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Abstract

In the last decades a number of near optimal priority queues have been developed. Many of these priority queues are
suitable for the efficient management of events generated during simulations of hard-particle systems. In this paper we
comPar€ the execution times of the fastest priority queues known today as well as some forms of binary search trees used
as priority queues. We conclude that an unusual adaptation of a strictly balanced binary tree has the best performance for
this class of simulations.
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l. Introduction

Event-driven molecula¡ dynamics I I ] is the optimal choice with picewise constant interactions. In this case
paficles move free of each oüer except at discrete times when they suffer impulsive forces or eyenfs. The
evolution of each particle between events follows Newton's equations of motion with whatever external field
(e.g., gravity) may exist. The events take place whenever a particle hits one of the steps of its potential energy
function. The simulation jumps analytically from one event to the next following the variable intervals that the
dynamics of the system dictates. Henceforth it is an event-driven molecula¡ dynamics. Application of these type
of simulations can be found in I l-13] and efficient algorithms to simulate large systems are found in I l,f-18].

During initialization the general simulation algorithm consists of computing event-times among each pair
of particles. These times together with the identiñers of the particles involved in each event are stored as
event-tuples in a future event list (FEL). Next the event-tuples a¡e removed one by one from the FEL (in
increasing time order) and processed chronologically. Processing an event causes a change in the states of the
particles involved in the current event and a computation of new events for these particles, i.e., new event-tuples
that are then inserted in the FEL. This process is cyclically repeated until some end condition is reached. After
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crh event other events stored in the FEL are invalidated because of the change in the states of the particles
pcscntly involved.

Tbe breic requirement for event management is a FEL that efficiently supports the following operations:
Nr¡crEvErr( ) that extracts the event of smallest time from the set of events calculated in previous steps
of the simulation, ScHEoULE(e) that inserts a new event ¿ in the FEL, and CeNcer-(i) that deletes all the
etents associated to particle i. These operations define the FEL as a priority queue (PQ) since NnxtEver.rT
mly retrieves the event with higher priority, namely the one with smallest event-time.

Efficient solutions for the implementation of PQs have been proposed by several authors Í19-251. Most of
¡b€s€ PQs have been empirically compared using different approaches and applications [26-30]. From this it
b been concluded that no single implementation is the best for all cases and applications. For example, the
s.sils reported in [30] show that the pairing heap l23l is the best structure for the minimum spanning tree

Fbl€m. But the tests presented in [28] show that the splay tee f2ll is the best structure under the empirical
ffizrdrel with several probability distributions for the priorities.

The'lata structures used as PQs in hard-particle simulations tl+l8l have been the binary search tree
U4,1624,251, tbe implicit heap ll5,l7 ,24,251 and the complete binary tree U8,24f. But besides the afore-
rhtioned data structures, there a¡e several other PQs that have been developed during the last decades, such
¡ tbe st¿lv heap l22l,the binary priority queue [25l,the leftist tree f24,25f ,t}rc binomial queue [20] and
b priority tree [19,251, whose suitability for event-driven molecular dynamics simulations have not yet been
arlyzrd,.

It is important to note that many of these strategies have a simila¡ near-optimal performance from the
tbeqetical viewpoint. The selection of the best PQ for hard-particle simulations from these analysis is difficult.
Fr example, some final-expressions for the performance are given as asymptotic bounds O( ) in terms of
diffe¡ent concepts such as worst-case and amortized-time. But even in the case of strategies with the sarne type
of bouttds we must remember that the descriptor O( ) encloses coefñcients and lower-order terms that can
play a significant role when selecting the best PQ. Thereby, when dealing with competing strategies, we must
ñnally resort to a well-designed experimental framework to determine the best PQ for the particular application
r hand.

The results of this paper have been mainly obtained from simulating a two-dimensional gas of hard disks
using the general strategy described in I l8] but replacing in the FEL administrator ten different PQs to compare
¡te relative performance of them. For our empirical tests we have selected the PQ implementations reported in
fu lircrature as the most efficient ones, together with some other PQs for which no tests have been reported. We
conclude that our implementation of the complete binary tree Í241 is the best PQ for hard particle simulations
when üe number of particles is either fixed or variable. The implementation for the complete binary tree that
we propose in this work (see Appendix) is faster than the one proposed in [18].

