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Kinetic description of a fluidized one-dimensional granular system

Rosa Ramı´rez* and Patricio Cordero†

Departamento de Fı´sica, Facultad de Ciencias Fı´sicas y Matema´ticas, Universidad de Chile, Santiago, Chile
~Received 15 June 1998!

In this paper we study, using Boltzmann’s equation and molecular-dynamic simulations, a one-dimensional
column ofN inelastic point particles, in the quasielastic limit, under the influence of gravity. The column has
no top boundary and it is subjected to a permanent energy injection at a fixed base chosen to behave like a ‘‘hot
wall.’’ The quasielastic condition plus the boundary condition guaranteemolecular chaos.The energy injection
is of enough intensity to keep the system permanently in a low density state. The system—which would have
a homogeneous temperature if it were conservative—shows a temperature gradient because of dissipation. It is
shown that, after adimensionalizing, the physical properties in the hydrodynamic limit (N→`) depend solely
on the productqN, whereq is an inelasticity coefficient. Comparison of our molecular-dynamic results with
this theoretical picture is excellent.@S1063-651X~99!01501-9#

PACS number~s!: 81.05.Rm, 05.20.Dd, 51.10.1y, 47.50.1d
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I. INTRODUCTION

Granular systems provide a number of surprising p
nomena which go from gaslike to solidlike behavior@1#.
Most of these phenomena imply in one way or another so
degree of fluidization, and for this reason fluid states h
attracted much attention in recent years@2,3#. These fluid
states, however, are different from what is usually und
stood of fluids, and they represent a challenge and a g
opportunity to look back on hydrodynamics and kine
theory concepts@4#.

Fluidization in a granular material can go from surface
total fluidization of the system. In the case of total anddilute
fluid states, kinetic theory concepts are particularly use
when spatial and temporal correlations can be omitted fr
the formal description. Under such circumstances one m
have the conditions for applicability of a Boltzmann equ
tion.

To guarantee that a many-particle granular system s
fies Boltzmann’s equation~mainly low density so that colli-
sions are uncorrelated!, it is necessary~a! to be in a quasi-
elastic regime, otherwise clusters, and eventually inela
collapse, would develop, and~b! to have a sufficiently large
and permanent energy injection, to maintain a steady
density fluid state.

The energy injection needed to balance dissipation an
keep the system in a fluid state is usually implemented
practice by means of a vibrating plate. This form of ener
input acts also as a source of spatial and temporal corr
tions, unless perhaps the injection is of enough intensity
all correlations become negligible. To avoid such a source
correlations in numerical simulations, a fixed energy sou
is becoming a usual practice@5–7#. Although this energy
injection is not a fully realistic condition, its advantage
that the effects of the dissipative nature of the system ca
isolated from those coming from a moving base.

One-dimensional models sometimes help to underst
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features of specific problems~see@8# and references therein!
and hopefully their properties can be extended to higher
mensions. One-dimensional granular systems share som
the phenomena of higher-dimensional systems such as
sition from a condensed to a fluid state@9#, inelastic collapse
@10#, etc., and hydrodynamic and kinetic theories have b
derived for such systems basically from the associa
Boltzmann equation@11,12#.

In this paper we study, using the Boltzmann equation a
molecular-dynamic simulations, a one-dimensional colu
of N inelastic point particles, in the quasielastic limit, und
the influence of gravity. The column has no top bounda
and it is subjected to a permanent energy injection at a fi
base chosen to behave like a ‘‘hot wall.’’ This energy inje
tion is of enough intensity to keep the system permanentl
a low-density state. We further assume that it keeps the
tem in a time-independent state. This last point deserve
extra comment. There is an interesting article@6# in which
the authors study a one-dimensional~1D! granular system
inside a horizontal box of lengthL with an elastic wall and a
‘‘thermal’’ one. The authors report that under appropria
conditions the system stabilizes to anoscillating state. In our
simulations we have not detected oscillations and have
confident that time-independent solutions exist and
stable.

To prevent clustering and inelastic collapse, we will r
strict ourselves to restitution coefficientsr such that (1
2r )N is well below 1. With this last assumption and th
ones described in the preceding paragraph, a Boltzm
equation is shown to be suitable to describe the system
markably well. Even though clustering is an important ph
nomenon, its presence would invalidate the use of Bo
mann’s equation. There is a wide zone in phase sp
though, where the presence of clusters can be negle
@13,14#.

