PHYSICAL REVIEW E VOLUME 59, NUMBER 1 JANUARY 1999

Kinetic description of a fluidized one-dimensional granular system
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In this paper we study, using Boltzmann’s equation and molecular-dynamic simulations, a one-dimensional
column ofN inelastic point particles, in the quasielastic limit, under the influence of gravity. The column has
no top boundary and it is subjected to a permanent energy injection at a fixed base chosen to behave like a “hot
wall.” The quasielastic condition plus the boundary condition guaramlecular chaosThe energy injection
is of enough intensity to keep the system permanently in a low density state. The system—which would have
a homogeneous temperature if it were conservative—shows a temperature gradient because of dissipation. It is
shown that, after adimensionalizing, the physical properties in the hydrodynamic Nmit{) depend solely
on the producgN, whereq is an inelasticity coefficient. Comparison of our molecular-dynamic results with
this theoretical picture is excelleiS1063-651X%99)01501-9

PACS numbgs): 81.05.Rm, 05.20.Dd, 51.18y, 47.50+d

I. INTRODUCTION features of specific problenisee[8] and references thergin
and hopefully their properties can be extended to higher di-
Granular systems provide a number of surprising phemensions. One-dimensional granular systems share some of
nomena which go from gaslike to solidlike behavid].  the phenomena of higher-dimensional systems such as tran-
Most of these phenomena imply in one way or another somsition from a condensed to a fluid stdf, inelastic collapse
degree of fluidization, and for this reason fluid states hav¢10], etc., and hydrodynamic and kinetic theories have been
attracted much attention in recent yeg®s3]. These fluid derived for such systems basically from the associated
states, however, are different from what is usually underBoltzmann equatiofi11,12.
stood of fluids, and they represent a challenge and a great In this paper we study, using the Boltzmann equation and
opportunity to look back on hydrodynamics and kinetic molecular-dynamic simulations, a one-dimensional column
theory concept$4]. of N inelastic point particles, in the quasielastic limit, under
Fluidization in a granular material can go from surface tothe influence of gravity. The column has no top boundary
total fluidization of the system. In the case of total alidte  and it is subjected to a permanent energy injection at a fixed
fluid states, kinetic theory concepts are particularly usefubase chosen to behave like a “hot wall.” This energy injec-
when spatial and temporal correlations can be omitted frontion is of enough intensity to keep the system permanently in
the formal description. Under such circumstances one mag low-density state. We further assume that it keeps the sys-
have the conditions for applicability of a Boltzmann equa-tem in a time-independent state. This last point deserves an

tion. extra comment. There is an interesting artibg in which
To guarantee that a many-particle granular system satighe authors study a one-dimensiorfaD) granular system
fies Boltzmann’s equatiofmainly low density so that colli- inside a horizontal box of length with an elastic wall and a

sions are uncorrelatgdit is necessarya) to be in a quasi- “thermal” one. The authors report that under appropriate
elastic regime, otherwise clusters, and eventually inelasticonditions the system stabilizes to ascillating state In our
collapse, would develop, ar(t) to have a sufficiently large simulations we have not detected oscillations and have felt
and permanent energy injection, to maintain a steady loveonfident that time-independent solutions exist and are
density fluid state. stable.

The energy injection needed to balance dissipation and to To prevent clustering and inelastic collapse, we will re-
keep the system in a fluid state is usually implemented irstrict ourselves to restitution coefficients such that (1
practice by means of a vibrating plate. This form of energy—r)N is well below 1. With this last assumption and the
input acts also as a source of spatial and temporal correlnes described in the preceding paragraph, a Boltzmann
tions, unless perhaps the injection is of enough intensity thatquation is shown to be suitable to describe the system re-
all correlations become negligible. To avoid such a source ofmarkably well. Even though clustering is an important phe-
correlations in numerical simulations, a fixed energy sourcenomenon, its presence would invalidate the use of Boltz-
is becoming a usual practid®—7]. Although this energy mann’'s equation. There is a wide zone in phase space,
injection is not a fully realistic condition, its advantage is though, where the presence of clusters can be neglected
that the effects of the dissipative nature of the system can be.3,14.
isolated from those coming from a moving base. Work has already been done to derive a distribution func-

