
Analysis of the spectrum generating algebra method
for obtaining energy spectra

Patricio Cordero and Jamil Daboula!

Departamento de Física, Universidad de Chile, Santiago, Chile

sReceived 26 January 2005; accepted 22 February 2005; published online 13 April 2005d

We analyze and clarify how the SGA sspectrum generating algebrad method has
been applied to different potentials. We emphasize that each energy level En ob-
tained originally by Morse belongs to a different sos2,1d multiplet. The corre-
sponding wave functions Cn are eigenfuntions of the compact generators J0

n with
the same eigenvalue k0, but with different eigenvalues qn of the Casimir operators
Q. We derive a general expression for all effective potentials which have
Cln,n+msrd~ sJ+

ndmCln,nsrd as eigenfunctions, without using supersymmetry formal-
ism. The different actions of SGA is further illustrated by two diagrams. © 2005
American Institute of Physics. fDOI: 10.1063/1.1895106g

I. INTRODUCTION

Pauli1 in 1926 was the first person who calculated the energy spectrum of a Hamiltonian
algebraically. He did it for the hydrogen atom. Since then his procedure was followed by many
people. It is essentially based on relating the total Hamiltonian H to the Casimir operator of the
symmetry or degeneracy algebra, whose generators commute with H. fThe symmetry algebra of
the N-dimensional hydrogen atom is usually identified differently for different energies E. By
replacing the Hamiltonian H by its eigenvalues, one obtains sosN+1d, esNd, and sosN ,1d, for E
,0, E=0, and E.0, respectively.2–4 However, by keeping H as operator, one obtains infinite-
dimensional Kac–Moody loop algebras, of standard type for even N and of twisted type for odd N
sRefs. 5 and 6d.g

The hydrogen atom and the isotropic oscillator have infinite number of states for each eigen-
value of angular momentum ,. Their symmetry algebras for the bound states are compact and
therefore the raising and lowering operators of these algebras can only generate a finite number of
states with different values of ,, for each degenerate energy eigenvalue En. To relate the infinite
number of states for a fixed , it is necessary to use noncompact algebras. The smallest appropriate
noncompact algebra is sos2,1d, because it has a infinite-dimensional representations which are
bounded from below, and are denoted by D+sld. The sos2,1d is generated by three generators Ki

which commute as follows:

fK0,K1g = iK2,

fK2,K0g = iK1, s1d

fK1,K2g = − iK0.

The K0 is the compact generator, while K1 and K2 are the noncompact ones. Once a simultaneous
eigenstate of K0 and Q is found, then one can generate an infinite number of states by applying the
raising and lowering operators K± repeatedly. Because of this property sos2,1d has been called a
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spectrum-generating algebra sSGAd.
The idea of using the SGA was very popular in the 1960s and 1970s and numerous papers7

investigated different approaches and potentials. In fact, Wybourne devoted a whole chapter of his
popular book sRef. 8, Chap. 18d to describe how one obtains the energy levels of various systems
from the sos2,1d SGA.

In particular, sos2,1d has been applied to obtain the S-wave bound states for a important
subclass of Natanzon potentials,9 which has only a finite number of bound states, such as the
Morse potential. The question arises, where are the other infinitely many energy levels that can be
generated by K±?

The purpose of the present paper is to show that in the many applications of sos2,1d involving
Natanzon-type potentials,10 the raising and lowering operators K± were actually never used to
generate the finite number of bound states for ,=0. Instead, it turned out that for every energy
level, a different sos2,1d representation was used.

For clarity, we shall concentrate on the Morse potential,

VMsrdªV0fe−2sr−r0d/a − 2e−sr−r0d/ag , s2d

which is the simplest example of a Natanzon potential which has a finite number of bound states
for each ,. The potential s2d was introduced by Morse in 1929 to obtain the vibrational levels of
diatomic molecules.11 He obtained only the S-wave solutions, by explicitly solving the
Schrödinger equation. The Morse potential has since become popular, especially among chemists,
because it allows disintegration of diatomic molecules, in contrast to the shifted harmonic-
oscillator potential sk /2dsr−r0d2.