Work has already been done to derive a distribution fu
tion for a granular 1D gas in the quasielastic limit. In@7,11#
the authors find distribution functions for a column of inela
tic particles without gravity. In@15# the authors find a set o
equations for a similar system subjected to gravity, that
be solved numerically to find the distribution function.
656 ©1999 The American Physical Society
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PRE 59 657KINETIC DESCRIPTION OF A FLUIDIZED ONE- . . .
In this paper, starting with a Boltzmann equation inclu
ing the effects of the inelastic collisions and using the qua
elastic and (N→`) limit, we find the analytic perturbative
solution for the system. We will show that these solutio
depend on the parameter (12r )N alone except for a scal
factor that emerges after adimensionalizing the problem.
solution is not comparable to@15# because they use an asym
metric sawtooth moving base, which causes the densit
increase with increasing height. In our system, and beca
we use a thermal boundary condition and no top wall, d
sity decreases with height.

Dissipative collisions give rise to a heat flux and a te
perature profile with a negative gradient, even in the qu
elastic limit. We show that a perturbative expansion of
distribution function predicts correctly these effects for sm
(12r )N values. The validity of our theoretical results—
particular, our predictions for the values of the moments
the distribution function—are then compared with our ow
simulational results obtained from event-driven molecu
dynamic simulations.

This paper introduces Boltzmann’s equation with dissi
tion in Sec. II, develops and uses a perturbative schem
Sec. III, and makes a comparison between theory and re
from simulations in Sec. IV. Final comments are in Sec.

II. THE MODEL AND BOLTZMANN’S EQUATION

A. The system

We examine the behavior ofN identical point particles
under the action of gravity, a fixed base, and no top bou
ary. The collisions between particles, (c1 ,c2)→(c18,c28),
are inelastic,

c185qc11~12q!c2 , c285qc21~12q!c1 , ~1!

where 0<q<1/2, andq50 corresponds the perfectly con
servative case. The usual restitution coefficient isr 51
22q.

Let us briefly comment that if we relabel particles aft
each collision, so that in Eq.~1! c18↔c28 , then it is seen tha
the limit q small and different from zero is tantamount to
system ofN point particles that pass through each other wi
out ever interacting. In the caseqÞ0, particles pass throug
each other losing some energy in the process as if movin
a viscous background. It is quite important to underline
relevance of this picture to themolecular chaos hypothesi
needed to justify the use of Boltzmann’s equation. Since
colliding particles@call them (a,b)] pass through each othe
altering their velocities, they pass through all the rest of
particles before meeting again. In fact, for them to be ab
to collide, againa has passed throughNa particles,b through
Nb particles, andNa1Nb5N22. For a large enough system
this is enough for particles to decorrelate their velocities.
the case of the boundary condition that we are about to
fine, the situation is even more extreme because eithera or b
will necessarily hit the base~forgetting its history altogether!
before encountering its partner again . In our case, then,
velocities of particles about to collide are uncorrelated.

A permanent energy injection, needed to keep the sys
in a fluid state, enters through the fixed base as if it wer
‘‘hot wall.’’ A particle hitting the base with velocityc8 in-
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stantaneously bounces back with a velocityc taken from a
probability W(c), uncorrelated from the incoming velocit
c8. The formalism developed in this paper can be exten
to a genericW(c) but in what follows we have chosen th
‘‘thermal’’ probability,

W~c!5
2c

a2
e2c2/a2

, ~2!

where a is a parameter with dimensions of velocity th
characterizes the ‘‘temperature’’ of the base.

Different fixed-base probabilitiesW have been discusse
in @5,7#, while in @16# the correlated probabilityW(c,c8) is
derived for a sawtooth vibrating plate. Even though it is le
realistic than a vibrating condition, the ‘‘thermal’’ boundar
condition has the advantage of isolating the effects of
dissipative nature of the system from those coming from
moving base. Furthermore, it is analytically simpler to im
pose in the formalism and it is easy to implement in
molecular-dynamic program.

Let us see that the ‘‘hot-wall’’ boundary condition is no
totally unrealistic. A vibrating base has a frequencyv and an
amplitudeA. A control parameter much used in this conte
is G5Av2/g. Consider the case of an amplitude mu
smaller that the mean free path near the base and a frequ
much larger than the collision rate with the base and yet w
G finite. Such a base is almost at a fixed position but inje
ing as much energy as desired since it is fixed withG. Warr
and Huntley in@2# have shown that a free particle hittin
quasielastically a vibrating bed produces an outcoming
locity distribution which, to first order, is a Gaussian.

B. Kinetic equation and boundary condition

The standard form for the one-dimensional and tim
independent Boltzmann equation for the distribution funct
f (x,c) normalized to

E dxE dc f~x,c!51, ~3!

for particles that interact with the collision rule~1!, is

S c
]

]x
2g

]

]cD f ~x,c!5NE
2`

` F 1

~122q!2
f ~x,c19 ,t ! f ~x,c29 ,t !

