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Using molecular dynamics we study the behavior of a large particle immersed in a bed of smaller ones. The
system is bidimensional, consisting of many rough inelastic hard disks of equal size plus a larger one: the
intruder. All possible parameters of the system are kept fixed except for two dimensionless parameters deter-
mining the frequency and amplitude of the vibrating base. A systematic exploration of this parameter space
leads to determining a transition line separating a zone in which the Brazil nut effect is observed and one in
which it is not. The results strongly suggest that, in the region of the parameter space in which the study is
made, there is a minimum amplitude and a maximum frequency for the Brazil nut effect to take place. These
results compare well with isolated results from other authors.
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I. INTRODUCTION

For several years physicists have systematically been
studying the behavior of granular matter �1–5�. Granular
matter steadily excited behaves in several respects like a
standard fluid but it exhibits some peculiar behavior of its
own. Of the many phenomena that granular matter presents
under external excitations, one can mention the formation of
clusters, avalanches, piling, pattern formation, sound propa-
gation, and segregation.

We are presently interested in the size segregation phe-
nomenon in the case of a vibrated granular system containing
one larger particle �the intruder� which, under appropriate
conditions, rises to the top. This phenomenon is known as
the Brazil nut effect �BNE� and it was so named by Rosato
and co-workers �6�. We would like to distinguish this phe-
nomenon from a similar one, also called BNE, in which there
is not one intruder but a binary mixture, each species, typi-
cally occupying roughly the same volume. In the case of a
binary mixture—differing by the size of the grains, or the
density, etc.—it is interesting to study the conditions under
which the two species segregate and which species migrate
to the top �BNE and reverse BNE�, but this case is different
as it has additional effects involved such as the interactions
among the large particles �7�.

There are many experimental and simulational studies of
segregation and in their conclusions authors attribute it to a
variety of mechanisms such as void filling �6,8,9�, arch
formation �10–12�, percolation �13,14�, condensation
�13–15�, buoyancy �7,16–18�, inertia �18,19�, convection
�11,12,18,20–24�, and competition between buoyancy and
geometric forces �25,26�. In Ref. �27� the authors tabulate
seven possible mechanisms in the case when both types of
grains have the same mass.

The above mechanisms are valid at least in the case when
there is no interstitial fluid, otherwise other mechanisms arise
�5�. We concentrate on the case when no such fluid has any
significant effect. Which mechanism dominates depends on
the region in the huge control parameter space in which the
system is located. One may count about 20 possible param-
eters. Among them are the geometry of the container, the

amplitude and frequency of the vibration of the system, the
number of small grains, the size of them and the intruder’s
size, the densities of the grains and the mechanical properties
associated with collisions.

At present there is no generally accepted theory to antici-
pate which mechanisms are dominant for the segregation
phenomena and it would be necessary to make a huge num-
ber of experiments and/or molecular dynamic simulations to
determine the relevant mechanisms in each case.

There is a wide literature on the analysis of experimental
or molecular dynamic results where only one parameter is
varied. A few authors vary more than two parameters but
give only a few values to each one of them. Many authors
vary the density ratio and/or the diameter ratio, which is
different than what we do.

In this paper we report a systematic molecular dynamic
study—using a quite efficient event-driven simulator pro-
gram, �28,29�—to find the conditions under which there is or
there is no BNE, varying only the parameters which deter-
mine the movement of the vertically vibrating base, namely,
its amplitude A and the angular frequency �. The system
consists of many small inelastic disks and an intruder in a
box with three rigid and rough walls: The vibrating base and
the lateral walls, which do not move.

For the system under study, the single intruder is a sig-
nificant part of the whole system �sidewise it represents 20%
of the system� and since we use lateral rough walls the fric-
tion with these walls tends to trigger a downward convective
current in each side of the box inducing an upward convec-
tive current in the middle of the system. We argue that an
interplay between the energy influx and the amplitude of the
vibrating base are the basic ingredients inducing the convec-
tive movement.