In 1970 Cordero and Hojman12 shereafter will be quoted as CHd reproduced algebraically the
finite S-wave energy spectrum for the Morse potential,11 by using sos2,1d. Therefore we shall
analyze this paper in particular, and show that CH did not use a single sos2,1d representation to
get the energy levels, but actually a different sos2,1d representation for each energy level. We
explain how CH succeeded nevertheless in obtaining the correct energy spectrum. This should be
worthwhile, since the CH paper succeeded for the first time to produce a finite number of bound
states from a SGA.

In Sec. II we review the SGA method for the three-dimensional s3Dd oscillator and in Sec. III
we review the paper of CH on the Morse potential, and point out the basic difference in the two
cases. We shall see that K0 commutes with H, in the case of the oscillator, but it does not commute
with HS in the Morse case; in the latter case the Casimir operator Q commutes with HS. In Sec. IV
we derive the effective potentials VMskm ,rm ;rd fsee s43d belowg, which have the functions
Cln,n+msrd~ sJ+

ndmCln,nsrd as eigenstates, where Cln,nsrd are the wave functions of the Morse
potential s2d and J+

n are raising operators. Finally, in Sec. V we give a summary.

II. ENERGY SPECTRUM OF THE 3D HARMONIC OSCILLATOR

In this section we review the derivation of the energy spectra for partial-wave Hamiltonians
H, of the “generalized” sby adding the «d harmonic oscillator

H, = −
"2

2M

d2

dr2 +
s,s, + 1d + «d"2

2Mr2 +
k

2
r2 =

"2

2Ma2S− a2 d2

dr2 +
a,a2

r2 +
a4Mk

"2

r2

a2D
= ES−

d2

dy2 +
a,

y2 + sgnskdSa2Mv

"
D2

y2D s3d

for all −`,k,`, where we use the notation
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v ; Îuku/M, y ; r/a ,

a, ; , s, + 1d + « , s4d

E ;
"2

2Ma2 .

Note that a, are dimensionless constants. We introduced the scaling factor a which has the
dimension of length, and whose value will be determined below in s9d. Thus, y becomes a
dimensionless variable, and E has the dimension of energy.

Note that we defined H, for the attractive oscillator k.0 and also for repulsive oscillator k
,0. Usually the oscillator is only studied for attractive case, but k was defined in Ref. 13 for all
real values of k, in order to study the contraction of the algebra sus2d to the Euclidean algebra es2d
or to the Heisenberg algebra hs3d, as k→0.

A. Realization of so„2,1… generators for the oscillator

It is easy to check that the following three generators satisfy the commutation relations s1d of
sos2,1d:

K0sadª −
d2

dy2 +
a

y2 +
y2

16
,

K1sadª −
d2

dy2 +
a

y2 −
y2

16
= K0 −

y2

8
, s5d

K2ª
− i

2
Sy

d

dy
+

1

2
D ,

and thus yield different realizations of sos2,1d for every value of the constant a. fThe generators
in s5d follow from those in Ref. 8, Eq. s18.7d by multiplying K0 and K1 by a minus sign, which
leaves the commutation relations unchanged, and then by replacing a by −a.g The above genera-
tors are so constructed, that if they are applied to an eigenfunction of K0, then their Casimir
operator is related to a, as follows:

QªK0
2 − K1

2 − K2
2 = Sa

4
−

3

16
DI¬qsadI , s6d

where I is identity operator. If we factorize q as follows:

qsadªlsl − 1d =
a

4
−

3

16
, s7d

and solve the quadratic equation in s7d, we obtain for l the values

l±sad = 1
2 ± 1

2
Î1 + 4q = 1

2 ± 1
2
Îa + 1/4, so that a ù − 1/4. s8d

It is interesting to note that the realization s5d for a=0 also yields the SGA of the one-dimensional
harmonic oscillator. In this case, s8d yields the well-known values l−=1/4 and l+=3/4, which
define the two infinite-dimensional representations, the Fock states u2ml and u2m+1l, m
=0,1 ,2 ,…, respectively.14
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B. Relating Hø to the generators of so„2,1…