The next sections are organized as follows: Section 2 gives details about the experiments performed, Section
3 describes the PQs tested and mentions the empirical results, Section 4 presents a theoretical analysis of the
perfmmance of the complete binary tree, and Section 5 analizes the results and gives our conclusions. An
4pendix provides a CJanguage implementation of the complete binary tree reported as the most efficient one
in all ot¡r experiments.

2. Experimental design

Tbe empirical results were obtained simulating a system of N hard disks moving inside a rectangular box
using the general conditions defined in I 18 ] . To compare the different PQs we have used the same program -
with tbe algorithms proposed in [8] - but replacing in each case the PQ used in [18] by one of the queues
described in Section 3. We show results for different area densities p:0.1,...,0.7 for systems of N particles
with IV: 10r,...,104. Each experiment was stopped after l00N disk-disk collisions.

2t5
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To measure the execution times of each PQ the standard clockO function was used. More precision for
this function was attained measuring only the total execution time of the simulation program in opposition to

measure the time of each function used to administer the PQ. By choosing this alternative we have negleted

the fact that the program has three major components which affect the overall running time. They a¡e: (a) the

basic cycle, where the event-times a¡e calculated, (b) the cell administrator, that enables the calculations of
events between neighboring particles, and (c) the PQ used to manage the events. Note that in [18] it was

empirically determined that the weight of the PQ in the total running time is below 23Vo for a system with 2500

particles ranging through densities from 0.05 to 0.7. Then for our experiments it was expected that a significant

reduction in the total running time could only be achieved by introducing a considerably more efficient PQ.

We have used the clockO function to measure the total running time of the simulation with a t1 - clocko

instruction at the end of the initialization and executinE tz - clocko at the end of the simulation of IOON

disk-disk collisions. Thus the total running time associated with each PQ was t2 - f ¡. Each experiment was

repeated l0 times observing an error rate below O.l7o in all the computers used for executing the experiments.

This error is defined as the ratio between the standa¡d deviation and the average.

The programming style was the traditional one with minimal calls to subroutines and no recursive algorithms.

The experiments were carried out in workstations DEC Alpha, DG Aviion and SUN 690, all with UNIX at

minimal load (no other users and no background processing), and programs written in C language compiled

with the gcc compiler at the maximal speed option 02. To avoid the effects of paging activity in the total

running time a relatively small number of particles ( l0 - 104) was used. To avoid calls to the operating system

due to PQs that use dynamic memory allocation, all the memory required by these PQs was pre-allocated before

the start of each experiment.

3. Priority queues and empirical results

The first PQ implementations that we compared were the following:
o Complete Binary Tiee I (CBTI) in which each leaf has the label associated to one different particle and

each intemal node (recunively up to the root) has the particle label with smallest event-time of its two

children 118,241. No deletions are performed in the tree since every time a particle i changes its event-time,

the path from the leaf i is updated up to the root. This is the implementation proposed in I l8].
o Complete Binary Ttee 2 (CBT2) similar to CBTI but wiÍh node deletions. Deletions from the tree are

performed by removing the rightmost leaf and exchanging it with the target leaf to be deleted. Then the

tree is updated up to the root considering the above changes. Insertions are performed by appending a new

rightmost leaf and updating the CBT.
o Complete Binary Tlee 3 (CBT3) similar to CBTI but avoiding updates up to the root of the tree. In this

case, the event-time comparisons are stopped as soon as possible (compare with CBTI).
o Complete Binary Tl€e 4 (CBT4) simila¡ to CBT3 but with node deletions like CBT2.

o Implicit Heap I using the implementation proposed in t25l but with further code to reduce the number of
swaps between nodes. No node deletions are performed in the tree since every time a node changes its event

time this is moved up or down depending on its new value.

r Implicit Heap 2 similar to implicit heap I but with node deletions.