2 f ~x,c1 ,t ! f ~x,c2 ,t !G uc22c1udc2 ,

~4!

where the double-prime variables are associated to the
verse collisions,c195@(12q)c22qc1#/(122q), c295@(1
2q)c12qc2#/(122q). It can be shown that the precise g
neric factor, which in Eq.~4! is 1/(122q)2, for any type of
instantaneous one-dimensional two-particle hard collis
rule is uc292c19u/(uc22c1uJ), whereJ(c9,c) is the Jacobian
of the transformation (c19 ,c29)→(c1 ,c2).

Equation~4! can be formally expanded in powers ofq,
and it has been shown to yield@12#
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S c
]

]x
2g

]

]cD f ~x,c!5N(
k51

`
qk

k!

]k

]ck
„M ~k!~x,c! f ~x,c!…,

~5!

where the momentsM (k)(x,c) are

M ~k!~x,c!5E
2`

`

f ~x,c8!~c2c8!kuc2c8udc8. ~6!

The right-hand side of Eq.~5! is identically zero for the
perfectly elastic limit (q50), as it should be. Only when
considering correlations and the finite size of the particles~as
in Enskog’s equation! would the right-hand side of the ki
netic equation be nontrivial in the elastic limit.

We rewrite Eq.~5! taking the productqN as a single
parameter,

S c
]

]x
2g

]

]cD f ~x,c!5 (
k51

`
~qN!k

k!Nk21

]k

]ck
„M ~k!~x,c! f ~x,c!….

~7!

From this last equation it is seen that in theN→` limit
~hydrodynamic limitfrom now on! with qN finite, only the
first term of the last expansion survives in the kinetic eq
tion, and this becomes

S c
]

]x
2g

]

]cD f ~x,c!5qN
]

]c
„M ~1!~x,c! f ~x,c!…. ~8!

This equation corresponds to the hydrodynamic and qu
elastic limit. A nice physical derivation of a similar equatio
is in @12#. Briefly, Eq. ~8! statistically represents a partic
passing through a viscous fluid losing energy and con
quently suffering an acceleration2(g1qNM(1)).

Any solution f (x,c) of Eq. ~8! must satisfy the therma
condition at the base. The boundary condition for an unc
related probabilityW(c) can be written in the form@17#

ucu f ~0,c.0!5KW~c!

with ~9!

K5E
2`

0

f ~0,c8!uc8udc8,

whereK is the collision rate with the base, and the functi
W(c) satisfies*0

`W(c)dc51. The probability~2! introduces
the ‘‘temperature’’a2/2 and we remark that, if the system
were perfectly elastic, this would be the homogeneous t
perature of the system.

C. Adimensionalization of the problem

Having introduced the ‘‘temperature’’ at the base, we d
fine the reduced variablesX,C, a distribution function
F(X,C), and the moment M̂ (1)(X,C) such that x
5a2X/(2g),c5aC, f (x,c)52gF(X,C)/a3, M (1)(x,c)
52gM̂(1)(X,C). Equation~8! becomes
-

i-

e-

r-

-

-

S C
]

]X
2

1

2

]

]CDF~X,C!5qN
]

]c
„M̂ ~1!~X,C!F~X,C!….

~10!

By further definingw(C)5aW(c) andk5aK/(2g) still
with *0

`w(C)dC51, the boundary condition at the base b
comes uCuF(0,C.0)5kw(C) with k5*2`

0 F(0,C)uCudC.

Our specific choice then isw(C)52Ce2C2
.

As we see, the only parameter left in the adimensio
formalism isqN. There is no tunable parameter like gravi
or the temperature imposed at the base. Hence, except
scale factor, the quasielastic system is completely de
mined byqN alone.

III. PERTURBATIVE SOLUTION

A. The s-order equation and associated boundary condition

To solve Eq.~10! we assume thatF(X,C) can be for-
mally expanded in powers ofqN,

F~X,C!5(
s50

`

~qN!sFs~X,C!. ~11!

In order to have a first-order correction much smaller th
the zeroth-order distribution function, we require thatqN be
distinctly smaller than 1. From Eqs.~10! and ~11!, a hierar-
chy of equations follows:

S C
]

]X
2

1

2

]

]CDFs~X,C!5 (
n50

s21
]

]C
„M̂n

~1!~X,C!

3Fs2n21~X,C!…, ~12!

where we have defineds-order momentsM̂s
(k)(X,C) as

M̂ s
~k!~X,C!5E

2`

`

~C2C8!kuC2C8uFs~X,C8!dC8.

~13!