The realization s5d is suitable for generating the oscillator states. In fact, H, becomes propor-
tional to K0 for k.0 or to K1 for k,0, if we scale the coefficient of y2 in s3d to 1 /16, i.e.,

s ;
a4M2v2

"2 ⇒
1

16

which is equivalent to choosing a, as follows:

a = S "2

16Muku
D1/4

= S "

4Mv
D1/2

. s9d

With this choice of a, we obtain

E = "2/s2Ma2d = 2"v . s10d

Hence s3d becomes

H, = ES−
d2

dy2 +
a

y2 + sgnskd
y2

16
D =H2"vK0 for k . 0,

2"vK1 for k , 0.
s11d

Hence, the eigenfunctions of K0 will be the eigenfunctions of H, for k.0. Since the eigen-
values of K0 are given by8,15

n+l, n=0,1 ,2 ,…, it follows that the energy spectrum for the
,-partial wave is given, for a,= , s,+1d+«, by Ref. 16, Sec. 36 and Ref. 8,

En,, = 2"vsn + l+sa,dd, n = 0,1,2,… ,

= "vs2n + 1 + Îs, + 1/2d2 + «d s12d

which tends, in the limit «→0 to

En,, = "vsn + 3/2d, where nª2n + , . s13d

It can be seen that the shift in l, in the eigenvalues of K0sa,d, due to «, is also multiplied by the
factor 2"v. Note that for a fixed , the energy levels En,, increase by 2"v rather than "v.

In the case of the harmonic oscillator all the energy levels for a given , belong to a single
representation of sos2,1d, so that all eigenfunctions C,,n can be obtained by applying powers of
the raising operators K+sa,d on the ground state C,,0, as illustrated in Fig. 1.

FIG. 1. The eigenstates of the harmonic oscillator for a given , belong to a single irreducible representation of sos2,1d
which is characterized by l,. The excited states for a given , can be obtained by applying the raising operator K+sa,d, as
illustrated by the vertical arrows.
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III. ALGEBRAIC DERIVATION OF THE MORSE SPECTRUM

In CH the authors reproduced the S-wave energy spectrum algebraically by using sos2,1d. We
now show that, in contrast to the oscillator, one cannot obtain the S-wave spectrum of the Morse
potential by using one representation of sos2,1d. In fact, it turns out, that for each energy level En

one needs a different realization Ji
n fsee s33d belowg of the sos2,1d generators. This fact is

essentially implied by the formulas they used, but it was never stated clearly neither in the above
paper, nor in subsequent papers on the Natanzon potentials.9 Before explaining their procedure, we
introduce new notation and also note some changes of notation from that in CH.

A. New notation

We try to make the present paper self-contained. However, if the reader likes to consult the
original paper of CH, he should note the following changes of notations and definitions which we
have made, so that it becomes easier to check the dimensions in the formulas and to simplify some
of them.

In CH the Morse potential was written as VoldsrdªDfe−2aoldsr−r0d−2be−aoldsr−r0dg. In this paper
we define aª1/aold, so that a has the dimension of length. We also replace the unnecessary
parameter b by 1, by defining V0=Db2 and adjusting the value of r0. With the new definition the
potential Vsrd has its minimum at r=r0.

We find it quite useful to introduce the following dimensionless constant:

k0 ;
1

"
Î2Ma2V0 = ÎV0/E, so that V0 = Ek0

2, s14d

where E is defined by the expression s4d. We shall see that k0 is equal to the eigenvalue of K0,
when it acts on the S-wave solutions.

The following dimensionless exponential function is also very useful:

hsrdªk0e−sr−r0d/a. s15d

Note that hsr0dªk0 and that our hsrd in s15d is equal to twice the holdsrd in CH; this redefinition
simplifies many formulas, by making factors of 1 /2 and 1/4 unnecessary.

We can now write the Morse potential in terms of hsrd simply, as follows:

VMsrd = V0
hsrd

k0
Shsrd

k0
− 2D = Eshsrd2 − 2k0hsrdd . s16d

B. Relating the partial Hamiltonian HS to J0

The following three operators were defined in CH, which depend on a parameter b, which the
authors called −E /E,

J0sbdª
1

2hsrd
f− a2Dr + b + h2srdg ,

J1sbdªJ0 − h , s17d

J2ªiSa
d

dr
+

a

r
−

1

2
D ,

where hsrd is the exponential function s15d and Dr is the radial part of the Laplacian D, i.e.,
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Drª
d2

dr2 +
2

r

d

dr
= S d

dr
+

1

r
D2

. s18d

These Ji commute exactly as the Ki in s1d and hence they also yield a realization of the noncom-
pact sos2,1d algebra.