The result is the determination of a line—in this two-
dimensional �2D� parameter space determining the move-
ment of the base—the transition line, separating a BNE zone
from a non-BNE zone. The transition line shows that there is
a minimum amplitude and a maximum frequency beyond
which no BNE is observed. In this paper we present this
simulational result �the transition line� without attempting a
deep theoretical elaboration concerning the detail dynamics
behind the phenomenon.
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In Sec. II we describe the model and the control param-
eters. Section III presents the simulational results and a com-
parison is made with previous studies in which they use the
amplitude and frequency as control parameters as we do. A
summary and conclusions are presented in Sec. IV.

II. SYSTEM

The system of small grains and the intruder is in a box
with a vertically vibrating base whereas the lateral walls are
rough and remain motionless. The interactions within the
system are the instantaneous and dissipative collisions be-
tween the grains and between the grains and the walls.

We model the grains and the intruder as rough hard disks
with translational and rotational degrees of freedom. The col-
lision rule, defined in �30,31�, depends on the normal and
tangential restitution coefficients rn and rt and the static and
dynamic friction coefficients �s and �d. This collision rule
incorporates the standard law of friction �Coulomb’s law�
distinguishing static and dynamic friction. In its derivation,
instead of taking into consideration the notion of force it is
necessary to consider, of course, the instantaneous momen-
tum exchanged. In the appropriate limit this rule also gives
the grain-wall collision rule.

In order to make a systematic study of the bidimensional
system in a reasonable time we fix most of the control pa-
rameters. We restrict our study to a system of 1200+1 par-
ticles inside a box of width Lx=40�, where � is the diameter
of the small grains. The mass density of the intruder equals
that of the smaller grains and the ratio between their diam-
eters is 8. All the restitution coefficients are the same, normal
and tangential, namely, grain-grain, grain-intruder, grain-
wall, intruder-wall, and all friction coefficients are the same
as well. This is summarized in Table I.

It should be noted that since the intruder has the same
mass density as the small grains, the intruder is denser than
the system of small grains even when the latter are close
packed, because of the interstitial voids.

We use, for numerical accuracy, a vibrating base which
does not move sinusoidally but in a periodic vertical para-
bolic movement given, in the range 0� t�T, by

ybase = �
8A

T2 �2t − T�t , 0 � t �
T

2
,

8A

T2 �2t − T��T − t� ,
T

2
� t � T ,�

where A is the amplitude, T is the period, and t is time. Due
to the parabolic movement, the base’s acceleration is piece-
wise constant, abase= �

32A
T2 = �

8
�2 A�2.

In the present study the control parameters are the ampli-
tude and frequency of the vibrating base, A and �, or rather,
the parameters 	 and 
 which represent the dimensionless
base acceleration and velocity, respectively,

	 =
8

�2

A�2

g
, 
 =� 2

�g
A� , �1�

where g is the acceleration of gravity. In our study we ex-
plore the region 2.0�	�12 using �	=0.5. The control pa-
rameter 
 is varied around the BNE transition with �

=0.25. The minimum and maximum values of 
 are 1.0 and
10.0, respectively. �The explored region is shown in Fig. 5.�
With present day computers all of these molecular dynamics
�MD� simulations represent about 1 year of CPU time.

The mean kinetic energy gets larger when 
 is increased at
fixed 	. When 	 is increased at fixed 
 the mean kinetic
energy slightly increases until 	�10, beyond which the
mean kinetic energy roughly remains constant. This is con-
sistent with Ref. �32� where it is shown that in the limit of
large 	 the injected power increases with 
.

We restrict our study to cases in which the system does
not get too excited, remaining relatively dense, as seen in
Fig. 1. In fact in the neighborhood of the intruder the density
of the intruder can be as high as 90% of the close-packing
density.

III. RESULTS

The initial condition places the intruder in contact with
the base �namely, its center is at height 4� from the base�,
the base is at its lowest position, and the small particles are
set in a loose triangular order.

