shear rate 
,


(y)= �(y)v′x; �(y)≡ 1
2�p(y)

√
mT (y)
�

; (1)

where � is the free 
ight time. The diameter and mass of the particles are � and m,
respectively. The origin of coordinates is chosen in the middle of the channel so that
−Ly=26y6Ly=2.
The mass balance equation is identically satis�ed. The momentum and energy bal-

ances imply that Pyy is uniform and

P′
xy =mg

p
T
; �q′y =−
 Pxy : (2)

The balance equations associated to the pressure tensor are two:

p(y)=Pyy − 3
2
(y)Pxy(y);

�
2
q′x =−Pxy − 
 Pyy : (3)

Finally, the balance equations associated to q are

− 6�
m
PxyT ′=2g�Pyy + qx + 3
qy ; (4)

− �
m
[4PyyT ′ + 3(
PxyT )′] =−2g�Pxy + qy + 
qx : (5)

These is a set of �ve coupled nonlinear ordinary di�erential Eqs. (2a), (2b), (3b),
(4) and (5) for the hydrodynamic �elds 
, T , Pxy, qx and qy. Furthermore, one has
to determine the constant Pyy while, by de�nition, Pxx =Pyy − 3
Pxy. The hydrostatic
pressure is determined from Eq. (3a).
As it is seen from Eq. (2), Pxy is not uniform only when g 6= 0.
One can convince oneself that the above hydrodynamic equations are invariant under

the inversion g→−g provided 
, Pxy and qx are inverted too. We will say that these
three hydrodynamic �elds have negative Ig parity. In cases when there is also invariance
with respect to the inversion of the transversal coordinate y it is possible to de�ne the
Iy parity. Table 1 gives the value of these parities for our hydrodynamic �elds.
To analyze the above equations we could choose quite general boundary conditions

compatible with x-translation invariance. We could �x temperatures T0 and T0 + � at
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the bottom and top walls, and �x the tangential velocities to be −vb and vt at these
walls. Furthermore, choosing periodic boundary conditions in the x-direction (period-
icity length Lx) it is natural to require that the integral of the number density be the
number of particles or

∫ p
T dy=N=Lx. A quite trivial exercise is to integrate the above

system of equations when g=0 and vb= vt =0 (hence 
=0). It is a purely conductive
case and one can derive the analytic form of the temperature pro�le parameterized by
�. This case is so simple that it can be studied in a wider context as in [8].
In the general case, we could take g, �, vb and vt as �rst order quantities in the

sense that simple adimensional quantities proportional to them are much smaller than
unity. This would imply that 
, Pxy and dT=dy are �rst order while T and Pyy are �nite
(zero order). Obtaining a �rst order solution for our hydrodynamic equations is then a
simple exercise. At this order, for example, qx is a nontrivial constant.
In the usual Couette and Poiseuille cases �=0 and dT=dy is a second order quantity.

These two quite important cases will be considered in the following section to write
down transport laws. We reported an early study of Poiseuille 
ow for a dense 
uid
in [9].

3. The symmetric Couette and Poiseuille 
ows: third order transport laws

In the case when there is no temperature di�erence between the two walls (�=0)
and vb= vt = v0 the system has a symmetry with respect to inverting y provided also

 is inverted, since it comes from a derivative with respect to y. Considering again
g and 
 as �rst order quantities the hydrodynamic �elds can be expanded as sums of
even (odd) order contributions if Ig is even (odd). The only �elds with zero order
contributions are the temperature (T ≈T0) and the constant Pyy. Since T is even,
dT=dy is of second order. One can check, for example from the �rst order integration
suggested in Section 2, that qx has a �rst order uniform term.
Hence, both for the Couette and Poiseuille 
ows q′x is a third-order quantity which

implies through Eq. (2) that Pxy + 
 Pyy is of third order even though both terms are
�rst order. Taking all this into consideration and solving algebraically Eqs. (4) and (5)
for qx and qy one derives that up to second order (the remainder is of fourth order),

qy =−4� Pyy
m

T ′ +
3�PyyT
2m

(
2)′ − 3�pg
 ; (6)

while qx up to the third order is

qx =−2g�Pyy + 18�Pyym

T ′ − 3�PyyT

m
(
3)′ + 9�p
2g : (7)

In the case of the planar laminar Couette 
ow g=0 (we should rename Ig as I
), and
we have shown in [3] that Pxy and 
 are uniform, therefore, q takes the form −K∇T
which looks like Fourier’s law but K is a matrix of thermal conductivity which not
only depends on the density and temperature but also depends on the shear rate. The
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components of K were given analytically and there values coincided with what was
measured for small values of the shear rate [3].
In the case of the Poiseuille 
ow, as we see from the expressions given above, q

does not take the form −K∇T as other gradients come into play.
The law of viscous 
ow this time is

Pxy =−
Pyy + �
2Pyy
2

(
3mg2

T

+

{
(ln T )′ − 21

2
(
2)′

}
g

− 18
m
(
T ′)′ +

3T
m
(
3)′′

)
: (8)

In the case of the Poiseuille 
ow the shear rate, to �rst order, is linear in y, its
gradient is uniform and its second derivative is of third order. In the case of the
Couette 
ow we have g=0 and 
 uniform, as shown in [3], and the above approximate
expression for Pxy is