The realization Ji in s17d is defined such that it acts on the radial part Cn,,srd=Rn,, /r of the
wave function Cn,,srd=Rn,, /rY lmsu ,wd. It can be transformed into the realization Ki of sos2,1d
which acts on Rsrd, as follows:

KiªrJi
1

r
. s19d

The Casimir operator Q of the Ji is related to the parameter b by

QªJ0
2 − J1

2 − J2
2 = sb − 1

4dI¬qsbdI , s20d

so that we may replace b in s17d by q+1/4. Note that the above expression for qsbd for the Ji in
s17d is different from that for qsad in s6d. The corresponding

l±sbd = 1
2 ± 1

2
Î1 + 4q = 1

2 ± Îb , s21d

require that bù0 in order that l± to be real.
The “S-wave Hamiltonian” for the Morse potential

HSª −
"2

2M
Dr + VMsrd s22d

is related to J0, as follows:

HS = Ef2hsrdsJ0sbd − k0d − bg . s23d

Note that J0 does not commute with HS, because J0 does not commute with hsrd.

C. Condition on the wave functions Cn„r…

Let Cnsrd denote the eigenfunction of HS associated to the eigenvalue En, n

=0,1 ,2 ,… ,nmax, i.e.,

fHS − EngCnsrd = fEs2hsJ0 − k0d − bd − EngCnsrd = 0. s24d

This equation can be satisfied, iff Cnsrd are eigenfunctions of J0, with the same s!d eigenvalue k0

for all the allowed n, i.e.,

J0Cnsrd = k0Cnsrd, for n = 0,1,2,…,nmax, s25d

and if for every En we choose bn, such that

−
En

E
= bn = qn +

1

4
= lnsln − 1d +

1

4
= sln − 1/2d2. s26d

But since k0 is an eigenvalue of the compact generator, it must be related to ln as follows:8,15

k0 = mn + ln, s27d

where mn is some integer.
To fix the integers mn, we proceed as follows: First, we order for definiteness the En, such that

E0,E1,¯,Enmax
. By noting s26d we conclude that the ground state C0 must belong to the

highest possible value of ln consistent with the condition s27d. Hence, we must choose m0=0 for
l0. Following similar arguments, we finally obtain
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k0 = n + ln, or ln = k0 − n . s28d

To obtain s28d we implicitly assume that every permissible solution is a physical eigenfunction.
Substituting this expression for ln into s26d, we obtain the same energy spectrum for the S-wave
bound states as in Ref. 12,

Ens, = 0d = − EFk0 −
1

2
− nG2

= −
"2

2Ma2FÎ2Ma2V0

"
−

1

2
− nG2

, s29d

where

n = 0,1,2…,nmax = bk0 − 1/2c−. s30d

This spectrum was first obtained by Morse11 by solving the Schrödinger equation. The value of
nmax= bk0−1/2c−, where we use the notation bxc− to denote the largest integer which is smaller snot
equal tod than x, because sªk0− 1

2 −n.0 in order for the solution to be normalizable11 ssee also the
comment in Sec. III Dd. Hence, for k0ø1/2 there are no bound states.

It is important to note that the energy levels En in s29d do not depend on r0.
The main observation in this section is that all eigenfunctions of HS must be eigenfunctions of

different J0
n, but with the same eigenvalue k0. In contrast, all eigenfunctions of H, of the oscillator

are eigenfunctions of Casimir operator Q for a fixed q,=l,sl,−1d and different eigenvalues of
K0sa,d, namely kn=n+l, ,n=0,1 ,2 ,….

