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Thermal Convection in Fluidized Granular Systems
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Thermal convection is observed in molecular dynamic simulations of a fluidized granular system of
nearly elastic hard disks moving under gravity, inside a square box. Boundaries introduce no shearing
or time dependence, but the energy injection comes from a slip (shear-free) thermalizing base. The top
wall is perfectly elastic and lateral boundaries are either elastic or periodic. The spontaneous tempera-
ture gradient appearing in the system due to the inelastic collisions, combined with gravity, produces a
buoyancy force that, when dissipation is large enough, triggers convection.

PACS numbers: 45.70.Mg, 47.20.Bp, 47.27.Te, 81.05.Rm
In the study of granular systems, convection has at-
tracted particular interest. Most of the experimental and
simulation studies focus their attention on a granular con-
vection mainly determined by the combined effects of a vi-
brating base and the roughness or inclination of the walls
[1]. Also the role of voids and the effect of the internal
shear bands in the system have been studied as a source
of convection [2]. Some theories based on hydrodynamic
continuum equations for this vibrating-base-plus-wall con-
vection have been developed [3]. In these references the
temperature gradients are considered negligible through all
the medium.

However, the appearance of a convective pattern not
slaved to the movement of the vibrating base has been
reported in [4], suggesting the existence of a convective
regime in granular systems which is not induced by the
vibrating base or the walls, but it would stem from gravity
and the dissipative nature of the granular collisions.

Although no theory is presented yet, this Letter is to
clearly show the existence of this convective regime and to
exhibit the mechanism that seems to be behind its origin.
With this aim, our model system has no vibrating base, or
any rough or inclined walls. Instead, each wall is modeled
as a shear-free and time-independent boundary condition.

More precisely, we consider a granular system com-
posed by disks interacting with a collision rule charac-
terized by a constant normal restitution coeffcient r , or
equivalently, a dissipative coefficient q � �1 2 r��2. The
bottom wall gives, to each particle colliding with it, a sto-
chastic normal component to the velocity with probability
taken from a Gaussian at temperature T0. The tangential
velocity is unchanged at the base, thus a shear-free thermal
boundary condition is imposed. This boundary condition
can be roughly regarded as a high frequency, low amplitude
limit of a vibrating base [5]. The top wall of the system is
perfectly elastic while the lateral walls are either perfectly
elastic or they correspond to a periodic boundary. Particles
are subjected to the acceleration of gravity g.

When energy is pumped into the granular system,
through the thermal base in the present case, a temperature
gradient develops spontaneously: the temperature of the
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systems decreases with height. There is then an energy
flux from the base upwards which is dissipated in the bulk
through collisions. If the system is almost perfectly elastic
it remains macroscopically static. This is the standard hy-
drostatic (purely conductive) regime which is observed in
our molecular dynamic simulations for small values of the
inelasticity coefficient q. Increasing q a transition from
a conductive to a convective regime is observed in our
simulations. It is argued below that this transition can be
understood if we think within the frame of thermal convec-
tion, sometimes called Rayleigh-Benard convection [6].

In standard fluids the onset of thermal convection is
roughly determined by the ratio between the characteris-
tic times of the processes against convection (viscous and
thermal diffusion) and favorable to convection (buoyancy).
The buoyancy force is proportional to the temperature gra-
dient, and in standard fluids it has to be externally imposed
in order to observe convection. Whereas for granular sys-
tems, the temperature gradient is not externally imposed,
but rather it is created by the dynamics of the system. This
gradient will increase with an increasing dissipative pa-
rameter until buoyancy effects dominate, triggering con-
vection. This means that whenever energy is injected into
the system a temperature gradient develops, and unlike
the case of a conservative fluid, not three but four ingre-
dients compete inhibiting or fostering the appearance of
convection: viscous and thermal diffusion, buoyancy, and
dissipation.

This Letter reports the results about convection appear-
ing in a 2D system—inside a box of size Lx 3 Ly —of N
hard disks with mass m � 1 and diameter s � 1, which
collide inelastically with the rule

�y12
0 ? n̂ � 2�1 2 2q� � �y12 ? n̂�, �y12

0 ? t̂ � �y12 ? t̂ ,
(1)

where �y12 � �c1 2 �c2 is the relative velocity between the
colliding particles, the primed and unprimed variables refer
to the post and precollisional velocities, n̂ and t̂ are the unit
vectors normal and tangential to the contact plane, with q
being the dissipative coefficient as defined above. Only
© 2000 The American Physical Society
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translational degrees of freedom are present. The simu-
lation results reported below come from our event-driven
molecular dynamic simulations, and the careful measuring
routines developed in [7].