One-dimensional models sometimes help to understantion for a granular 1D gas in the quasielastic limit.[lh11]

the authors find distribution functions for a column of inelas-

tic particles without gravity. I115] the authors find a set of
*Electronic address: roramire@cec.uchile.cl equations for a similar system subjected to gravity, that can
TURL: www.cec.uchile.cl/cinetica/ be solved numerically to find the distribution function.
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In this paper, starting with a Boltzmann equation includ-stantaneously bounces back with a velodtyaken from a
ing the effects of the inelastic collisions and using the quasiprobability W(c), uncorrelated from the incoming velocity
elastic and N—) limit, we find the analytic perturbative c¢’. The formalism developed in this paper can be extended
solution for the system. We will show that these solutionsto a genericW(c) but in what follows we have chosen the
depend on the parameter {X)N alone except for a scale “thermal” probability,
factor that emerges after adimensionalizing the problem. Our
solution is not comparable {d5] because they use an asym- 2C o
metric sawtooth moving base, which causes the density to W(c)= —Ze‘c fa®, (2)
increase with increasing height. In our system, and because «
we use a thermal boundary condition and no top wall, den- . ) ) ) )
sity decreases with height. where a is a parameter with dimensions of velocity that

Dissipative collisions give rise to a heat flux and a tem-characterizes the “temperature” of the base.
perature profile with a negative gradient, even in the quasi- Different fixed-base probabilitie#/ have been discussed
elastic limit. We show that a perturbative expansion of thein [5,7], while in [16] the correlated probabilityV(c,c’) is
distribution function predicts correctly these effects for smallderived for a sawtooth vibrating plate. Even though it s less
(1—r)N values. The validity of our theoretical results—in realistic than a vibrating condition, the “thermal” boundary
particular, our predictions for the values of the moments ofcondition has the advantage of isolating the effects of the
the distribution function—are then compared with our owndissipative nature of the system from those coming from a
simulational results obtained from event-driven molecularmoving base. Furthermore, it is analytically simpler to im-
dynamic simulations. pose in the formalism and it is easy to implement in a
This paper introduces Boltzmann’s equation with dissipaimolecular-dynamic program. o
tion in Sec. II, develops and uses a perturbative scheme in Let us see that the “hot-wall” boundary condition is not
Sec. Ill, and makes a comparison between theory and resultgtally unrealistic. A vibrating base has a frequeregand an

from simulations in Sec. IV. Final comments are in Sec. V.amplitudeA. A control parameter much used in this context
is '=Aw?/g. Consider the case of an amplitude much

smaller that the mean free path near the base and a frequency
much larger than the collision rate with the base and yet with
A. The system I" finite. Such a base is almost at a fixed position but inject-
ing as much energy as desired since it is fixed Withwarr

and Huntley in[2] have shown that a free particle hitting
quasielastically a vibrating bed produces an outcoming ve-
locity distribution which, to first order, is a Gaussian.

Il. THE MODEL AND BOLTZMANN’S EQUATION

We examine the behavior df identical point particles
under the action of gravity, a fixed base, and no top bound
ary. The collisions between particles;;(c,)—(c;’,C,"),
are inelastic,

c1=qc;+(1-q)cy, Cy=qc+(1-q)cy, 1) B. Kinetic equation and boundary condition

The standard form for the one-dimensional and time-
independent Boltzmann equation for the distribution function
f(x,c) normalized to

where 0sq=<1/2, andg=0 corresponds the perfectly con-
servative case. The usual restitution coefficientris1

—2q.
Let us briefly comment that if we relabel particles after
each collision, so that in Eq1) c;«<+c,, then it is seen that f dXJ dc f(x,c)=1, (3

the limit g small and different from zero is tantamount to a
system ofN point particles that pass through each other with-for particles that interact with the collision rui@), is
out ever interacting. In the casg# 0, particles pass through

each other losing some energy in the process as if moving irz

a viscous background. It is quite important to underline the C__gi)f(xyc):Nf - f
X dc -=| (1-2q)?

(x,c],0)f(x,c5,1)
relevance of this picture to theolecular chaos hypothesis
needed to justify the use of Boltzmann’s equation. Since two
colliding particleg call them @,b)] pass through each other
altering their velocities, they pass through all the rest of the
particles before meeting again. In fact, for them to be about
to collide, agaira has passed throudt, particlesb through (4)
N, particles, andN,+N,=N—2. For a large enough system ) . ) )
this is enough for particles to decorrelate their velocities. Invhere the double-prime variables are associated to the in-
the case of the boundary condition that we are about to deerse collisions,c1=[(1-g)c,—qc,]/(1-2q), co=[(1
fine, the situation is even more extreme because eitoeh ~ —d)C1—0C,]/(1—20). It can be shown that the precise ge-
will necessarily hit the bas@orgetting its history altogether  heric factor, which in Eq(4) is 1/(1-2q)?, for any type of
before encountering its partner again . In our case, then, thi@stantaneous one-dimensional two—particle hard collision
velocities of particles about to collide are uncorrelated.  rule is|c5—ci|/(|c,—c4|J), whered(c”,c) is the Jacobian