D. The traditional derivation of the bound state solutions

For completeness and for comparison, we review the traditional derivation of the bound state
solutions.11,16 Making the change of variables

j = 2hsrd = 2k0e−sr−r0d/a,

in Schrödinger’s equation s24d and using Csrd=Rsjd /r, we obtain

R9sjd +
1

j
R8sjd + S−

1

4
+

k0

j
+

E

Ej2DRsjd = 0. s31d

Again, substituting Rsjd=e−j/2jsFsjd into s31d, where s=Î−E /E, yields a differential equation for
F,

F9sjd + s2s + 1 − jdF8sjd + sk0 − 1/2 − sdFsjd = 0,

whose solutions are the confluent hypergeometric functions 1F1ss+1/2−k0 ,2s+1;jd. These func-
tions become polynomials and yield normalizable wave functions for s=k0−1/2−nù0 where n is
non-negative integer. This condition yields the energy levels

− En = Esn
2 = Esk0 − 1/2 − nd2 . 0, n = 0,1,2,…,nmax,

and the corresponding wave functions

Cnsrd =
1

r
Rs2hsrdd ~

1

r
e−hhsk0−1/2−nd

1F1s− n, 2k0 − 2n; 2hd . s32d

It is interesting to note that if k0=n+1/2 we obtain En=0, but this solution does not correspond to
a bound state, since the solution is not normalizable for s=0.11 This result can be understood
intuitively, because we are dealing with S-wave solutions, so that there is no potential barrier
which can prevent the particle from escaping to infinity. In contrast, an E=0 solution would
probably be normalizable for ,.1, since in the latter case the effective potential Usrd= , s,
+1d / s2Mr2d+VMsrd approaches r→` from above, and thus provides a potential barrier of infinite
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range. This was illustrated by Daboul and Nieto,17 who studied E=0 solutions for a class of
potentials.

IV. EFFECTIVE MORSE POTENTIALS GENERATED BY J±
n
ÆJ±„zEnz /E…

Equations s17d define a realization Jisbd of the sos2,1d algebra for every value of the param-
eter bù0. However, since we are interested in eigenfunctions of J0 which are normalizable, we
restrict the values of b to the discrete set bn=−En /E, where the En are the discrete eigenvalues of
HS. We denote the corresponding generators by

Ji
nªJisbnd = Jis− En/Ed, n = 0,1,2,… . s33d

In s25d we found that

J0
nCln,nsrd = k0Cln,nsrd . s34d

Using the raising and lowering operators

J±ªJ1 ± iJ2, s35d

which obey

fJ0,J±g = ± J±, fJ+,J−g = − 2J0, s36d

the following functions can be defined, by acting with sJ±
ndm onto Cln,n:

Cln,n±msrdªsJ±
ndmCln,nsrd . s37d

If these states exist and are normalizable, then they must be eigenfunctions of J0 with eigenvalues
k0±m, since

J0
nCln,n±msrd = J0

nsJ±
ndmCln,nsrd = sk0 ± mdsJ±

ndmCln,nsrd = sk0 ± mdCln,n±msrd , s38d

where we used the following general relations:

J0
nsJ±

ndm = sJ±
ndmJ0

n + fJ0
n,sJ±

ndmg = sJ±
ndmJ0

n ± msJ±
ndm.

Multiplying s38d by the factor E2hsrd and substituting the expression s23d for the J0
n operator,

yields the following differential equations:

0 = E2hsrdfJ0
n − sk0 ± mdgCln,n±msrd = EF− a2Dr −

En

E
+ h2srd − sk0 ± md2hsrdGCln,n±msrd .

The radial functions Cln,n+msrd can therefore be interpreted as eigenstates of the S-wave
Schrödinger equation for the following potentials:

Veffsm,rd =
"2

2Ma2 fh2srd − sk0 + md2hsrdg = V0Fe−2sr−r0d/a − 2
km

k0
e−sr−r0d/aG , s39d

where

km ; k0 + m . s40d

Each of these effective potentials has its minimum at rm, where

rm

a
=

r0

a
− lnS k0 + m

k0
D =

r0

a
− lnS km

k0
D , s41d

so that
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e−sr−r0d/a =
km

k0
e−sr−rmd/a. s42d

By substituting this expression into s39d, we obtain

VMskm,rm;rd = Vmfe−2sr−rmd/a − 2e−sr−rmd/ag = Ekm
2 fe−2sr−rmd/a − 2e−sr−rmd/ag . s43d

