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Abstract. An algebraic method 15 used to solve the bound state problem for the most
general Natanzon potential for which the Schrédinger equation can be reduced to the
confluent hypergeometric form (hence, confluent potentials) The solution is cbtajned
siraightforwardly A sunple argument is given to sustain that the Natanzon potential 1s the
most general confiuent potential

1. Imiroduction

Last year a remarkable set of potentials was solved using an algebraic method [1]. On
the other hand, some years ago Natanzon [2] found a wide family of potentials for
which the Schrodinger equation can be selved. With these potentials the Schrédinger
eguation can be reduced either to hypergeometnic form or to confiuent hypergeometric
form. The potentials in the second case will be called ronfluent potentials.

Cooper et al [3] have made a complete study of the whole family of Natanzon
potentials in connection with supersymmetric guantum mechanics and they have found
new solvable poientials. Sce also the references cited in this interssting paper. We
follow much of their notation.

The present article deals with the Natanzon family of confluent potentials, It is
shown that there is a simple algebraic method [4-6] to solve the bound state problem
for them. It will be called spectrum generating algebra (or sca) method.

The confluent Natanzon potentials
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are defined 1n terms of six parameters gy, 85, 01, 03, ¢ and » and a function h{r)
satisfying
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where

R=oh*+ah+e (1.3)
and

A=t —40,0,. (1.4)

Particular cases are well known potentials. the three-dimensional harmonic oscil-
lator (o5 =0, ¢, = 0); the three-dimensional Coulomb potential (; =0, ¢,=0) and the
Morse potential (o,=0, o,=0).

The algebraic method summarized in section 2 has in the past allowed one to solve
collectively the harmenic and Coulomb potentials, the bound state problem for the
Morse potential and it has been applied also to deal with the Kiein-Gordon and Dirac
equations [6]. In [4] a family of potentials which can now be identified with the
confluent Natanzon subclass ¢, =0 was solved, Details to sustain the last statement
are given at the end of section 2. The resulits of [ 1] already cited can now be described
as giving the solution to several potentials which ars subclasses of the Natanzon
confluent family of potentials.

Other developments [ 7] gave an ingenicus and rather different approach that made
it possible to deal directly with the hypergeometric potentials, 2 method that was
successfully used in [8] to solve the bound state problem for many of the solvable
hypergeometric potentals. ) ;

Besides [3] supersymmetric quantum mechanics (susvQm) has been used as an
algebraic method to find new solvable poteniials by others as in [9, 10]. susyom has
also been extended to the scattering sector [11]. The susyom techniques lead to purely
algebraic solutions when the potentials are shape invariant [12, 13]. Results on this
are aiso found in [14]. The general Natanzon potentials are not directly scivabie by
these techniques precisely because they are not shape invariant [3].

Using the potential group approach the Morse and Péschl-Teller potential problem
{bound and scatfering states) were shown to be connected with unitary representations
of SU{2) (bound state sector) and SU(1, 1) = 30(2, 1) (scattering sector) [15]. See also
[16]. More recently 1t was shown that by making variable and operator transformations
on shape invariant potentials it was possible 10 solve more general Hamltonians and
in this way they [17] obtained the solution for the general hypergeometric. Natanzon
potential starting from the P3schi-Teiler potential and also starting from the 3D
harmonic oscillator they solved confluent Natanzon potentials. On the Morse potential
see also [ 18]. Quite recently a generalization of the potential group approach has been
proposed [19] to deal both with the confluen: and general hypergeometric related
Schridinger equations,

Ia all the above methods the Hamiltonian is written directly in terms of the operators
of the algebraic structure involved. Typically guadratic expressions on the clements
of the algebra are used. In our case, on the contrary we make an identification of the
form G{r{(H — EY¥(r} =[al;+ bJ,]%(r). The right-hand side is hnear on the generators
. of 802, 1).