A permanent energy injection, needed to keep the systemf the transformationd ,c5)—(c;,C,).
in a fluid state, enters through the fixed base as if it were a Equation(4) can be formally expanded in powers gf
“hot wall.” A particle hitting the base with velocityc’ in-  and it has been shown to yie[d2]

_f(X,C]_,t)f(X,CZ,t)‘| |02_Cl|dc2’
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p AP g 14 I,
(c&—g—)f(x c)= NE ——k(M( (x,0)f(x,c)), Cox 5 ¢/ FXC)=aN—_-(M™(X,C)F(X,C)).
5) (10

By further definingw(C) = aW(c) andk= aK/(2g) still
with [gw(C)dC=1, the boundary condition at the base be-
- comes|C|F(0,C>0)=kw(C) with k=/°_F(0,C)|C|dC.
M“()(x,c):j f(x,c')(c—c')¥c—c’|dc’.  (6)  Our specific choice then is(C)=2Ce
’°° As we see, the only parameter left in the adimensional
) . o . formalism isgN. There is no tunable parameter like gravity
The right-hand side of Ed5) is identically zero for the o the temperature imposed at the base. Hence, except for a

perfectly elastic limit q=0), as it should be. Only when gcaje factor, the quasielastic system is completely deter-
considering correlations and the finite size of the parti@ss ineq bygN alone.

in Enskog’s equationwould the right-hand side of the ki-
netic equation be nontrivial in the elastic limit.

We rewrite Eq.(5) taking the productgN as a single
parameter, A. The s-order equation and associated boundary condition

where the moments ®W(x,c) are

Ill. PERTURBATIVE SOLUTION

To solve Eq.(10) we assume thafE(X,C) can be for-

J * k (9k .
s 9 7K mally expanded in powers afN,
co 97 ) 0)= E k,Nk P MEofee). ’
7
@ FX,C)= 2 (GNFo(X0). (10
From this last equation it is seen that in thie>o limit
(hydrodynamic limitfrom now on with gN finite, only the In order to have a first-order correction much smaller than
first term of the last expansion survives in the kinetic equathe zeroth-order distribution function, we require tgat be
tion, and this becomes distinctly smaller than 1. From Eq§10) and(11), a hierar-
chy of equations follows:
ci—gi)f(x c)=qu(M(1)(x c)f(x,c)). (8 s—1
ax “dc ' ac ’ e 9 19 F(X,C)=S i(m(l)(x C)
axX 29C|) 577 =ooC™ " VY

This equation corresponds to the hydrodynamic and quasi-

elastic limit. A nice physical derivation of a similar equation XFs n-1(X,C)), (12
is in [12]. Briefly, Eq. (8) statistically represents a particle

passing through a viscous fluid losing energy and consewhere we have definestorder moments (X, C) as
quently suffering an acceleration(g+qNM®).

Any solution f(x,c) of Eq. (8) must sati;fy the thermal M(Sk)(x'c): jw (C—C")¥C—C'|F(X,C")dC'.
condition at the base. The boundary condition for an uncor- —
related probabilityw/(c) can be written in the fornj17] (13
|c|f(0,c>0)=KW(c) At each orders in Eq. (12), the unknown functiornFg
appears only on the left-hand side of the equation while the
with (9) right-hand side contains functiofs with r <s. The integra-

tion of the set of equationd 2), therefore, is straightforward.

0 We impose the normalization conditiof8) in the form
K=j f(0,c’)|c’|dc’, JodX[Z . dCF{(X,C)=68¢ps. It is easy to prove that
o MIB(X,C) obeys gc)MP=2M? and therefore the equa-

whereK is the collision rate with the base, and the functiontIonS for the first three functions become

W(c) satisfiesf/ ;W(c)dc= 1. The probability(2) introduces ( 9 1 9

T n 2 H
the “temperature” «“/2 and we remark that, if the system ) ac) Fo=0,

were perfectly elastic, this would be the homogeneous tem-
perature of the system.