The effective potentials s43d look exactly as the original Morse potential s2d, except that the
parameters sk0 ,r0d get changed into skm ,rmd. As m increases the effective potentials s43d will have
shorter range and their minima

Veffsrmd = − V0S k0 + m

k0
D2

= − Ekm
2 s44d

become deeper and deeper, decreasing almost quadratically with m. The associated energy eigen-
values are

En
smd = − ESkm −

1

2
− nD2

, n = 0,1,…, bkm − 1/2c−,

= − ESsk0 + md −
1

2
− nD2

= En+n
sm+nd for n . − n . s45d

A. Connection to SUSY–QM

Using the relation s45d we obtain immediately

En ; En
s0d = − ESk0 −

1

2
− nD2

= − ESk−n −
1

2
D2

= E0
s−nd for n = 1,2,…,nmax. s46d

Hence the energies En, n=1,2 ,… ,nmax of the excited states of the original Morse potential s2d are
equal to ground state energies E0

s−nd of the effective potentials Veffs−n ,rd, n=1,2 ,… ,nmax. This is
one of the interesting results of the quantum-mechanical supersymmetry sSUSY–QMd
formalism.18 We derived it here without using the latter formalism and without the need of finding
out the relevant supersymmetric potential Wsx ,aid.

To understand the above result more thoroughly we give a second proof that the Cln,n+msrd
;sJ+

ndmCln,nsrd are eigenfunctions of HS with the potential Veffsm ,rd.
For this, we first note the important relation s42d, it tells us that the hsrd defined in s39d is

invariant under the transformation sk0 ,r0d to skm ,rmd, i.e.,

hsrd ; hsk0,r0,rd = k0e−sr−r0d/a = kme−sr−rmd/a = hskm,rm,rd . s47d

Hence, also the generators

Ji
n ; Jisk0,r0,− En/E;rd = Jiskm,rm,− En/E;rd , s48d

as defined in s17d, do not depend on m, but differ for different En /E.
Now we compare the following two equations:

J0
nsk0,r0;rdCk0−n,n+msk0,r0;rd = sk0 + mdCk0−n,n+msk0,r0;rd , s49d

J0
nskm,rm;rdCkm−sn+md,n+mskm,rm;rd = kmCkm−sn+md,n+mskm,rm;rd , s50d

where the first follows from s38d and the second follows from the condition s34d on the Morse
eigenfunctions for the potential Veffsm ,rd. The two C are solutions of the same differential op-
erator J0

n with the same eigenvalue. Since the eigenvalues of J0
n are not degenerate, the two
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functions must be the same, except for a constant factor. Hence, Cln,n+msrd is the sn+mdth excited
state of the Morse potential Veffsm ,rd.

In Fig. 2 we display the states Cln,nsrd, defined in s37d, in the sln ,nd plane, where ln=k0

−n=ÎuEnu /E−1/2 and n;n±m. All the eigenstates for a fixed effective potential VMskm ,rm ;rd lie
on a single diagonal line. But, the states along a horizontal line have the energy eigenvalue, but
belong to different potentials Veffsm ,rd. The states Cln,nsrd for the original Morse potential s2d can
be obtained from the ground states of Veffs−n ,rd by applying sJ+

ndn, as illustrated in the figure by
horizontal arrows.

V. SUMMARY AND CONCLUSIONS

The S-wave energy levels of the Morse potential have been known since 1929. Thus, the
algebraic derivation of these levels has not brought anything new, as far as applications are
concerned. What is interesting in the algebraic treatment is how the mathematical formalism
works. In the present paper we did clarify when it works and how it works.

We showed in particular that sos2,1d is applied in a completely different manner to the
oscillator and the Morse potentials: for the harmonic oscillator a single raising operator K+s,d
yields all the eigenstates for the given ,. In contrast, for the Morse potential the raising operators
J+

ns,=0d map the wave functions of the original Morse potential onto wave functions of other
Morse potentials. This contrast is illustarted by Figs. 1 and 2. Thus, the message of the present
paper is that one should be more critical and check carefully how the SGA are applied.