Note that up to now we have basically described two PQs. T1T complete binary tree has not been considered

in the literature as a useful data structure in practice until [8] (in [2a] tbe complete binary rree is described

only as a first approximation to the implicit heap.) However, the CBT3 was consistently more efficient than all

other PQs in all experiments and computers that we used. Also note that we have implemented the heap and

the complete binary tree with and without deletion of nodes in the tree. The reason to include node deletion

was to compare the performance of the implicit heap and complete binary tree with other PQs for which it is
impossible to avoid deletions. Even though we have tested some heap ordered structures for which deletions
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can be avoided, we haYe not considered such an alternative because the update algorithms (up/down shifting)
become identical to the implicit heap. The other PQ implementations tested in this work were the following:
o Binary Search Tfte 124,251.
o Pairing Heap with twopass variant [23].
o Skew Heap with top-down variant [22].
o Splay Tiee with the bottom-up splaying [21].
o Binary Priority Queue [25].
o Leftist T\v Í24,251.
o Binomial Queue Í20,251.
o Priority Tlee t19,251.
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Fig. 2. Total running time for simulations executed in a DEC Alpha computer. Each curve shows the ratio (Ipq/Icsrr) between the

ruLing time with a priority queue PQ and the running time with lhe complete birnry tree CBTI. Each priority queue PQ is identified by a

leuer: ic) CBT3, (d) CBT4, (i) Implicit heap 2, (j) Binary search tree, (k) Skew heap, (l) Splay tree, (m) Binomial queue, (n) kftist
tree.

To have a first glance at the performance of these PQs look at Figs. 1 and 2. They show the empirical results

obtained in a DEC Alpha WorkStation. Note that all our results are presented as the ratio, Tbq/ft"r1, of the

running time Tpq associated to one of the PQs over the total running time obtained with the complete binary

¡ee implementation proposed in tl8l (ft¡rr). Similar results were obtained in the DG Aviion and SUN 690

computers, therefore we omit plotting those data. It should be noted, however, that the maximum values for

TmlTcr 1 w€re 254 in DG Aviion and 292 in SUN 690.
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4. Analysis of the CBT

The theoretical analysis of the CBT is simple. From Fig. 3 we can observe that some leaf nodes are at
the lowest level (level /<) and the rest (of the leaf nodes) are one level up (level /c- l). The cost - in
event-time comparisons - of updating the tree from a leaf to the root is: (a) flog, N.l * I from level /c and
(b) flogrNJ from level /< - l. Furthermore, the number of leaves at level * iiZ.Ñ _ 2LtoszNl+t and at level
k - I is 2Ltoz2NJ+t - N. Thking the average, the cost of the CBT is

1

Uog, Nl * 2 - -2Ltog' 
Nl+r.

:

, If ¡g ls an integer power of 2 then the optimal cost log, N is reached while the worst case comes when updating
, from level /c upwards and it has cost of flog, Nl * I (event-time comparisons).

For each processed event it is always necessary to mhke at least one update up to the root of the CBT and
:the worst 

9ase, 
when processing an event, has a cost not larger than 2llog, N) +2 (or 2logrN when N is a

, Power of 2). Therefore the CBT performance as a PQ for hard particle simulations is close tó O(logN) from
i its best to its worst cases.

I Th" efficiency of some of the PQs tested in this work depends on the probability distribution of the time
iincrement of the new inserted events. That is, if an event occurs at time t and n new events with times f¡, f2,
', ..-, tn are inserted, the probability distribution of the differences t¡ - t (i:1...n) may affect noticeably the
performance of some PQs [27,28,31]. The reduction on performance of these PQs (which are different forms
of binary trees) come from the fact that depending on the /¡ - ¿ distribution the data structure tends to lose its
balance. Experimental results in the hard-disk systems used in this work indicate that the probability distribution
of the increments t, - r is very close to an exponential distribution. This leads to a best case behavior of the
f¡ - r dependent PQs. However, the CBT has the nice property of being a strictly balanced binary tree so its
logaritmic bounds are maintained no matter which is the system being simulated.