In section 2 the sGA method is summarized. In section 3 it is applied to find the
bound staie problem associated to the genera! confluent Natanzon potential and in
section 4 a direct plausibility argument is given-—within the context of our algebraic
method—to suggest that potential {11) is the most general one for which the
Schrédinger equation can be reduced to the confiuent hypergeometric form.
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. 2. Review of the aigebraic method

In what follows a sketch of the sca method is presented. In this approach [4, 5] the
eigenvalue probiem (H — E)¥ =0 can be restated in terms of a particular realization
of the SO(2, 1) generators J, as:

[2(1+ 83 +2(1-B),—8]¥ =0 (2.1)

where the generators satisfy the commutation relations [J,, Ji}=il,, [J;, iLl=J;,
{Jo, if;]=J; and B> 0 o guarantee ihat the operator acting on ¥ in (2.1} is compact
(i.e., it has a discrete spectrum). The coeflicients B and § are determined by requiring
that (2.1) reproduces the Schridinger equation up to a common factor. In [4] the
conmection between different realizations of the algebra SO(2, 1) in terms of differential
operators and the Schiddinger equation with several potentials was established.

It was shown that in all cases the suitable representation is D", conseguently, the
compact generator Jy has the specirum

}o=v+%+v%+Q=y+g (2:2)

where Q = J§— Ji—J% is the Casimir operator of the algebra and »=0,1,2,...and in
every irreducible representation y is defined such that the value Q is

Q:%’ _-_"-’—1\ or y=1+V14+40Q. (2.3)
2\2 7/
Since v gives the same value for Q as y'=1— v its definition is completed requiring
that y=1.
if the tilted operator

Jo=expli6J,1J, expl—i6J,] 2.9)
with
-1
tanh 6= ;-:%1 (2.5)
is used in (2.1), then that equaiion becowmss,
x 8
Lo, ., = m v, (2.6)
where ¥, is the Schrédinger wavefunction. From the above expressions it foliows that
8
=—2v+ . 2.7
y=—20+3 VB @7

For the family of confluent potentials the following realization { 5] for the generators
7, is useful in terms of an arbitrary function a(r),

h & Bk 3R _Q h
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The comparison of {2.1) with the Schrodinger equation for spherically symmetric
potentials and using (2.8) for the generators, yields the following relationship between
our basic function k(r) and the potential V(r),

18" 3 h 2 1% 2 ﬁ o 5’1'2
E_V(r)_EF_Z(b') -Q(h) -4h -f-4 e (2.9)

Equations (2.7) and (2.9) are the practicai basis to apply the sGa method besides the
relation (2.3) between Q and .

Example. Take h(r)=2r and V(r)=—e*/r+1(I+1)/r*. From (2.9) it directly follows
that 8 =2¢*, 8 =~E and @=I(l+1), The last of these relations implies that y = 2/+2
which we use in (2.7) to obtain that

e4

E, = ————,
4+v+1)?

This is ali the effort it takes to obtain an energy spectrum. Notice thar obtaining the
energy spectrum is a purely algebraic task.

Equation (2.9) makes it evident that at least one of the constants y (hence Q), 8
or 8 depend on the energy cigenvalue E,. Consequently, from now on they will be
denoted v, B., 8, and Q,.

The carrier space for the representation (2.8) is expanded by the functions

. _ B2(r) _ h(r)
v,,,v(h(r))—mexp[ 5

where (Fi(—v, v,, h(r)) are the standard confluent hypergeometric functions. This
representation space is easily derived. For example, 1t can be obtained directly from
the self-contained section 5 of [5].

The wavefunction which appears in (2.6) is obtained by tilting the function defined
1 (2.10). 11 is amazing t0 observe that the only effcct of the tilt is to produce again a
function (2.10) having an argument f(7) instead of k(r) where

Fn=vB,r(®). (2.11)

Similarly the tilted generators look exactly as in (2.8) but with 7(r) playing the
role of k(r). The tilt acts as a dilatation rescaling the basic function % by a factor VB,.

From an algebraic point of view it is eguivalent to work with the representation
(2.8) over the space defined by the functions (2.10) or to work with the tilted objects
replacing h by f everywhere,

From the commutation relations 1t foliows that the tilted generators have the effect:

T2 (D)= (4 08,00, (7))
T (FEN =0Ty, (F()

where J, = J, +if,.