For example, with our present insight we wanted to check how Wybourne obtained the
spectrum of the Morse potential in Ref. 8, Sec. 18.8. It turned out that Wybourne did not even give
the sos2,1d generators for every potential, as was done, for example, in Refs. 9 and 12. Instead, he
used a slightly different version of the realization s5d of sos2,1d for the harmonic oscillator, and
showed that the algebra describes the energy spectrum of the following differential equation fRef.
8, Eq. s18.19dg:

FIG. 2. The eigenstates for effective Morse potentials Veffsm ,rd, mù−5 are displayed in the skm ,nd plane, where km is
related to the ground-state energies by km=ÎuE0

mu /E+1/2 and n;n±m. The eigenstates for a single effective Morse
potential Veffsm ,rd s39d are given along a diagonal line. The number of bound states is given by bkmc−+1= bk0c−+m+1
=nmax+m+1. In particular, the original potential VMsrd in s2d, which corresponds to m=0, has nmax+1 bound states, which
lie along the solid diagonal line. Thus, for m=−bk0c− there is only one bound state. In this diagram we choose k0=5.7 so that
VMsrd has six bound states. In contrast to Fig. 1 all the states with a fixed energy En belong to the same irreducible
representation of sos2,1d, and lie along a horizonal line. The ground states for different Veffsm ,rd lie along the vertical line
n=0. By moving along the horizonal lines we go from eigenstates of one effective potential to another. This is illustrated
by the horizintal arrows. By applying J+

n=−3 three times to the ground state of Veffs−3,rd, we obtain the third excited state
of the original Morse potential VMsrd.
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S d2

dy2 +
a

y2 + by2 + cDCsyd = 0. s51d

Then he simply transformed the Schrödinger equation of different potentials to the above differ-
ential equation. But this is essentially what Morse did, already in 1929, by transforming the
S-wave Schrödinger equation to a differential equation, which was solved by Schrödinger. It is
also what Landau and Lifschitz sRef. 16, Sec. 23d did for many potentials, by transforming their
Schrödinger equations to the confluent hypergeometric equation.

There is no doubt that group theory helps us understand many results in physics, such as the
degeneracies of the eigenstates of the hydrogen atom. It has many useful applications in elemen-
tary particles such as flavor and color SUs3d. However, it seems to us that many of the papers on
the SGA can even mislead nonexperts, as we demonstrated in the present paper. They might
believe, for example, that one could obtain finite number of states by just using the raising
operators of a single realization of the sos2,1d algebra, as is the case for the oscillator.

Apparently, some experts have noticed that. In a well written and easy to read article,18 the
authors give a review of the supersymmetry sSUSY–QMd formalism and of shape invariant po-
tentials and mention that the Morse potential is of the invariant type. This means that one can
obtain the excited states of the Morse potential from its ground state, not by applying powers of a
raising operator, as one naively expects, but by applying the supersymmetric raising and lowering
operators A†said and Asaid operators, which have the same structure, but which depend on different
parameters ai. We write this statement, using their notation, as follows:

cn+1
s−d sx,a0d , A†sa1dA†sa2d¯A†sandc0

s−dsx,and .

We showed in Sec. IV A that for the Morse case the following equivalent statement holds:

Ck0−n,nsr,k0d , sJ+
ndnCk−n,0sr,k−nd ,

where all the raising operators are equal, as we showed in s48d. Thus, we gave an explanation of
why the excited states Ck0−n,nsr ,k0d of the original Morse potential s2d are related to the ground
states Ck−n,0sr ,k−nd of related effective potentials Veff, without using the SUSY formalism. We
illustrate this action in Fig. 2 by applying J+

n=3 three times on the ground state, Ck−3,0sr ,k−3d, of
Veffs−3,rd and obtain the third excited state of Veffs0,rd. A more recent and detailed review of the
SUSY formalism can be found in Ref. 19.

It is interesting to note that by using a direct approach, it was possible to obtain many
results,20 among them a construction of new quasiexactly solvable deformation of the Morse
potential, which the authors have not been able to obtain by Lie-algebraic methods.

The Morse potential is one of the simplest examples of the general class of Natanzon’s
potentials10 which have been studied by using SGA algebraic methods.9 Therefore a deeper un-
derstanding of the SGA method in the Morse’s case should help us understand the more general
cases as well.
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