PCouettexy ≈−
Pyy − 9�2Pyy
m


T ′′; (9)

but we know that the exact expression, within Boltzmann–Grad’s gas-dynamics is [3]

PCouettexy =
4 + 3
2 −

√
16 + 120
2 − 63
4

3(4− 3
2)
 Pyy : (10)

In spite of the heating up of the system and hence its nonuniform temperature, and
density �elds, PCouettexy is uniform. Our simulations show this to be true even near the
walls where our formalism breaks down and in particular 
 does not turn out to be
uniform.
In the above transport laws we have written qy, qx and Pxy in terms of (Ig=+,

Iy =+) quantities – like T and Pyy – multiplying terms odd in 
, d=dy and, in the
case of the Poiseuille 
ow, g as well. We notice that in both cases (Couette and
Poiseuille 
ows) qy has the same parity as d=dy and 
 g (obviously terms proportional
to g exist only in the Poiseuille case); qx has the same parity as 
 d=dy and as g; Pxy
has the same parity as 
 and as g d=dy. Therefore, the expressions for the transport
laws at any order will have forms similar to the ones found up to the third order, but
the (+;+) factor in each term will be more complex as we go up to higher orders.

4. Theory versus simulations

We have solved perturbatively the Poiseuille case up to the sixth order [10] and have
integrated, as we have repeatedly emphasized, in a closed form the Couette case [3].
In this section we compare these theoretical results with our own molecular dynamic
simulations [11,12] using a dilute 
uid of hard disks.
The system consists of N particles inside a rectangular box of Lx ×Ly. The collisions

among particles are perfectly elastic. The vertical walls (along the Y -direction) are
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treated as periodic boundaries while the collisions with the horizontal walls impose a
temperature T0 = 1 on the 
uid as well as a velocity v0 at the top wall and −v0 at the
bottom wall in the case of Couette 
ow, but v0 = 0 in the case of Poiseuille 
ow. One
has to bear in mind though that, for �nite systems such as the present one, there are
velocity and temperature jumps which cannot be neglected, implying that the limits of
T (y) and vx(y) do not give exactly the values externally imposed.
The fraction of area covered by the disks is chosen to be 1% (the nonideal corrections

to the equation of state are less than 2%). The size of the system is large enough that
the ratio B between the mean free path ‘ and the width Ly of the channel is about
0.018.

4.1. Poiseuille 
ow

For Poiseuille 
ow simulations we consider a system of N =7056 particles in
a box of size Ly = Lx=4=1488:83� and also a larger system with N =30 000 and
Ly = Lx =1488:83�. The external acceleration has been chosen as g=0:119T0=mLy =
0:00008. We report here results for the smaller system.
As T0 is the only free parameter that enters the sixth-order expansions of the hy-

drodynamics �eld pro�les, we use the simulational results for Pyy to determine its
e�ective value which is T0 = 1:10 near the walls through the sixth-order expansion of
the Pyy constant. The other theoretical pro�les obtained using this value for T0 are then
compared with the simulational results. We found very good agreement.
In Fig. 1 (at the top) is a comparison between the simulational results and the

theoretical predictions (�rst and third order) for the 
 pro�le. It can be seen that better
agreement is obtained when considering third order corrections.
Theory predicts a non vanishing heat 
ux qx parallel to the isotherms as it is indeed

observed in the simulations. At the bottom, Fig. 1 compares simulational results with
theory. First order gives a uniform negative value which describes well the pro�le in
the central part of the channel. To take account of the observations by the walls, third
order theoretical predictions must be considered.

4.2. Couette 
ow

Results for a system of N =7680 particles are in [3]. Here we report results for a
larger system of N =29 538 particles with Ly = Lx =1524:31� and wall velocities of
v0 = 1:0

√
T=m. The results con�rm the theoretical predictions and a better agreement

with theory is found in the case of the larger system since boundary e�ects are smaller.
Most pro�les show discrepancies with theoretical results at the boundaries but very

good agreement is found in the bulk of the system. From the simulational values of Pxx
and Pyy an e�ective value for 
 is obtained through the theoretical expressions. The free
parameter T0 is �xed using the theoretical expressions for T (y) and the simulational
values of the temperature at the center of the channel. Using these values for 
 and
T0 the other theoretical pro�les are built. Very good agreement with theory is found.
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Fig. 1. At the top is the 
 pro�le in the case of Poiseuille 
ow (N =7056; mgLy=kBT0 = 0:119). At the
bottom is the qx pro�le (heat 
ux parallel to the isotherms). The squares represent the simulational results.
The dashed and dotted lines corresponds to �rst (second) and third (fourth) order theoretical predictions
respectively.
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Fig. 2. At the top qx and qy pro�les for Couette 
ow (N =29 538 and 
=0:06). At the bottom is the
temperature pro�le. In dots the simulational results. The dashed line corresponds to the theoretical prediction.
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Fig. 2 shows at the top both components of the heat 
ux: the normal heat 
ux
orthogonal to the isotherms and the heat 
ux parallel to the isotherms. The graph at
the bottom shows the temperature pro�le. We see that the theory gives an excellent
description of what we observe.
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