We come back to the statement that in [4] (referced to as I in this paragraph) a
solution to the bound state problem of the whole family of confluent Natanzon
potentials with ¢,=0 was given. In I the formalism is explicitly three dimensional, but
it is simpler and equivaient to deal with functions of r only. The algebra generators

]XFI(—Vv Yos h(r)} {2'10)

{2.12)
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given in 1-(3.17) are essentially the same as {2.10). Instead of (1.2) in I the differential
equation for h is I-(4.6), which corresponds to (1.2) with ¢,=0. The Hamiltonian is
written explicitly in 1-(4.5). Checking that the potential involved corresponds to the
subclass ¢,=0 is now straightforward.

The present formalism is invariant to the simultaneous change

ZTZ b>=2 2.13)
‘ 17> — & — .
o1 o, vB>—/B

while vy remains unchanged. Given this freedom there is no loss of generality choosing
h positive. .

In (1.2) it has been assumed that s has a positive denvative, which is not true in -
the case of the Morse potential. Nathing changes if a minus sign is put in front of the
right-hand side in (1.2) (and (3.1)) since every term in (2.9) has an even number of
derivatives of h.

3, Selwica to the Natanzon confluent potential problem

The way of using the algebraic method of section 2 to solve the Schrédinger problem
for the confluent Natanzon potentials is now shown step by step. First notice that R
satisfies,

dR - 2h )

"'d"";'=(-20'231+0'1)ﬁ ] 3.1)

and use this relatioil plus {1.2) to find that (2.9) becomes,
8h—B R —4Q, -1 4ok’ +oih 5(oph’+30vh)’ -
R rRZ R®
If & is eliminated from (3.2) in favour of R sclving the quadratic equation (1.3)
(which roct we choose is immaterial) and the potential (1.1} is added to (3.2}, an
expression which should be E, itself is obtained The expression that is actuaily
obtained however is the sum of three types of terms r-independent terms, rerms
proportional to V4Ro,~ A and terms proportionai to R™'. Hence three conditions
emerge

E,-V(r)= (3.2)

E, =§.€.—_ﬁ” (3.3(!)
T2
8,8, B 2)

= D8ty 3.3b
0 26, 203 (3.35)

— - 2 R
0“—:~—2c0(5””g2,),m O‘l(au+gl} ’L(gz ”%2)0117_1_40?. (330)

FAz L] “i2

The last two expressions represent a linear system for B8, and §,, which can be
replaced back in (3.3a). Elementary manipulations bring in

Q,=i{n—1—-cE,) (3.4a)
8, = ~gyto B, (3.45)
8 =g, ~a,E,. (3.4c)
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Taking (3.4a) with Q, eliminated in favour of v, from (2.3) renders,
7u=1+‘17¢_CDEv- (35)

Zemanding that the expression 8, =2vE,(7,+2») from (2.7) is 1dentified with
(3.4b) it foilows that

81— Ev
B,

This is the ¢xpression that determines the energy spectrum of the potential defined in
section 1. _

The wavefunctions are the functions ¥(f) of (2.10) with argument § given by
(2.11), namely,

—y,=2n. {3.6)

¥, X RYApmV/2 eXP["‘/E;hletpi(‘l’, Yo Jé:h) 3.7
which has the form given in [31.

4. Why the Notarzon petentials

Finally it is argued in a quite simple way that the Natanzon potential defined in section
1 is unique. The constraint, of course, is that the Schrédinges eguation can be reduced
to confiuent hypergeometric form or—equivalenily [5]—that it can be solved with the
algebraic method of section 2. In this section all subindices v are dropped.
With no loss of generality it can be assumed that
dh

-&—r=:t G(k). {4.1)

to rewrite equation (2.9) in the form

1d¢G 5 4G G 8G 8
—— e — Q)+~ ——= G, 42
4G d* 16G° dr Qir 4 h 4G 42)
Since the function k gives the potential through (1.1) it must be energy independent.
Making a formal derivative of (4.2) with respect to E gives an equation with four
algebraically independent terms,

_ G d8 Gdg GdQ
1= de adE War @3)
implying that Q, 8 and 3 depend at most linearly on the energy. Therefore the derivatives
of these three quantities should be constants. Calling them ~¢y/4, ¢, and —o, tespec-
tively the Natanzon potential of section 1 is recovered.

E-V(r=
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