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Abstract. The equivalence between the generalized Morse (GMP) and Eckart potentials is shown.
The study of the hypergeometric Natanzon potentials using SO(2, 1) techniques is applied to
compute the eigenfunctions and eigenvalues of the Eckart (GMP) potential. The action of the
group generators is studied, with the result that a family of Eckart potentials is obtained which is
different from the one obtained in SUSYQM.

1. Introduction

In [1] an interesting study of the solubility of generalized Morse potentials (GMP) was
performed using the SO(2, 2) algebraic treatment for the hypergeometric Natanzon potentials
[2] developed in [3]. The purpose of this paper is to analyse the same problem using the
techniques given in [4] which are based on the SO(2, 1) algebra. This last group has been
applied to the study of both the hypergeometric and confluent hypergeometric [5] Natanzon
potentials. Also this approach has been used recently as a simple method to study a g-
deformation of the Poschl-Teller potentials [6].

Before analysing the GMP potential, a short summary of the results in [4] is presented
to fix the notation and to exhibit the relevant results to be used. The hypergeometric
Natanzon potentials Vy, those for which the Schrodinger equation can be transformed to an
hypergeometric one, can be solved algebraically by means of the SO(2, 1) algebra as follows:

(a) a two-variable realization of SO(2, 1) is selected,

(b) the Schrodinger equation is written in terms of the Casimir operator of the algebra C,
as [H — E|V(r,¢) = G(r)[C — q]¥(r, ¢), where g is the eigenvalue of C, H is the
Hamiltonian and E the corresponding eigenvalue. G(r) is a function fixed by consistency,
and

(c) the eigenfunctions of the Casimir have the form W(r, ¢) = exp(im¢)P(r).
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The hypergeometric Natanzon potentials are given by (we follow the notation of [7])
VN = %(fZ(")2 — (ho—hy + f)z(r) +ho + 1)

L0 —z(n)? [a LAt —e)2z) — 1 SA]

R? z(r)(z(r) = 1) " 4R )

where

A =12 - dac, T=c—cy—a R =az(r)* +tz(r) + co.
The constants a, cg, ¢y, ho, h; and f are called Natanzon parameters. The function z(r) must
satisty

dz(r) _ 2z(r)(1 —z(r))

dr VR '

The generators of the SO (2, 1) algebra: J,, J, and Jj satisfy the usual commutation relations:
[Jo, h] =ih, [, ] =idy, |1, J2] = —iJy, as usual we define J» = J) £1J5. The Casimir
operator C is given by C = Jy(Jp = 1) — J:J+. The two-variable realization of the SO (2, 1)
generators is taken to be

Y £ o (0 Rl VA S N O VAN
exp(:Fl¢)I;t = Zl:( Z(r)/ )87‘ - (2 ’_z(r) )ay

) —-D[(pFD «/z(r)Z(r)"]
T [ Vz(r) * z(r)? @
P
Jo=—1— (3)

¢
where z(r)’ = dz(r)/dr and p is a function of the Natanzon parameters, independent of z(r)
and generally dependent on the energy of the system. The Casimir operator turns out to be

z(r) 9 i 92 ip(zr)y+1) 0 ]
C=zr—12[——+— S —
O =D e e 60 T 260) - D2 06
[z()zr)” 3z2(r)z(r)” 21
Hetr) — 1 FOEO 200N @t 1)
2z(r)" 4z(r) 4z(r)
Since the representation D* is used, the eigenvalues of the compact generator Jj, are known to

be
m@v) =v+1+,/gw)+; v=0,1,... 5)

and the energy spectrum is given by
v+ 1l =a(v) — B(v) —8(v) (6)

C))

where
av)=/—aEWw)+ f+1=pW)+m()
BW) =+ —coE() +ho+1 = p) —m(v) (7
() =/ —clE(v) + hy + | = \/4q(v) + 1.

The carrier space of the representation is found to be [4]

) PW=mD/2(1 _ 7)) ViaWI+1/2 g1/4

Ypw)gwm(w) (r) o exp(im (v)@)z(r
X2 Fi(=v, p(v) +m(v) — v, p(v) —m(v) + 1,2(r)) ®)
where the subindices are the eigenvalues of the Casimir g (v), the eigenvalues of the compact

generator m(v), and the parameter p(v). These are the group parameters that characterize the
Natanzon potentials.
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2. GMP and Eckart potentials

The GMP (V) and Eckart (Vi) potentials are given by

Vemp = A 1 B, 2 +C )
gnp — exp(or) — 1 :
Ve = K| + K> coth(ar) + K5 csch(ar)z. (10)

The constants C; and K allow us to fix the minimum of the energy spectrum. It is an easy
matter to check that both expressions coincide if

K, +2K;)? 4K
A, = (K> 3) B - — 3
4K, K> +2K; (11)
4K Ky — 4K? — K?
C, = 173 3 2 o =2«
4K;
or equivalently
Ky =(1+B,+3iB)A, +C, Ky =—1AB(B, +2) Ky = [A B} (12)

which show that V,,,, and Vg are, in fact, the same function. From now on the notation in [8]
is followed for Vg, namely