Figure 2 illustrates the observed behavior of the height of
the intruder for 	=6.0 and three values of 
, comparing it
with the height HS of the center of mass of the small grains.
The intruder does not rise above HS for small 
, while it
moves and remains up for intermediate values of 
 and it
moves above and below HS for larger values of 
 �phenom-

TABLE I. Values associated to the geometry and the dissipation
coefficients of the system used in all of our simulations.

N=1200 Number of small grains

�intruder /�=8 Grains’ diameter ratio

Lx /�=40 Width of the box

rn=rt=0.98 Restitution coefficients

�s=�d=0.7 Friction coefficients

(a) (b)

FIG. 1. Two snapshots of the system with different levels of
excitation. The width of the box is 40�. The values of �	 ;
� on the
left-hand side are �3.0; 1.5� and on the right-hand side �6.0; 4.0�.
The shades of gray show how initially horizontal layers have
evolved.
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enon sometimes called “whale effect”�. This last behavior is
caused by an intense convective current: The intruder moves
up along the central part of the box, reaches the surface of
the granular fluid, moves toward one of the walls where it is
pushed down by the convective roll, next moves horizontally
to the center of the box, starts moving up again, and so on.

In the cases when the intruder remains below HS the evo-
lution of the height of the intruder is seen in Fig. 3: The
intruder slowly moves up in discrete steps until it apparently
settles at a certain small height for as long as the simulations
last: 1500 cycles of the vibrating base.

Figure 4 shows the inverse of the time it takes for the
intruder to reach the height HS for 	=5.5 as a function of 
.
It suggests that there is a clear transition between regimes
with very large rising times �eventually infinite� and regimes
where the intruder moves above HS in a finite time. Longer
simulations would give values for the inverse of the rising
time indistinguishable from zero for 
�3.2, hence they can-
not alter the result. In all cases in the present study—in
which the intruder did move to the top—convection was
present. When the intruder did not reach the top there was
sometimes a short transient period with convection, but we
never saw sustained convection when the intruder stayed be-
low the center of mass of the system.

To characterize the locus, in the 	-
 space, of the transi-
tion mentioned above we ran three simulations associated to
each point in the grid. To decide whether there was BNE or
not we check—as was similarly done in Ref. �16�—if the
intruder reaches a height above HS, during an entire cycle of
the base, for at least two of the three simulations. This pro-
cedure provides a series of transition points to which we
have adjusted the parabola,


t�	� = �0.062 � 0.001��	 − 1�2 + �1.84 � 0.06� , �2�

which is shown in Fig. 5. It was checked that a linear term in
Eq. �2� has a coefficient consistent with zero. The observed
BNE takes place above this transition line, 
�
t�	� and it is
always seen to be associated with convection.

The transition line would be somewhat lower if we had
allowed the system to evolve for more than the 1500 cycles
that we arbitrarily set. However, as Fig. 4 suggests, it cannot
be too far from the one we have found even though for
smaller values of 	 graphs like Fig. 4 are not so neat.

In what follows we compare our results with those ob-
tained in studies where this comparison is meaningful: There
is one intruder, its density is the same as that of the small
particles, the lateral walls are rough and the frequency or the
amplitude of the base are used as control parameters. Refer-
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FIG. 2. The evolution of the
height of the intruder, H �bold
line�, and the height of the center
of mass of the small grains, HS

�light line�, as a function of the
number of cycles of the base .
The curves correspond to 	=6.0
and three values of 
: 1.5, 4.0, and
6.0. The height HS is roughly 15�
in all cases. The intruder does not
rise above HS for small 
, while it
moves and remains up for inter-
mediate values of 
 and it moves
above and below HS for larger
values of 
.
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FIG. 3. Evolution of the height
of the intruder during 1500 cycles
of the base for 	=3.5 and the val-
ues for 
: 1.0, 1.5, and 2.0. The
intruder moves up in steps but it
does not reach HS�15�.
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ences �11,12,20� vary the amplitude of the base while �21�
varies the frequency. References �11,20� are experimental
while �12,21� are time driven simulations; Ref. �20� is fully
three dimensional while Ref. �11� refers to experiments in a
Helle-Shaw cell. We did not find any references simulta-
neously varying the two parameters.