At each orders in Eq. ~12!, the unknown functionFs
appears only on the left-hand side of the equation while
right-hand side contains functionsFr with r ,s. The integra-
tion of the set of equations~12!, therefore, is straightforward
We impose the normalization condition~3! in the form
*0

`dX*2`
` dCFs(X,C)5d0s . It is easy to prove that

M̂s
(1)(X,C) obeys (]C)M̂s

(1)52M̂ s
(0) and therefore the equa

tions for the first three functionsFs become

S C
]

]X
2

1

2

]

]CDF050, ~14!

S C
]

]X
2

1

2

]

]CDF15S 2M̂0
~0!1M̂0

]

]CDF0 , ~15!

S C
]

]X
2

1

2

]

]CDF25S 2M̂0
~0!1M̂0

~1!
]

]CDF1

1S 2M̂1
~0!1M̂1

~1!
]

]CDF0 . ~16!
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PRE 59 659KINETIC DESCRIPTION OF A FLUIDIZED ONE- . . .
Any of theseFs functions must obey a normalization@see
Eq. ~19! below# and the boundary conditionuCuFs(0,C.0)
5ksw(C) with a suitableks constant@see Eq.~20! below#.

It will be seen that for aboutqN<0.01 the behavior of the
system is well described expanding up to first order, wh
for 0.01<qN<0.1 the second-order correction is needed.
the following we describe the method to get these two c
rections for our system.

The equation forF0 is the only equation in the case of th
conservative system (q50) and in our case it corresponds
a fixed temperature system subjected to gravity. More on
will be in Sec. III C.

B. The energy as a variable

The differential operator (C]X21/2]C), present in all the
equations, suggests that the energy variable

t5X1C2 ~17!

will play a privileged role. For example, any differenti
function oft alone satisfies Eq.~14!. We would like to point
out that

t5
mgx1mc2/2

kBT0
, ~18!

if the identificationa5A2kBT0 /m is made,kB is the Boltz-
mann constant,T0 is the temperature at the base, andm is the
mass of each particle. From this point of viewt resembles a
Froude number in the sense that it is a ratio between
energies, but it is not a fixed parameter in one ‘‘experimen
but rather an alternative phase-space variable. For this re
we refer to it simply as an adimensional energy variable
di

re

n

e
n
r-

is

o
’’
on

The new variables replacing (X,C) will be (t,C), the
Jacobian being 1. When the distribution is written in terms
them, it will be denotedF(t,C)5F(t2C2,C) and the mo-
mentsM̄ (k)(t,C)5M̂ (k)(t2C2,C).

The normalization condition, using (t,C) as independen
variables, can be written in two forms,

d0s5E
0

`

dtE
2At

At
dcFs~t,C!5E

2`

`

dCE
C2

`

dt Fs~t,C!

~19!

while the boundary condition for each of theFs is, provided
that C5At whenX50,

AtFs~t,At!5ksw~At!

with ~20!

ks5E
2`

0

Fs~C2,C!uCudC.

The variables (t,C) and the functionsFs are the most
convenient quantities to solve the problem and write do
the solution, but when it comes to discussing the physics
the problem or to evaluating the hydrodynamic fields,
continue using (X,C) and the functionsFs .

In terms of the new variables (t,C), the differential op-
erator (C]X21/2]C) that appears on the left-hand side of t
kinetic equations gets substituted by (21/2)]/]C. Hence
these equations are solved simply integrating the right-h
side of Eqs.~14!–~16! over C with t fixed. In practice what
we do is
Fs~t,C!52E
C

At
@right-hand side of Eqs.~14!–~16!#~t,C8!dC81Bs~t!, ~21!
o-
nsity
n a
be
the
om
de-

on
whereBs(t) is an integration constant. The boundary con
tion ~20! is a condition overFs(t,At), namely, the lower
limit in the integral above equals the upper limit and the
fore the boundary condition is simply

Bs~t!5ks

w~At!

At
, ~22!

where the constantks is determined from the normalizatio
condition ~19!.

C. The zeroth-order solution

A generic solution of Eq.~14! is any function oft alone
but from the boundary condition it follows that

F0~t!5
w~At!

2Apt
5

1

Ap
e2t5

1

Ap
e2X2C2

. ~23!
-

-

This is the exact solution in the conservative case (q50)
and it corresponds to a Boltzmann distribution with a hom
geneous temperature and with an associated number de
that decreases exponentially with height. Had we chose
different boundary condition, the temperature would not
perfectly homogeneous in the elastic case. This is one of
advantages of choosing the thermal boundary condition fr
other possible ones, namely, the effects of dissipation
scribed below are seen more clearly.