(14)

d 190 ~ ) J
C—o—=—=|F= 2|v|g>+|v|o&— Fo, (15
C. Adimensionalization of the problem

fine the reduced variableX,C, a distribution function
F(X,C), and the momentM®)(X,C) such that x
=a?X/(29),c=aC, f(x,c)=2gF(X,C)/a®, M®(x,c)
=2gM®)(X,C). Equation(8) becomes

Having introduced the “temperature” at the base, we de- ( g 1 9 )

o g @
2M(1°)+M(11)—)F0. (16)
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Any of theseF functions must obey a normalizatidsee The new variables replacingX(C) will be (7,C), the
Eqg. (19) below] and the boundary conditigi€|F4(0,C>0) Jacobian being 1. When the distribution is written in terms of
=kew(C) with a suitablekg constanf{see Eq.(20) below]. them, it will be denotedp(r,C)=F(7—C?,C) and the mo-

It will be seen that for abouiN<0.01 the behavior of the mentsM®(7,C)=M®(7—C2,C).
system is well described expanding up to first order, while  The normalization condition, using-(C) as independent
for 0.01=gN=0.1 the second-order correction is needed. Inyariables, can be written in two forms,
the following we describe the method to get these two cor-
rections for our system. o J7 ® ®

The equation foF is the only equation in the case of the 505=f de _dedy( T,C):j dcf ,d7@(7,C)
conservative systengE 0) and in our case it corresponds to 0 v o ¢ (19)
a fixed temperature system subjected to gravity. More on this

will be in Sec. 11l C. while the boundary condition for each of tke, is, provided

that C= \/r whenX=0,
B. The energy as a variable
The differential operator@dy— 1/2Jc), present in all the Vrdy(7,\7) =kw(1/7)
equations, suggests that the energy variable

with (20
r=X+C? (17)
0
will play a privileged role. For example, any differential kS:f d (C?C)|C|dC.
function of 7 alone satisfies Eq14). We would like to point -
out that
The variables £,C) and the functionsb, are the most
mgx+mc2/2 convenient quantities to solve the problem and write down
[ T’ 18 the solution, but when it comes to discussing the physics of

the problem or to evaluating the hydrodynamic fields, we
if the identificationa = \2kgTy/m is madekg is the Boltz-  continue using X,C) and the functions-.
mann constanfl, is the temperature at the base, and the In terms of the new variablesr(C), the differential op-
mass of each particle. From this point of viewesembles a erator Cdx— 1/2d¢) that appears on the left-hand side of the
Froude number in the sense that it is a ratio between twéinetic equations gets substituted by {/2)d/dC. Hence
energies, but it is not a fixed parameter in one “experiment”’these equations are solved simply integrating the right-hand
but rather an alternative phase-space variable. For this reassite of Eqs(14)—(16) over C with 7 fixed. In practice what
we refer to it simply as an adimensional energy variable. we do is

|
Dy T,C)=2fﬁ[right—hand side of Eq$14)—(16)](7,C’')dC’ +B4( 1), (22
C

whereB¢(7) is an integration constant. The boundary condi-This is the exact solution in the conservative cage-0)
tion (20) is a condition overd((7,/7), namely, the lower and it corresponds to a Boltzmann distribution with a homo-
limit in the integral above equals the upper limit and there-geneous temperature and with an associated number density
fore the boundary condition is simply that decreases exponentially with height. Had we chosen a
different boundary condition, the temperature would not be
perfectly homogeneous in the elastic case. This is one of the
w( V1) advantages of choosing the thermal boundary condition from
BS(T):kST1 (22) other possible ones, namely, the effects of dissipation de-
T scribed below are seen more clearly.
Since Fq is an even function ofC, it follows that the

where the constark; is determined from the normalization functionsM{ have parity (1) with respect to inverting
condition(19). C. The ones we will use to solve the first-order correction
can be expressed analytically,

C. The zeroth-order solution — o 1 2
, _ , , MPO(7,C)=—=e T{mer(C)CeS +1], (29
A generic solution of Eq(14) is any function ofr alone N

but from the boundary condition it follows that

_ 1 2
MV(7,C)= —=e T\merf(C)(C2+1)ec +C].
dgn-2D_ 1 Loxe g N
2\TT \/; \/; (25)
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D. The first-order correction f(C)

The first-order equatiofil5) in terms of (,C) is 7

190, >

7 C Po(r). (20

— J —
CMEY —+MP
0 or 0

0.6

Since the right-hand side of this equation is evertjnt is
possible to split the solution in the fordr, = ® 2%+ peven
and the even piece cannot depend@nrollowing the pre- ]
scriptions(21) and(22) and making use of the normalization 0.0
condition leads to

2 2
P§(7,C)= e VmC - merf(C)(3 ~C*)e Y, 2 c 2
2
( 7) f(C) 0.60
0.6
2 ]
N =—re {1+ merf(\r)(§—7)—rre 7.
T ]
(28 0.4 -
From these functions the corrections“YX,C) and 031

F{®X,C) are naturally defined.