Notice that the O(logN) bounds for the CBT operations contrasts with better theoretical bounds attained
rby other PQs. For example, some of them have a few PQ operations with cost O(l). But usually this better
,bounds are accomplished by using more complex algorithms that execute additional computer intructions to
imaintain a suitable data structure. Hence, depending on the application, these additional intructions can produce
ian overhead in the PQ running time that ovérride the gain in performance obtained with better bounds.
. For instance, in our experiments we have observed that the impticit heap I performed less event-time
icomparisons than the CBTI (showing that the analytical implicit heap bounds are óonsistently better than the
iones for the CBT), but this gain in performance was not noted in the running time. The reason is quite simple:
ithe cost of each swap in the implicit heap is higher than the cost of each match in the CBT (in each internal
ICBT-node ¿ a match consists of comparing the event-times of the children of the node n, and writing in n
]the identiñer of the winner child, nu*"ty the son with lesser event-time, see Fig. 3.) In the CBT each match
Itakes one event-time comparison and one assignment whereas with a careful implementation each swap in the
:implicit heap takes at least two event-time comparisons and two assignments.

I

l

15. Analysis of results and conclusions

' We have presented empirical results that show the importance of selecting a convenient PQ implementation
when performing event driven simulations of hard particle systems. We emphasize that in our experiments we
have selected the fastest PQ implementations reported in the literature and obtained performances (total running
time of the simulation) that differ among them by as much as a factor of three. This reinforces the use of
experimental tests to determine the best PQ for hard-particle simulations.
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An important conclusion from our experiments is that the PQ implementations based on the complete binary

ffee werethe most efficient ones to simulate the ha¡d-disk system. In particular, the fastest implementations in

all of our experiments were those that reduce the event-time comparisons performed in the tree, namely CBT3

and CBT4 (it should be clea¡ that CBT4 must be compared with strategies that perform node deletions.) In

addition, the theoretical analysis of the previous sectio; helps us to understand the efficiency of the CBT in

this kind of simulations and encourages us to expect similar optimal behavior in other types of hard-particle

systems and software /hardware architectures'

In Figs. I and 2 the curves with letters (c) and (d) represent the performance of CBT3 and CBT4 respectively'

These curves show that for large N CBT3 and CBTa perform better than the other PQ implementations' This

better performance was observed both when there is node deletion, (d), and when there is not' (c)'

Another important and decisive feature in favour of CBT3 and CBT4 is that they tend to be more efficient than

other pes as the number of particles N increases. This property of CBT3 and CBT4 makes them particularly

convenient for the simulation of large systems. For the node deletion case' however, several other structures

were more efficient than cBT4 for systems with N < 1000. on the other hand for N ) 100 cBT3 was the

absolute winner.
It is also interesting to observe that in the case of node deletion, CBT2 was by far less efficient than CBT4'

This shows the effectiveness of reducing the number of event-time comparisons in rhe complete binary tree'

The effect of this reduction is less evidint for the case with no node deletion. Node deletion can be useful

in systems where the particles are created and eliminated dynamically during the simulation' In this case we

propor" applying a mixed strategy using cBT3 algorithms during all the life-time of particles and using cBT4

Ago.ittt.nt only when it is necessary to remove particles from the system'

Therefore - based on empirical results obtainei with different machines, the logarithmic bounds for the CBT

operations, that are independent of the type of system being simulated, together with the low cost of each

CBT match - we concluie that the best choice ii the complete binary tree (CBT3 or CBT4) for performing

event-driven simulations of hard particle systems with any of the approaches proposed in Ilzt-18]'

Finally we remark that in tlSi it was empirically determined that the strategy of [18] performs betterboth

in running time and computer memory used than túe strategies proposed in [14,15]. The strategy proposed in

u?l is simila¡ to tl5l. However, both strategies [15,17] use a simpler cell administrator than the one used

in I I 4,1 g ] because they always scan the comflete neighborhood of the particles involved after each eYent thal

takls place. This impliós that there is less programming work at the expense of a slower simulation'
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Appendix. CBT3 and CBT4

Data structure

To obtain the event with lesser time in the PQ acomplete binary tree (CBT) that performs a binary tournamen

between all the event times is used. Each leaf has a particle number and each intemal node (recursively up tr

the root) has the particle number with the smallest event-time of its two children. Therefore the root of th

tree has the particle number with smallest event-time (see Fig.3a). Every time a new event-time is compute

for a particle i, the tournament is updated for all nodes in the path from the leaf labeled with i to the root (se

Fig.3b).
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(0.20) (0.30) (0.16) (0.1s)

Fig. 3. (a) CBT for ten objects (event-time in parentheses). (b) CBT updated after changing the event-time for object 4 to 0.1g.