Since F0 is an even function ofC, it follows that the
functionsM̄0

(k) have parity (21)k with respect to inverting
C. The ones we will use to solve the first-order correcti
can be expressed analytically,

M̄0
~0!~t,C!5

1

Ap
e2t@Ap erf~C!CeC2

11#, ~24!

M̄0
~1!~t,C!5

1

Ap
e2t@Ap erf~C!~C21 1

2 !eC2
1C#.

~25!
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D. The first-order correction

The first-order equation~15! in terms of (t,C) is

2
1

4

]F1

]C
5FCM̄0

~1!
]

]t
1M̄0

~0!GF0~t!. ~26!

Since the right-hand side of this equation is even inC, it is
possible to split the solution in the formF15F1

odd1F1
even

and the even piece cannot depend onC. Following the pre-
scriptions~21! and~22! and making use of the normalizatio
condition leads to

F1
odd~t,C!5

2

p3/2
e22t$ApC2p erf~C!~ 3

2 2C2!eC2
%,

~27!

F1
even~t!5

2

p3/2
e2t$11p erf~At!~ 3

2 2t!2Apte2t%.

~28!

From these functions the correctionsF1
odd(X,C) and

F1
even(X,C) are naturally defined.
It can be checked that the hydrodynamic velocity to fi

order at any pointX vanishes as expected. The solution up
first order predicts, near the base, a density larger than
density for the conservative case. It also predicts a nega
temperature gradient and an upwards heat flux. The e
moments of the distribution, such as the number den
n(X) or the pressure, cannot be expressed analytically
close form, but they have been calculated numerically
the results are shown in the next section.

Remarkably the upwards heat fluxJQ has ananalytic ex-
pression.JQ corresponds to the flux of the energy being d
sipated in the bulk. Taking into account that the distributi
function is normalized to 1, the following expression is t
heat flux per particle:

JQ~X!5qNE
2`

`

dC
C3

2
F1

odd~X,C!5
qN

A2p
e22X. ~29!

At the top, Fig. 1 showsF1 evaluated at three differen
heights. It is seen that, atX50, F1(0,C) has a discontinuous
derivative atC50, which, from a mathematical point o
view, can be understood becauseF1

evenis an analytic function
of the positive variableAX1C2 which at X50 is uCu.
Physically, the singular behavior of the distribution is und
stood because the particles withC.0 close to the base hav
basically a Boltzmann distribution since most of them ha
just hit the base losing their memory, while the partic
about to hit the base carry the ‘‘dissipative’’ informatio
from the bulk. These two distribution functions have quite
different origin and they meet at (X50,C50).

Going to higherX values, wall effects diminish, and th
system tends to behave ‘‘isotropically’’ in the bulk, as o
would expect. Notice that the ratioF1

odd/F1
even decays expo-

nentially ase2t5e2X2C2
, namely, away from the base th

first-order correction becomes more and more symmetri
C.
t

he
ve
en
ty
a
d

-

-

e
s

in

At bottom, in Fig. 1, F0 is compared withF5F0

1qNF1 at X50 for qN50.05. The functionqNF1 has also
been included.

As an effect of the dissipative dynamics, the system
viously cools down. This effect is not symmetric and it im
plies, as we discuss later on, that particles going up m
faster, on the average, than particles coming down.

Particles falling through a viscous fluid have a spe
limit. The meaning of the maximum that the velocity distr
bution at X50 shows for negative velocities seems to
related to a similar phenomenon even though our fluid c
not be described like a uniform viscosity fluid.

It can also be seen and checked numerically thatqNF1

becomes comparable to and even larger thanF0 for negative
enough velocities. Since the complete distributionF is posi-
tive, this is an indication that the contribution of large neg
tive velocities is not well described at this order but the r
evance of this inaccuracy to the general description of
system is marginal.

Finally we remark that far from the base~large X) the
density is quite small, the mean free path of particles is co

FIG. 1. At top F1 is shown at different heights:X50 ~solid
line!, X51 ~dashed line!, andX52 ~dot-dashed line!. The function
tends to be more symmetric with height. At bottom the distributio
F0 ~dot-dash line! and F01(qN)F1 ~solid line! evaluated at the
base (X50) are compared whenqN50.05. The function (qN)F1

~dashed line! is also included. The inset shows the detail of t
distribution aboutC50.
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parable to the size of the system, and the first-order cor
tion functionqNF1 is no longer small compared toF0 .

E. The second order correction

The functionF2 can formally be integrated, following th
prescription~21!, as we did to obtainF1 except that some o
the integrals cannot be written explicitly in a closed for
Those integrals have been evaluated using a standard M
Carlo method.