It can be checked that the hydrodynamic velocity to first
order at any poinK vanishes as expected. The solution up to
first order predicts, near the base, a density larger than the ]
density for the conservative case. It also predicts a negative 0.0
temperature gradient and an upwards heat flux. The ever . . . . '
moments of the distribution, such as the number density :
n(X) or the pressure, cannot be expressed analytically in & Cc
close form, but they have been calculated numerically and

theRreS“'ti abrle ":’r?o""” n tge r?extt fi‘;”c“r?”' i line), X=1 (dashed ling andX=2 (dot-dashed ling The function
e.mar ably the upwards heat fitly has ananaly |c.ex— . tends to be more symmetric with height. At bottom the distributions

p.rF,‘SSIOI’!JQ CorrESponds. to .the flux of the energy belng d,'S'FO (dot-dash ling and Fy+ (gN)F; (solid line) evaluated at the

sipated in the bulk. Taking into account that the distribution, ;o K=0) are compared whegN=0.05. The function ¢N)F

function is normalized to 1, the following expression is the ashed ling is also included. The inset shows the detail of the

FIG. 1. At topF, is shown at different heightsX=0 (solid

heat flux per particle: distribution aboutC=0.
© C3 qN . . . .
‘]Q(X)quf dC—FY4X,C)= —e 2%, (29 At bottom, in Fig. 1, Fy is compqred withF=F,
— 2 N2 +gNF; at X=0 for gN=0.05. The functiomgNF; has also

been included.

At the top, Fig. 1 shows; evaluated at three different As an effect of the dissipative dynamics, the system ob-
heights. It is seen that, 2t=0, F(0,C) has a discontinuous viously cools down. This effect is not symmetric and it im-
derivative atC=0, which, from a mathematical point of plies, as we discuss later on, that particles going up move
view, can be understood becalsg®"is an analytic function  faster, on the average, than particles coming down.
of the positive variable\X+C? which at X=0 is |C|. Particles falling through a viscous fluid have a speed
Physically, the singular behavior of the distribution is under-limit. The meaning of the maximum that the velocity distri-
stood because the particles with>0 close to the base have bution atX=0 shows for negative velocities seems to be
basically a Boltzmann distribution since most of them haverelated to a similar phenomenon even though our fluid can-
just hit the base losing their memory, while the particlesnot be described like a uniform viscosity fluid.
about to hit the base carry the “dissipative” information |t can also be seen and checked numerically thsf,
from the bulk. These two distribution functions have quite apecomes comparable to and even larger fgfor negative
different origin and they meet ak(=0,C=0). enough velocities. Since the complete distributfois posi-

Going to higherX values, wall effects diminish, and the ijye, this is an indication that the contribution of large nega-
system tends to behave "ISOUOP'C%'LY" in the bulk, as onejve velocities is not well described at this order but the rel-
would expect. Notice that the ratid7/®7"*" decays expo- evance of this inaccuracy to the general description of the
nentially ase” "=e~*~C°, namely, away from the base the system is marginal.
first-order correction becomes more and more symmetric in Finally we remark that far from the bagtarge X) the
C. density is quite small, the mean free path of particles is com-
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0.8 -
0.7 -
0.6 -

0.5

0.4

first order
0.3

second order correction

correction
0.2 -

0.1

0.1 , . . ‘ ‘

FIG. 2. The distribution functions normalized to 1 #&=0
evaluated to zerottdot-dashed ling first (dashed ling and second
order (solid ling) are seen in this figure fagN=0.2 andN=200.
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zeroth order

log den sity

FIG. 3. The circles show in a logarithmic scale the density ob-
served in a simulation of a system witfiN=0.1 andN=200. The
density is shown evaluated up to zerdthashed ling first (dot-
dashed ling and second ordgsolid line). It can be seen that the
prediction up to second order reproduces extraordinarily well the

The distribution up to second order differs by more than 30% fromdensity far beyond the sizeX(2) of the system.

Fo in the central region and, in spite of this, the former fits extraor-

dinarily well the observed distributiofopen circles The solid S-

This characteristic height depends@N but in the range we

shaped curves underneath represent the first- and second-order caye worked it is roughly Zit varies from 2.7 agN=0 to

rections, ¢N)F; and @N)2F,. Notice that the last correction is

almost zero for positive velocities.

parable to the size of the system, and the first-order corre

tion functiongNF, is no longer small compared .