Y

B- 2
Ve=A?+ el 2B coth(ar) + A(A — a) csch(ar)”. (13)

The next step is to analyse algebraically the Eckart potential. The GMP is obtained by relating
(A1, By, Cy) with (A, B, ).
The Natanzon parameters for the Eckart potential are

1 A’ + B)’
a=c«c)y=—5 C|=O h()=(+’)—l
o 3 N A—a— (14)
AA—-a) (A" — B)”
hy =4 p f= Ala? 1

and the function z(r)
z(r) = exp(2ar) (15)

as is easily checked. The determination of the energy spectrum is obtained from (6), (7) and
(14) after requiring that it increase with v and E (v = 0) = 0, the result is

v=0...Vpu- (16)

The maximum value for v is obtained as follows. First we notice that the upper bound of
E(v)is E(v) 6 Vg(r = o0) = (B — A%)?/A>. With this result and using (16) we obtain
Vmax = [(v/B — A)/a] where [x] is the integer part of x; this also leads to B > A”.
From (16) together with (7) and (14) the values of g(v), m(v) and p(v) are
_AA-a)

w=2ATD m=2. W=-—t )
¥ a? M=ty P = @+ av)
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The expression for z(r) given in (15) replaced in (2)—(4) give for the SO(2, 1) generators and
the Casimir operator

B . . 0 sinh(ar) 0 .
Jy = exp(:F1¢)[ lcosh(ar)ﬁ F o + p(v) smh(ar)]
0
Jo= _iﬁ (18)

5

5

1 d 0
C = sinh(ar)z[;m +2ip(v) Coth(ar)ﬁ + VS, B p(v)z].
The results (16), (17) and (8) solve completely the Eckart or equivalently the GMP potentials,
while (18) displays the generators and Casimir operators.

Remark. Operating with the Casimir on a function ® (r, ¢) = ¢™? f(r) it is easily found

[C —q|P(r,¢) = Mei’""’ I:_—a; — 2B coth(ar) + A.(A——a’)
o’ ar- sinh (ar)-

B
(A +av)2:|f(r) =0

so that the radial part of @ (r, ¢) is an eigenfunction of the Hamiltonian with an Eckart potential
(13) and energy eigenvalue (16) if ®(r, ¢) is an eigenfunction of the Casimir (18). This
illustrates the relation given in the introduction between C and H in (b).

+(A+av)’ +

Next the action of the SO(2, 1) generators on the carrier space is going to be considered.
A state labelled by fp(v), g (v), m(v)gis given by (17)

Ypugme = S explim())z(r): O (1 — z(r)) ¢
X 2F1(=v, p) +m(v) = v, 1+ p(v) = m(©), 2(r)) (19)

where § is a normalization constant.

It is important to notice that there is a set of SO(2, 1) algebras that are labelled by the
parameter p(v) as is seen from (2); these will be denoted by SO (2, 1)?™) . The number of
allowed values of p(v) is given by vy, for a given Eckart potential with (A, B, «) fixed. For
each value of p(v) there is a single state that belongs to the physical system being treated; all
these states have the same label g(v) given in (17).

Operating with J, on the state (19) leads to a state labelled by f p(v), g(v), m(v) + 1g,
notice that p(v) and g (v) are fixed since they label a specific representation. From (17) the
parameters that characterize the potential must change: invariance of g(v) implies that A and
« are unchanged, while invariance of p(v) requires B to be modified.

From (17) it is seen thatm (v) — m(v)+ 1 = m(v+1) and since p(v) — p(v+1) = p(v)
it implies

B B,
a(A+av)  a(A+av+1))

where B is the new value of the parameter B. It is convenient to write this relation in such a

way that the v dependence is exhibited explicitly

A+a(v+1)
A+av

(20)

p(v) =—

B(v+1) = B(v) :B(v)(l+—) Q1)

1
m(v)
solving this recursion relation leads to

B(v) = Bym(v) (22)
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where By is a constant independent of v. This v dependence of B(v) amounts to a scaling of
By, and in this sense this situation is a particular case of the one reported in [9]. The result is
that a new Eckart potential has been found in such a way that (A, B(v),a) — (A, B(v+1), ).
From now on the fixed value of p(v) is denoted py.

For the representation labelled by fq (v), poga family of Eckart potentials with parameters
(A, B(k), @) has been found with B(k) given by (22) where k labels the states in the
representation fq(v), pog, By is the parameter for k = 0. Next it is asked whether there
is an upper bound for the value of k. The answer comes from the observation that k,,, grows
as o/B(k) (due to the comment after (16)), while the label m(k) grows linearly with k; the
maximum value k = K is obtained from

VBy = a/m(K) (23)

in other words, there is a finite number of Eckart potentials associated to py.
Nextthe explicit result of acting with the SO(2, 1) generators on the state (19) is exhibited.
The result for J. is

LV pgwime) = —Smv) — p(v)) exp(i(m(v) + D)z(r): @I=m0)1=D
x(1 = z() D Fy (—v — 1, p) +m®) — v, pO) — m(), 2(r)).
(24)
The following identity has been used [10]:

2Fi(a+1,b+1,c+1,2(r)) = (c=1Da2F(a—1,b,c—1,2(r))

—c
abz(r)(1 — z(r))
+(z(r)b —c+1)2F(a, b, c(r))).
The normalization of (19) is obtained by noting that after acting once with J. a factor
p(v) — m(v) appears so that starting from v = 0 the action of J! reproduces (19). The
value |S)? = fooo [ ) gwm@ |> dr with v = 0 is a beta function and therefore, normalization
of W, w)g(uym(v) follows directly using the method presented in [1].
Similarly, for J_ acting on the state (19), it is found

Ty awme) = Sv(1 — 2m(v) +v) exp(i(m(v) — 1)) z(r)} PO=m)*D
(1= 2(r) VD L F (<, p(v) + m(v) — v — 1,2+ p(v) — m(v), 2(r))
(25)
after using [10]

»Fi(a—1,b,c—1,z(r)) = IITC(“ —c+b)>F\(a,b,c,z(r))
+(1 —z(r))b,F\(a,b+1,c, z(r)).

Let us examine the result given in (24). We have proved that this resulting state corresponds
to an Eckart potential with parameters (A, B(v+ 1) = B(m(v) + 1)/m(v), ). Therefore, the
Natanzon parameters for this system are those given in (14) with B — B(v + 1), obviously the
corresponding z(r) is the same as given in (15). For the energy spectra we have the expression
given in (16), where B — B(v + 1), we then have

. B(v +1)?
A2

. B(+1)?

E()\.)=A_ (A +CIA.)-— m )\.=0...A.mux (26)
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where now A = [(/B(v+1) — A)/a]. The remaining question that we must answer
regarding the state under consideration is which eigenvalue A corresponds to it. This can be
done easily if we look, for example, at the first relation of (7), we have

aW)+1=—aEQ) + ff +1 7)

where ff is given by
(A* — B(v +1))?

== !
as is seen from (14). Using the fact that «(v) is obtained from (7) and (17) as
W) —B+ (A +va)®
a(V) = ————
a(A+va)

than relation (27) is satisfied for A = v + 1.

3. Final comments

We have shown that the solvability of the GMP is due to the fact that it belongs to the
class of the Eckart potential, a member of the hypergeometric Natanzon potentials which is
solved algebraically by means of SO(2, 1) algebra. In the carrier space of each SO (2, 1)P*)
representation, CSO(2, 1)?"), there are eigenstates of Hamiltonians with different Eckart
potentials. It has been shown that a finite number of such potentials appears. The states
arise from the applications of the generators of the algebra on states belonging to a particular
CSO(2, 1)P™. In other words, in the space S defined as § = {CSO(2, )P™; v =0... V)
the states occurring in S are those corresponding to eigenstates of Eckart’s potentials in such
a way that they have the same parameter A with the parameters B varying according to (22).
In the algebraic SUSYQM [11] treatment of the Eckart potential, the supersymmetric
operators connects states as follows: (A, B,a) — (A — a,B,«a) [8,12]. Then the
supersymmetric partner of (A, B, a) clearly are not in S defined above, since all the states
in § share the same Casimir eigenvalues g(v) which depend on A as is seen from (17). The
result obtained here is a natural extension of the chain of potentials generated by SUSYQM.

Acknowledgment

SC and SS are grateful to Universidad de Chile, Facultad de Ciencias Fisicas y Matematicas,
Departamento de Fisica for their hospitality where part of this work was done.

References

[1] Del Sol Mesa A, Quesne C and Smirmnov Y F 1998 J. Phys. A: Math. Gen. 31 321
[2] Natanzon G A 1979 Teor. Mat. Fiz. 38 146
[3] Wul, Alhassid Y and Giirsey F 1989 Ann. Phys. 196 163
Wu J and Alhassid Y 1990 J. Math. Phys. 31 557
[4] Cordero P and Salamé S 1993 Found. Phys. 23 675
Cordero P and Salamé S 1994 J. Math. Phys. 35 3301
[5] Cordero P and Salamé S 1991 J. Phys. A: Math. Gen. 24 5299
[6] De Freitas A and Salamé S 1999 Nuovo Cimento B to appear
[7] Cooper F, Ginocchio J N and Khare A 1987 Phys. Rev. D 36 2458
[8] Dabrowska J, Khare A and Sukhatme U P 1988 J. Phys. A: Math. Gen. 21 L195
[9] Chaturvedi S, Dutt R, Gangopadhyaya A, Panigrahi P, Rasinauriu C and Sukhatme U 1998 Phys. Lett. A 248
109



On the generalized Morse potential 6293

[10] Gradshteyn IS and Ryzhik I M 1965 Table of Integrals, Series and Products (New York: Academic)
[11] Witten E 1981 Nucl. Phys. B 185513

Salomonson P and van Holten J W 1982 Nucl. Phys. B 196 509
[12] Gendenshtein L E 1983 JETP Lett. 38 356