As already mentioned, the system is maintained in a
fluidized state by the injection of energy from a thermal
base ( y � 0) at temperature T �0� � Tbase � 1 in energy
units, while the top boundary is a perfectly elastic wall at
height L. Gravity enters the problem through the Froude
number, Fr �

mgL
Tbase

.
We performed MD simulations for systems with a fixed

number of particles, N � 2300, fraction of occupied area
rA � 0.18, and aspect ratio l � Lx�L � 1, while we sys-
tematically varied the inelasticity coefficient q, in such a
way that 1 # qN # 50, and the relative gravity strength
0.1 # Fr # 2. It was found that although the onset of con-
vection depends slightly on the latter, the relevant parame-
ter is qN itself. For this reason, and in order to have a
clearer view of this convective phenomenon, we limit to
reporting our results for Fr � 0.1. We want to point out
that the only parameter varying from one simulation to an-
other is q. This parameter will take values 4 3 1024 #

q # 2 3 1022 which correspond to a restitution coeffi-
cient 0.96 # r # 0.9992; that is, the collisions will always
be quasielastic, although the macroscopic collective behav-
ior will certainly be far from that of a standard fluid.

Convection inside a box.—Consider first the granular
system inside a square box with a thermal base as described
above, and perfectly elastic upper and lateral walls. In this
system the boundaries introduce neither spatial nor tempo-
ral macroscopic correlations. It can be said that none of the
usual conditions under which convection has been studied
in granular systems are present; nevertheless, convection
does appear, as observed in Fig. 1.

The hydrodynamic stationary solution for the associated
conservative system (q � 0) is simply a constant tempera-
ture system with no heat flux and density decreasing with
height. Including a small amount of energy dissipation in
each collision, a conductive regime or a convective regime
with one and even multiple rolls may develop into the sys-
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FIG. 1. Averaged velocity field for different values of qN . At
the left qN � 6 and at the right qN � 34.
tem. Hence the convection we observe is due solely to
gravity and the inelastic collisions between particles.

To have an insight, we have plotted (see Fig. 2) the
dependence on qN of the observed granular temperature
difference between the bottom ( y � 0) and the top of the
system ( y � L), D � T �0� 2 T �L�. For small values of
qN this difference increases with increasing qN . This
situation corresponds to the conductive regime, in which
D can be written as an expansion on the small parame-
ter qNrA [8]. This difference D reaches a maximum at
about qN � 4, and from then on it decreases, proving that
a mechanism favoring energy transport from the base up-
wards appears at this value. This fact is also corroborated
by the amount of energy per unit time (call it heat flux)
Q�0�, entering the system through the base, plotted in the
same figure in arbitrary units. It is seen that the heat flux is
steeper about the same qN for which D reaches its maxi-
mum: more energy per unit time is required to keep stable
the temperature at the base.

From these observations we can conclude that there ex-
ists a threshold value qN from which the convection is
triggered. Furthermore, this also supports the idea that
convection starts when a critical value of the temperature
difference between the bottom and the top of the system
is reached. This convinces us that the instability is surely
determined by a buoyancy force appearing with the tem-
perature gradient, as in a standard Rayleigh convection [9].

A way to detect and quantify the transition is by measur-
ing mass circulation in the system. This is implemented by
calculating the sum of integrals of the velocity field along
many concentric paths centered about the geometric center
of the box: F �

P R
�y ? d�l. This observable F will be

negligible if there is no convection and it will be distinctly
nonzero (positive or negative) if there is one (anti)clock-
wise convective roll. Observed values of F are plotted in
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FIG. 2. Differences D between the bottom and top tem-
peratures (open circles) and rescaled heat flux (solid circles)
versus qN .
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Fig. 3 clearly showing a supercritical transition at qN � 4
from the conductive to the convective regime with one con-
vection roll. Because of the symmetry of the problem, rolls
with both signatures are equally probable and they appear
in our simulations, depending only on the initial condition.

It can also be seen that from qN � 34 up there is a
coexistence of regimes with zero and nonzero circulation
which corresponds to the competition of one and two con-
vective rolls, this is, a subcritical transition from the one-
roll to the two-rolls regime.

It seems to us that the appearance of the two and multi-
roll regimes could be due to a change in the effective as-
pect ratio of the system [9]: as dissipation increases, there
are regions where density rises considerably, lowering the
average height occupied by the system.

Although no systematic study of higher dissipative
regimes has been performed yet, we have observed that as
qN continues increasing, transitions to multiroll patterns
were observed but with much noise, as the system gets
denser and the convective movement decreases and even-
tually disappears. It is in this limiting case when a nearly
close packed layer of particles floating on a low density
gas in contact with the thermal base is observed.