Although it is not necessary, in order to do this compari-

son, we change our control parameters from �	 ,
� to ��̃ , Ã�,
obtained from Eq. �1� where

Ã 	
A

�
, �̃ 	��

g
� . �3�

Note that what was a parabola in the 	-
 plane now—in
this frequency-amplitude plane—has a tongue shape as seen
in Fig. 6. The new curve has been extended, for low frequen-
cies, well beyond the region where the parabola was deter-
mined. The light gray zone in the interior of the tongue con-
tains the BNE points that we have simulated. We reiterate

that the BNE points that we have observed are all related to
convection in the granular fluid.

The transition line shows that there is a minimum ampli-

tude �Ãmin=0.57� and a maximum frequency ��̃max=3.10�
beyond which no BNE is observed. One reason why there is
a maximum frequency is because at larger frequencies the
energy flux has a shorter penetration length �32,33�. At a
certain frequency the upper layers of the system do not get
enough energy influx to allow the intruder to pass through.
Under such circumstances there is a gaslike fluid layer un-
derneath.

For a given amplitude, the frequency must be above a
certain threshold to ensure a sufficient energy influx to allow
the intruder to move up. This is why the extrapolation of the
transition line shown in Fig. 3 is qualitatively reasonable.

One of the reasons why there is a minimum amplitude to
have BNE is because the up and down movement of the
system produces friction with the lateral walls and this fric-
tion is larger when there is a larger pressure, namely, when
the system is being pushed up. The result, on average, is a
downwards force on the particles and the main obstacle for
convection is possible jamming. For a given frequency there
is a minimum amplitude to produce the friction necessary to
have convection.

The results from the four papers cited above are consis-
tent with our findings as it can be seen in Fig. 6. This com-
parison should have a limited significance because none of
the other authors use the values summarized in Table I. To
our surprise, however, the comparison tends to agree with
our results making us believe that the transition line is not
strongly dependent on the specific values of the other param-
eters. In this comparison, the important point is that all the
four articles show the same tendency: For a given frequency
there is an amplitude below which the intruder does not rise;
for a given amplitude, there is a frequency below which the
intruder does not rise either. The transition these authors ob-
serve is roughly where our MD results indicate. In the pre-
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FIG. 4. Inverse of the number of cycles  it takes for the intruder
to reach the height HS for 	=5.5 as a function of 
. The straight line
is a guide to indicate that there is a transition at about 
�3.2. The
points for 
�3.2 are not zero, but the inverse of the maximum
number of cycles of our simulations, 1 /1500.
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FIG. 5. The gray zone repre-
sents the explored points in the
	-
 parameter space. The solid
curve defined by Eq. �2� separates
the region where the intruder goes
up �above the curve� from the re-
gion underneath where it does not.
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vious two paragraphs we have described what we believe are
the dominant mechanisms. It is clear from comparing Figs. 5
and 6 that the description of the transition line is much sim-
pler using the parameters 	-
 than using �-A.

IV. SUMMARY AND CONCLUSIONS

In this paper we have studied under which conditions an
intruder immersed in a bed of smaller grains goes up �Brazil
nut effect, BNE� when the system is subjected to vibrations.
We have determined a transition line—in the 2D parameter-
space characterizing the movement of the base—which sepa-
rates a BNE zone from a non-BNE zone.

To this end we have made use of MD simulations of a
bidimensional system of grains �inelastic disks� in a box with
a vibrating base. The mass density of the intruder is equal to
that of the smaller grains. The collisions are instantaneous
and inelastic. The vibration of the base is characterized by
the dimensionless acceleration and velocity, 	 and 
, defined
in Eq. �1�.