E. The second order correction

The functionF, can formally be integrated, following the
prescription(21), as we did to obtaiffr, except that some of

C-

1.65 atgN=0.2). In spite of this, the figures shown below
cover a range up t&=6 where the density is three orders of
magnitude smaller than near the base and the theory, up to
Second order, still gives good fits.

In our simulations—with an event-driven algorithm
[18]—we have measured four local hydrodynamic fields: the
number densityn(X), the adimensional local temperature
T(X)=(C?%2), the adimensional heat fluxJo(X)
=n(X)(C32), and the fourth moment of the distribution.

the integrals cannot be written explicitly in a closed form.The first moment(C), corresponds to the hydrodynamic
Those integrals have been evaluated using a standard Montelocity and it is zero both in theory and in the simulations.

Carlo method.

Since the second-order correction was integrated numeri-

In Fig. 2 the theoretical distribution functions up to ze- cally using a Monte Carlo algorithm, the results show, in

roth, first, and second order evaluatedXa:0 with N

some cases, noise coming from the integration procedure.

=0.2 are compared with the measured distribution function.
AlthoughgN=0.2 is quite high for our formalism, we have )
chosen this value to show how well the theory fits the obser- A. The density n(X)
vations. This figure also showsjK)?F,. As can be ob- The zeroth-order densitgy(X) decreases exponentially,
served, this last function is practically zero for positive ve-and sinceqN<0.1, deviations from this behavior should be
locities, whereas for the negative ones it removes higlsmall. Dissipation prevents particles from reaching the
velocity particles and adds slow ones. This happens becauseights they would reach in the conservative case and there-
the dissipative effects influence much more the stream ofore the effective height of the system gets smaller and con-
particles coming down—after having suffered manysequently the density tends to be higher near the base as
collisions—than their counterparts going up. shown in Fig. 3.

The maximum that the distribution has for negative ve- n Fig. 4 it is seen that both corrections grow from the
locities is reinforced by the second-order correction. Wepase, and have a maximum slightly above it, therefpé)

have determined that it corresponds to about

Cina™ — qN(2.5— 4.3gN). (30)

IV. COMPARISON WITH SIMULATIONS

Our simulations have been done withl=0.01, 0.05, and
0.1, all with N=200. For these values afN, size effects
with N=200 are negligible, as we comment in Sec. V C.

is not necessarily monotonous. This means that wdigris
large enough, the function(X) would have a maximum
away from the base. We have numerically derived that
dn(X)/dX=0 atX=0 whenqN=0.5. Hence forgN larger
than this value, the density increases fro+0 and has a
small maximum slightly over the base. It seems to us that
this is the first manifestation of a phenomenon resembling a
well known one: a liquid drop afloat a hot plate. Although
this prediction is done from the low-density and quasielastic

We define a characteristic height of the system as thémit, we have measured this effect for simulations with
height below which, on the average, 90% of the particles aregN=1.



662 ROSA RAMIREZ AND PATRICIO CORDERO PRE 59

n,n, Jo
0.04 -
1.00
0.95 0.03
detail for n,
0.90
0.0 0.1 0.2
0.02
// B 0.01 -|
0.00.-] OO . . . -
ELASTIC CASE
0.8 T T T T T T T T T 1 T T T
[} 1 2 3 4 5 6 7 8 9 10 0 1 2
X X
FIG. 4. The density is n(X)=ngy(X)+gqNn(X) FIG. 6. The permanent energy influx through the base is dissi-

+(gN)2n,(X). This figure shows, (solid line) andn, (dashed pated in the “volume.” The figure shows the heat fldy as a
line). The inset shows the maximum that has nearX=0. The  function of X for systems withN=200 andgqN=0.01 (squarey
maximum ofn, is seen in the main figure. gN=0.05 (triangles, and gN=0.1 (circles. The solid (dashed

lines give the respective heat fluxes evaluated up to setfost)

The effect of the corrections is seen in Fig. 3 for a systenfrder.

with gN=0.1 andN=200. When the second-order correc-
tion is included, the density is seen to be extremely wellfigure the temperature scale had to be amplified to be able to
described. This figure also shows that the dissipative effect§ee the slight discrepancies between the predictions up to
are overestimated using only the first-order distributionfirst and second order. In the less favorable case, namely
while Considering the second-order correction they areﬂNZO.l, the first-order correction differs from the measured

slightly underestimated. data by less than 5% while including the second-order cor-
rections causes the fit to be excellent. Only our noisy esti-
B. The temperature T(X) mate of the second-order correction prevented us from giv-