In Fig. 2 the theoretical distribution functions up to z
roth, first, and second order evaluated atX50 with qN
50.2 are compared with the measured distribution functi
Although qN50.2 is quite high for our formalism, we hav
chosen this value to show how well the theory fits the obs
vations. This figure also shows (qN)2F2 . As can be ob-
served, this last function is practically zero for positive v
locities, whereas for the negative ones it removes h
velocity particles and adds slow ones. This happens bec
the dissipative effects influence much more the stream
particles coming down—after having suffered ma
collisions—than their counterparts going up.

The maximum that the distribution has for negative v
locities is reinforced by the second-order correction. W
have determined that it corresponds to about

Cmax'2qN~2.524.3qN!. ~30!

IV. COMPARISON WITH SIMULATIONS

Our simulations have been done withqN50.01, 0.05, and
0.1, all with N5200. For these values ofqN, size effects
with N5200 are negligible, as we comment in Sec. V C.

We define a characteristic height of the system as
height below which, on the average, 90% of the particles

FIG. 2. The distribution functions normalized to 1 atX50
evaluated to zeroth~dot-dashed line!, first ~dashed line!, and second
order ~solid line! are seen in this figure forqN50.2 andN5200.
The distribution up to second order differs by more than 30% fr
F0 in the central region and, in spite of this, the former fits extra
dinarily well the observed distribution~open circles!. The solid S-
shaped curves underneath represent the first- and second-orde
rections, (qN)F1 and (qN)2F2 . Notice that the last correction i
almost zero for positive velocities.
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This characteristic height depends onqN but in the range we
have worked it is roughly 2~it varies from 2.7 atqN50 to
1.65 atqN50.2). In spite of this, the figures shown belo
cover a range up toX56 where the density is three orders
magnitude smaller than near the base and the theory, u
second order, still gives good fits.

In our simulations—with an event-driven algorithm
@18#—we have measured four local hydrodynamic fields:
number densityn(X), the adimensional local temperatu
T(X)5^C2/2&, the adimensional heat flux JQ(X)
5n(X)^C3/2&, and the fourth moment of the distribution
The first moment,̂ C&, corresponds to the hydrodynam
velocity and it is zero both in theory and in the simulation

Since the second-order correction was integrated num
cally using a Monte Carlo algorithm, the results show,
some cases, noise coming from the integration procedur

A. The density n„X…

The zeroth-order densityn0(X) decreases exponentially
and sinceqN<0.1, deviations from this behavior should b
small. Dissipation prevents particles from reaching t
heights they would reach in the conservative case and th
fore the effective height of the system gets smaller and c
sequently the density tends to be higher near the bas
shown in Fig. 3.

In Fig. 4 it is seen that both corrections grow from th
base, and have a maximum slightly above it, thereforen(X)
is not necessarily monotonous. This means that whenqN is
large enough, the functionn(X) would have a maximum
away from the base. We have numerically derived t
dn(X)/dX50 at X50 whenqN'0.5. Hence forqN larger
than this value, the density increases fromX50 and has a
small maximum slightly over the base. It seems to us t
this is the first manifestation of a phenomenon resemblin
well known one: a liquid drop afloat a hot plate. Althoug
this prediction is done from the low-density and quasielas
limit, we have measured this effect for simulations wi
qN51.

-

cor-

FIG. 3. The circles show in a logarithmic scale the density o
served in a simulation of a system withqN50.1 andN5200. The
density is shown evaluated up to zeroth~dashed line!, first ~dot-
dashed line!, and second order~solid line!. It can be seen that the
prediction up to second order reproduces extraordinarily well
density far beyond the size (X<2) of the system.
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662 PRE 59ROSA RAMÍREZ AND PATRICIO CORDERO
The effect of the corrections is seen in Fig. 3 for a syst
with qN50.1 andN5200. When the second-order corre
tion is included, the density is seen to be extremely w
described. This figure also shows that the dissipative eff
are overestimated using only the first-order distributio
while considering the second-order correction they
slightly underestimated.

B. The temperature T„X…

In Fig. 5 the temperature is shown for three values ofqN.
The zeroth-order temperature profile is the straight lineT
51/4 in all three cases. The effect of dissipation is to p
duce aT(X) with negative gradient and this is already pr
dicted by the negative first-order correction. The seco
order correction, however, is positive all the way. In t

FIG. 4. The density is n(X)5n0(X)1qNn1(X)
1(qN)2n2(X). This figure showsn1 ~solid line! and n2 ~dashed
line!. The inset shows the maximum thatn1 has nearX50. The
maximum ofn2 is seen in the main figure.