The present study fixes the values of all possible control
parameters except for 	 and 
. In our study the intruder is
large: Its diameter, �intruder, is one-fifth the horizontal size of
the box and it is typically one-quarter of the effective height
of the system. In other words, the intruder is an important
fraction of the system as a whole. Under these conditions the
friction of the grains with the lateral walls—which may trig-
ger convective currents in the system—plays an important

role. If we study the same system, except that now the lateral
walls represent periodic boundary conditions, the intruder
does not rise in the zone of the parameter space that we
explore. The friction among particles is also important even
though we do not report this effect, but summarily we can
say that if we use zero friction coefficient between grains
�keeping the roughness of the lateral walls� the intruder does
not rise either.

Simulations were run for at most 1500 cycles of the base.
For a given value of 	 and values of 
 sufficiently large it is
seen that the intruder crosses the height of the center of mass
of the small grains, HS, eventually reaching the top of the
system. The time taken by the intruder to reach HS increases
when 
 decreases. Figure 4 suggests that this time diverges at
a transition point. For smaller values of 
 the intruder slowly
moves up in steps not reaching HS in the 1500 cycles that
each simulation lasts, as seen in Fig. 3.

It was found out that in the 	-
 plane there is a transition
line 
t�	�, such that for 
�
t�	� the BNE takes place. The
observed BNE was always seen associated with convection.
In fact, we are quite certain that the class of BNE that we are
reporting is directly connected to the convective currents in-
duced by the friction of the small grains with the lateral
walls. But we must point out that there are many possible
mechanisms which may be competing.

The characteristics of the transition line 
t�	� that we
have determined tell us that there is a maximum frequency
and a minimum amplitude of the vibrating base beyond
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FIG. 6. The transition line �bold line� drawn in the Ã and �̃ plane and its extrapolation outside the explored region �gray zone� using Eq.
�2� �dashed line�. The open symbols correspond to cases in which other authors reported the intruder going up in a time less or equal to our
total simulation time, solid symbols represent the intruder rising in a time longer than our total simulation time or the intruder not rising

above the height of the center of mass. �a� Values explored by Ref. �11�, �̃=1.166 and Ã=0.933, �̃=1.166 and Ã=1.466. �b� Values explored

by Ref. �20�, �̃=2.692 and Ã=0.413, �̃=2.692 and Ã=0.689, �̃=2.692 and Ã=0.965. �c� Values explored by Ref. �12�, �̃=1.166 and Ã

=1.287, �̃=1.166 and Ã=1.323, �̃=1.166 and Ã=1.360, �̃=1.166 and Ã=1.397, �̃=1.166 and Ã=1.434, �̃=1.166 and Ã=1.471, �̃

=1.166 and Ã=1.838, �̃=1.166 and Ã=2.206. �d� Values explored by Ref. �21�, �̃=0.521 and Ã=2.0, �̃=0.561 and Ã=2.0, �̃=0.602, and

Ã=2.0.

RISE OF A BRAZIL NUT: A TRANSITION LINE PHYSICAL REVIEW E 78, 031301 �2008�

031301-5



which no BNE should be observed. Our results compare well
with the results of other authors, as seen in Fig. 6, in spite
that in their studies they use values different from those in
Table I. We cannot discard that there could be other transi-
tion lines, dominated by different effects, in a different re-
gion of our parameter space.

From observing Fig. 5 it is seen that the phenomenon is
more sensitive to the variation of 
 than of 	. In fact we have
observed that the energy flux into the system is only slightly
dependent on 	 but significantly dependent on 
. When the
energy flux is larger the system is more fluidized even
though the densities are still not too far from close packing.

Since in the present case, convection is induced by friction
with the lateral walls, and this convection is enhanced by
larger values of the amplitude of the base, then for a given 

smaller values of 	 �which imply larger amplitudes� enhance
convection. In other words convection can take place with a
smaller energy influx �value of 
� when 	 is smaller. This is
why the transition line 
t�	� is an increasing function.
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