The CBT is implemented using an ¿uray of 2N - I integers. A node at position n has its children at positions
2n and 2n * l. The parent of node ¡¡ is at position Lál of the array. All internal nodes are stored between
positions I and N- 1.

Deletions from the CBT a¡e performed by removing the rightmost leaf and exchanging it with the target leaf
to be deleted. Then we have to update the CBT considering the above changes. Insertions are performed by
appending a new rightmost leaf and updating the CBT.

C - I an gua g e imp I eme nt atí o n

#define N 10000 /* Number of particles */
int CBTIN*21; /* Conplete Binary Tree inplenented

in a¡ array of 2*N integers *,/
EVENT i.Min[N+l] i /* Array of pointers to the event with

nininal tine for each particLe 'r/

voj-d updatecBT(i)
int i; /* particle nunbelr,/

{
int f, /* father */

22t

$
ü

L

(0.15)

(0.20) (0.30) (0.16) (0.10)

(o.15)
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1, /* Ieft child */
Í, /rr right child */
n; /* old winner */

/* At least it is necessary to cover tb.e old path of particle i *,/
for( f=cBT[i+N-l] /2; f>0; f=f/2 ) {

if ( CBTIf]!=i ) break; /* jurnps to the next "for" */
1 = CBT[f*2];
r = CBT[f*2+1];
if ( Min[].1*>tlne < Minlr]->tine )

CBT[f] = 1'
else

CBTlfl = r;
)

/* Now the event tine conparisons are stopped as soon as possible */
for( ; t>O; t=t/2 ) {

w = CBT[f]; /* o1d winner */
r = CBT[f*2];
r = CBT[f*2+1];
if ( Min[l]->tine < Mi.n[r]->tine )

CBT[f] = 1'
else

cBT[f] = r;
i.f ( CBTIf] == w ) return; /* end of the event tine conparisons,r./
)

) /* End of updatecBT */

/******* Delete operation for the conplete binary tree ,t *,t ***/

int Leaf [N+1] ; /* when the nr¡mber of particles is not constant it is
Decessary to naintain a¡ additionaL array to indicate
the leaf associated with each particle. In this case
the initialization "f=CBT[i+N-t)/2" of the first ttfortl
j-n UpdateCBT nust be replaced with "f=Leaflí)/2, *¡

int NP; /* current nr:mber of particles */'

void Delete(i)
int i;

{
int 1;
void UpdateCBTO;

if ( NP<2 ) { CBTtll=g; Leaf[g]=l; NP--; return; ]

l=NP*2-1; /* the ]ast leaf */

,q
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if (CBT[I-1] !=i) {
Leaf [CBT [1 -tf}=I/2;
CBT II/21=CBT tI-11 ;

UpdatecBT(C¡TlI-11 ) ;

)
else {

Leaf [cBT [rfl=L/2;
CBT IL/2I=CBT [l] ;

uPdatecBT(csT[1] ) ;

NP--;
return;
)

if (cBr[l] !=i) {
CBT [Leaf [i] I =CBT [1] ;

Leaf [CBT [I] I =Leaf [i] ;

updatecBT(cBT [r] ) ;

)
NP--;
return;

) /* Ead of DeleteO */
/******* Insert operatio!. for the conplete binary tree *,t,t ***/

voj.d Insert (i)
int i;

{
int
voi.d

if (NP==O) {CBT[1]=1; NP++; return;]

j=cBr[NP];
CBT[Np*2] =j ;

CBT [NP*2+1] =1 ;

Leaf [jJ =NP*2 i
Leaf Ii] =NP*2+1 ;

NP++;
UpdateCBT(j);

) /* End of rnsertO *,/

Note that there are several alternatives for the implementation of CBT3 and CBT4. Another implementation
that takes into account the limits of some compilers can use two arrays of N integers instead of one array of
2N integers. It is also possible to implement the complete binary tree tsingdynamic memory allocation as with
the binary search tree. ln this case, each node has one integer to store the particle number, and three pointers
to store the children and father of the node (other PQs using dynamic memory allocation require the same
number of pointers).
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