It is worth mentioning that when two rolls were observed
they always appeared as shown in Fig. 1; namely, the fluid
goes up in the middle of the box and comes down along
the walls. This privileged signature seems to have its origin
in the local increase of density that walls induce. Higher
density implies more collisions and therefore more dissi-
pation, hence lower granular temperature: the system is
heavier near the walls.

Convection with horizontal periodic boundary condi-
tions.—Any effect that the elastic lateral walls could have
on the onset of convection in the previous case is discarded
when periodic lateral boundary conditions are imposed on
the system. The container is a periodic channel, and in this
case a transition to a convective regime is found again, al-
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FIG. 3. Mass circulation F measured in simulations
(points). The dashed lines correspond to the curve
F � 60.04

p
qN 2 3.8.
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though, due to the absence of lateral boundaries, the con-
vective rolls appearing in the system travel now along the
channel. This was observed even though the simulations
were carefully initialized with zero total horizontal mo-
mentum Px , namely with zero horizontal mass flux. Since
the boundary conditions do not change the horizontal com-
ponent of the velocities, Px remains zero during the evo-
lution, as was confirmed in the simulation.

To detect this pattern, we performed time averages of
the mass flux field. Because of the roll movement, this av-
eraging time must be larger than the microscopic time and
smaller than the time needed for the roll to travel a signifi-
cant distance. We chose this time to be much smaller than
the thermal diffusion time which, in our units, is of order
N

p
p�Tbase, but large enough to contain multiple particle-

particle collisions. The observed rolls persisted for times
longer than the macroscopic time, resulting in an hydrody-
namic pattern.

An example of what is happening in the system is ob-
served in Fig. 4. This figure is a plot of the averaged mass
flux field at four different stages of the simulation. Be-
cause of the periodic lateral boundaries, the solution should
be a two-rolls pattern (or any even number of rolls), but the
aspect ratio forced on the system would imply rolls with a
width about half their height, which makes them unstable.
The system was most of the time observed to have one
large roughly circular roll accompanied by a smaller one.

Although the movement of the rolls may be reminis-
cent of that spontaneously developed in the shear mode of

(b)
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FIG. 4. Mass flux field averaged in circles of 250 collisions
per particle. (a), (b), (c), and (d) correspond to cycles 100, 112,
124, and 136, respectively. A big roll can be observed moving
to the left side of the system while a small roll appears varying
its size.
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FIG. 5. Total velocity correlation Ctot vs qN . The transition
from a conductive to a convective regime is observed at qN �
18. The data have some dispersion near the transition due to
the finite size of the system. The dashed line corresponds to the
curve Ctot � 0.0013

p
qN 2 18.

cooling granular gases, we doubt there is a direct relation
with it, since the shearing instability requires the tempera-
ture to decrease [10], while in our system the temperature
remains locally constant in time.

We rather think that it is the asymmetry big/small-roll
the cause of the movement of the pattern. It is well known
from vortex dynamics, that a vortex near a fixed isolating
wall behaves as if it were in front of a twin vortex which en-
sures the condition of null hydrodynamic velocity yy � 0
at the top elastic wall [11]. This twin vortex would induce
a movement parallel to the wall with a sense determined
by the sign of the circulation of the original vortex.

In the present case, to detect the onset of convection we
measured a space velocity correlation. The system is tiled
with cells �i, j� and a hydrodynamic velocity correlation is
defined by

C�i, j� �
1
8

X

i0,j0
�y�i, j� ? �y�i0, j0� , (2)

where the cells �i0, j0� refer to the eight first neighbors of
the �i, j� cell. This observable has the advantage of be-
ing insensitive to the displacements of the convective pat-
tern. The total correlation is defined as Ctot � 1�Ncells 3P

i,j C�i, j�. It measures how similar, on the average,
are the velocities in neighboring cells. When there is no
convective pattern in the system, then the time averaged
value of Ctot is nearly zero, while as soon as a convec-
tive current develops, Ctot takes distinctly positive values.
Figure 5 shows the evolution of Ctot with qN . The transi-
tion from conductive to convective regime is clearly seen.
It takes place roughly at qN � 18.

In conclusion, it can be stated that bidimensional
granular systems exhibit convective regimes when there
is gravity and a thermal base even though no shearing is
introduced through the boundary conditions. It has been
shown that such convection owes its existence only to
gravity and the dissipative nature of the particle-particle
collisions. Because of its similarity with thermal convec-
tion in standard fluids, it has been argued that the spon-
taneous temperature gradient appearing due to collisions,
would play the key role in this granular convection.
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