) ) ing a good fit in the whole range. Figure 5 also shows that
In Fig. 5 the temperature is shown for three valuegf  he temperature reaches an asymptotic value that our formal-
The zeroth-order temperature profile is the straight ihe g predicts to b (X~ )~ 1/4—qN(1—qN)/2, which co-
=1/4 in all three cases. The effect of dissipation is to pro-ncides with what we observe.
duce aT(X) with negative gradient and this is already pre- At x=0, the temperature of the system does not coincide
dicted by the negative first-order correction. The secondyth the imposed valud@,=1/4; there is a gap. In our case
order correction, however, is positive all the way. In thegig temperature slipat the base isST~qN(1—qN/2)/4,
which is the gap we observe. This wall thermal slip is a well
T ELASTIC CASE known effect when the system has a temperature gradient
0.25- [19,20 and it has been observed in real gas2s.
The heat flux seen in Fig. 6 is well described by the first-
order correction whegN=0.01 but for larger values afN
the second-order correction gives an extraordinary predic
tion. From the figure it is seen that the heat flux is practically
zero roughly atX=2 which is of the same order as the
effective height of the system. Beyond that height particles
almost have no collisions and the temperature is uniform.

0.24

0.23
0.22
0.21 4

0.20 V. FINAL COMMENTS

o1 A. Overview of the results

— It has been shown that a granular one-dimensional system
0 1 2 3 4 5 6 of point particles —subjected to gravity and kept in a dilute
X time-independent state thanks to a steady energy input

FIG. 5. If the system were perfectly elastic, the temperatime ~through a “hot base”— can be well described in the hydro-
adimensional unitswould be uniform:T=1/4. The figure shows dynamic limit by a Boltzmann equation. Adimensionalizing
for qN=0.01 (squares qN=0.05 (triangles, and gN=0.1  the problem allows us to transform away the parameters de-
(circles that, because there is dissipation, the temperature decreaséglibing the acceleration of gravity and the temperature. In
with height reaching an asymptotic value. The sdlit-dasheyl  this sense one could say that in tiwgdrodynamic limithe
line is the predicted adimensional temperature up to se¢inst system has, except for a scale factor, a universal behavior
order. determined bygN.
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An expansion in powers afN of the distribution function The abrupt change of behavior of the distribution at the
has proved to yield a description of the system. In particularbase aboutC=0 can be understood because the particles
it has been seen that the description up to second oradgdin near the base and going up are dominated by the thermal
gives an excellent good fit of the hydrodynamics fields. Theboundary condition; they have almost no information from
results regarding the momem,=(C*) and the fits are the bulk. and thgy are despribed py a distribution close to a
equally good even though we do not report them. §br Maxwellian, while the particles arriving at the base, carry the

—0.1 a general feature is particularly evident, namely thafhfluence of all their passage through the bulk of the system.

the first-order correction overestimates the effects of dissipal "€S€ two distributions meet at the origin of phase-space.
Moving away from the base the history of all particles

tion. When the second-order correction is added there is atn ds 1o b bl dl fthe o  thei I
overall but small underestimation of dissipation. ends 1o be comparable régardiess of the sign of their veloc-

Several results of the present paper should have theIFy’ and that is why the antisymmetric part of the distribution

counterpart in two or three dimensions for very low densitydecays much faster than the symmetric part,
and close to the base. For example, the velocity distribution
seen as a function of the velocity component perpendicular
to the wall will, near the base, be anisotropic and its shape To assess the conditions under which effects of theNize

should be similar to that seen in Fig. 1. If the base is a hoff the system appear, it is necessary to consider the adimen-

wall and gravity§ points against the wall, the density will sional version of Eq(7) and the expanded distribution func-

decay exponentially and the temperature will show a profilet'on (11). It is not difficult to see that the solution, expressed

similar to those in Fig. 5. The theoretical framework will be In terms ofgN andN, takes the form
somewhat different because the collisional term of Boltz-

mann’s equation does not vanish in the elastic daseit  F=F,+qNF;+(qN)?
happens in 1 but still, for regimes dominated by the

boundary condition, like a Knudsen gas, one should expect

that a perturbative solution obtained in much the same way —Fa3
as here should faithfully describe the behavior of the system. N2

In dimensions higher than 1, the parameter that replaces our

gN would probably be the parameter defined in[3], X  We have evaluated these functions ug-tg and they are all
=N(1-r)/n, wherer is the restitution coefficient\l is the  of order 1.

total number of particles, and is the average number of The first appearance of an effect of the size of the system
particles per layer. The quantity however, cannot be fixed comes from N)?/NF,,, namely if size effects enter at all,

a priori but it depends on the state of excitation of the systhey do so as second-order effects. If, howeggt,is small,
tem. the leading second-order term is already quite small and the
size effects will be negligible unledd is small. Hence size
effects become more apparent whgd is not too small and

N is not too large.