FIG. 5. If the system were perfectly elastic, the temperature~in
adimensional units! would be uniform:T51/4. The figure shows
for qN50.01 ~squares!, qN50.05 ~triangles!, and qN50.1
~circles! that, because there is dissipation, the temperature decre
with height reaching an asymptotic value. The solid~dot-dashed!
line is the predicted adimensional temperature up to second~first!
order.
ll
ts
,
e

-

-

figure the temperature scale had to be amplified to be ab
see the slight discrepancies between the predictions u
first and second order. In the less favorable case, nam
qN50.1, the first-order correction differs from the measur
data by less than 5% while including the second-order c
rections causes the fit to be excellent. Only our noisy e
mate of the second-order correction prevented us from
ing a good fit in the whole range. Figure 5 also shows t
the temperature reaches an asymptotic value that our for
ism predicts to beT(X;`)'1/42qN(12qN)/2, which co-
incides with what we observe.

At X50, the temperature of the system does not coinc
with the imposed valueT051/4; there is a gap. In our cas
this temperature slipat the base isdT'qN(12qN/2)/4,
which is the gap we observe. This wall thermal slip is a w
known effect when the system has a temperature grad
@19,20# and it has been observed in real gases@21#.

The heat flux seen in Fig. 6 is well described by the fir
order correction whenqN50.01 but for larger values ofqN
the second-order correction gives an extraordinary pre
tion. From the figure it is seen that the heat flux is practica
zero roughly atX52 which is of the same order as th
effective height of the system. Beyond that height partic
almost have no collisions and the temperature is uniform

V. FINAL COMMENTS

A. Overview of the results

It has been shown that a granular one-dimensional sys
of point particles —subjected to gravity and kept in a dilu
time-independent state thanks to a steady energy in
through a ‘‘hot base’’— can be well described in the hydr
dynamic limit by a Boltzmann equation. Adimensionalizin
the problem allows us to transform away the parameters
scribing the acceleration of gravity and the temperature
this sense one could say that in thishydrodynamic limitthe
system has, except for a scale factor, a universal beha
determined byqN.

ses

FIG. 6. The permanent energy influx through the base is di
pated in the ‘‘volume.’’ The figure shows the heat fluxJQ as a
function of X for systems withN5200 andqN50.01 ~squares!,
qN50.05 ~triangles!, and qN50.1 ~circles!. The solid ~dashed!
lines give the respective heat fluxes evaluated up to second~first!
order.
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An expansion in powers ofqN of the distribution function
has proved to yield a description of the system. In particu
it has been seen that the description up to second order inqN
gives an excellent good fit of the hydrodynamics fields. T
results regarding the momentc45^C4& and the fits are
equally good even though we do not report them. ForqN
50.1 a general feature is particularly evident, namely t
the first-order correction overestimates the effects of diss
tion. When the second-order correction is added there is
overall but small underestimation of dissipation.

Several results of the present paper should have t
counterpart in two or three dimensions for very low dens
and close to the base. For example, the velocity distribu
seen as a function of the velocity component perpendic
to the wall will, near the base, be anisotropic and its sh
should be similar to that seen in Fig. 1. If the base is a

wall and gravitygW points against the wall, the density wi
decay exponentially and the temperature will show a pro
similar to those in Fig. 5. The theoretical framework will b
somewhat different because the collisional term of Bo
mann’s equation does not vanish in the elastic case~as it
happens in 1D!, but still, for regimes dominated by th
boundary condition, like a Knudsen gas, one should exp
that a perturbative solution obtained in much the same w
as here should faithfully describe the behavior of the syst
In dimensions higher than 1, the parameter that replaces
qN would probably be the parameterX defined in @3#, X
5N(12r )/n, wherer is the restitution coefficient,N is the
total number of particles, andn is the average number o
particles per layer. The quantityn, however, cannot be fixed
a priori but it depends on the state of excitation of the s
tem.

B. Physical picture and interpretation

Since in the elastic limit (q50) our system of point par
ticles is a gas of free particles passing through each other
Hamiltonian is separable and therefore the Liouville dis
bution function is the simple product of one-particle dist
bution functions. Correlations are exactly zero. In this se
F0 gives the exact solution of the statistical problem and
particular, Boltzmann’s equation is exact. This paper
built an approximate solution aboutF0 whenqN is small and
correlations can be neglected.

Interpreting the system as one in which particles p
through each other losing some energy in the proces
explained after Eq.~1!—it can be said that each partic
starting from the base flies up and then comes down a
crossing a viscous fluid. This makes the average upward
locity larger than the average downward velocity. Cor
spondingly, then, the density of the up-moving particles
smaller than that for particles falling down.

Particles moving up have a vanishing most probable
locity, namely F(C.0) is maximum atC50, just like a
Boltzmann distribution, while particles coming down are
principle accelerated, but the friction with the backgrou
~the rest of the particles! produces an effect similar to
‘‘limit velocity’’ and F(C,0) has a maximum away from
the origin. These two characteristics can be appreciated
example, in Fig. 2.
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The abrupt change of behavior of the distribution at t
base aboutC50 can be understood because the partic
near the base and going up are dominated by the the
boundary condition; they have almost no information fro
the bulk and they are described by a distribution close t
Maxwellian, while the particles arriving at the base, carry t
influence of all their passage through the bulk of the syste
These two distributions meet at the origin of phase-spac

Moving away from the base the history of all particle
tends to be comparable regardless of the sign of their ve
ity, and that is why the antisymmetric part of the distributio
decays much faster than the symmetric part.

C. Effects of the sizeN of the system

To assess the conditions under which effects of the sizN
of the system appear, it is necessary to consider the adim
sional version of Eq.~7! and the expanded distribution func
tion ~11!. It is not difficult to see that the solution, express
in terms ofqN andN, takes the form

F5F01qNF11~qN!2S F211
1

N
F22D1~qN!3S F311

1

N
F32

1
1

N2
F33D 1•••. ~31!

We have evaluated these functions up toF22 and they are all
of order 1.

The first appearance of an effect of the size of the sys
comes from (qN)2/NF22, namely if size effects enter at al
they do so as second-order effects. If, however,qN is small,
the leading second-order term is already quite small and
size effects will be negligible unlessN is small. Hence size
effects become more apparent whenqN is not too small and
N is not too large.

On the contrary, to be absolutely sure that effects of
size of the system will not be appreciableup to third order,
it is sufficient to require that (qN)2/N!(qN)3 ~we are as-
suming that all the functionsFi j are of order 1!, which im-
plies thatN@1/(qN).

The scale invariance that takes place whenN is suffi-
ciently large is exemplified in Fig. 7 for the case of th
temperature. In this figure three systems withN equal to 20,
200, and 1000 are compared whenqN50.1 andqN50.01.

While in the cases withqN50.01 the temperatures for th
three systems roughly coincide —except for some noise—
the cases withqN50.1 the profile withN520 shows higher
temperature than those withN5200 andN51000. The last
two profiles fall one on top of the other~scale invariance!.

D. A 1D gas of rods

If finite-size particles had been considered, some imp
tant aspects would remain the same because the syste
one-dimensional. In fact, the evolution of two systems ob
ing the same collision rule~1!, one composed of point par
ticles and the other one composed of rods of sizes, can be
put in a one-to-one correspondence. Callx0 the positions of
the lowest point-particle relative to the base, and succ
sively x1 , x2 . . . , theposition of the following ones. Then
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664 PRE 59ROSA RAMÍREZ AND PATRICIO CORDERO
the corresponding configuration for the rod system would
zk5ks1xk . Since the collision rule is the same, it follow
that starting from equivalent initial conditions$xk ,ck% and
$zk ,ck% the two systems evolve to equivalent states at

FIG. 7. The temperature profile,T5^C2/2&(X), observed in
systems withqN50.01 ~upper set of points! and with qN50.1
~lower set of points! andN520 ~rhombus!, N5200 ~solid circles!,
and N51000 ~open circles!. For qN50.1 the profiles withN
5200 andN51000 coincide because the size independent beha
has been reached while the points forN520 show a higher tem-
perature. ForqN50.01 even forN520 the asymptotic behavior o
the temperature has been reached because second-order corre
are too small.
A
h.
s,
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,

e
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same pace. This one-to-one correspondence makes
Hamiltonian of the two systems equivalent, hence their as
ciated Liouville equations can be transformed into one
other. The difference becomes evident only when kine
theory is reduced to that of a one-particle distribution fun
tion because the natural path to get a kinetic equation in
two cases is quite different. In one case it would naturally
a Boltzmann equation while in the other one it would be
Enskog equation. In other words, the collision terms app
priate to each case are not at all equivalent. Already in
perfectly elastic case the difference is evident as it has b
analyzed in some detail in@8#. Let us use the interpretatio
given after Eq.~1!, where the dynamics can be seen as
particles pass through each other. In the case of rods
implies that in every collision the particles involved ma
instantaneous jumps of lengths at infinite velocity. At the
level of a kinetic theory for a one-particle distribution fun
tion this makes the collision term not trivial even in th
elastic case, contrary to the case of point particles. One of
simpler effects of having rods is the appearance of a st
tured pair correlation function.
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