Since in the elastic limitg=0) our system of point par-  On the contrary, to be absolutely sure that effects of the
ticles is a gas of free particles passing through each other, thgze of the system will not be appreciahlp to third order,
Hamiltonian is separable and therefore the Liouville distri-it is sufficient to require thatgN)2/N<(qN)® (we are as-
bution function is the simple product of one-particle distri- suming that all the functions;; are of order 1, which im-
bution functions. Correlations are exactly zero. In this sensglies thatN> 1/(qN).

Fo gives the exact solution of the statistical problem and, in  The scale invariance that takes place whéris suffi-
particular, Boltzmann’s equation is exact. This paper hagiently large is exemplified in Fig. 7 for the case of the
built an approximate solution abolit, whengN is small and  temperature. In this figure three systems wiitlequal to 20,
correlations can be neglected. 200, and 1000 are compared wheN=0.1 andqN=0.01.

Interpreting the system as one in which particles pass While in the cases witqN=0.01 the temperatures for the
through each other losing some energy in the process-three systems roughly coincide —except for some noise— in
explained after Eq(1)—it can be said that each particle the cases witlyN=0.1 the profile withN= 20 shows higher
starting from the base flies up and then comes down as emperature than those witti=200 andN=1000. The last
crossing a viscous fluid. This makes the average upward vawo profiles fall one on top of the othéscale invariance
locity larger than the average downward velocity. Corre-
spondingly, then, the density of the up-moving particles is
smaller than that for particles falling down.

Particles moving up have a vanishing most probable ve- |If finite-size particles had been considered, some impor-
locity, namely F(C>0) is maximum atC=0, just like a tant aspects would remain the same because the system is
Boltzmann distribution, while particles coming down are in one-dimensional. In fact, the evolution of two systems obey-
principle accelerated, but the friction with the backgrounding the same collision rul€l), one composed of point par-
(the rest of the particlesproduces an effect similar to a ticles and the other one composed of rods of sizeean be
“limit velocity” and F(C<0) has a maximum away from put in a one-to-one correspondence. Gglithe positions of
the origin. These two characteristics can be appreciated, fdhe lowest point-particle relative to the base, and succes-
example, in Fig. 2. sively X1, X, ..., theposition of the following ones. Then

C. Effects of the sizeN of the system

1 3 1
Fot NFzz +(gN) F31+NF32

+- (3D

B. Physical picture and interpretation

D. A 1D gas of rods
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same pace. This one-to-one correspondence makes the
Hamiltonian of the two systems equivalent, hence their asso-
ciated Liouville equations can be transformed into one an-
other. The difference becomes evident only when kinetic
theory is reduced to that of a one-particle distribution func-
tion because the natural path to get a kinetic equation in the
two cases is quite different. In one case it would naturally be
a Boltzmann equation while in the other one it would be an
Enskog equation. In other words, the collision terms appro-
priate to each case are not at all equivalent. Already in the
perfectly elastic case the difference is evident as it has been
analyzed in some detail if8]. Let us use the interpretation
given after Eq.(1), where the dynamics can be seen as if
particles pass through each other. In the case of rods this
implies that in every collision the particles involved make
instantaneous jumps of length at infinite velocity. At the
level of a kinetic theory for a one-particle distribution func-
tion this makes the collision term not trivial even in the

FIG. 7. The temperature profild,=(C?2)(X), observed in
systems withgN=0.01 (upper set of pointsand with qN=0.1  elastic case, contrary to the case of point particles. One of the
(lower set of pointsandN= 20 (rhombug, N=200 (solid circles, simpler effects of having rods is the appearance of a struc-
and N=1000 (open circles For qN=0.1 the profiles withN tured pair correlation function.
=200 andN= 1000 coincide because the size independent behavior
has been reached while the points fé+=20 show a higher tem-
perature. FogN=0.01 even folN=20 the asymptotic behavior of
the temperature has been reached because second-order correctiondVe thank Dr. R. Soto for helpful discussions. We also
are too small. thank J.M. Pasini and Professor D. Risso for their critical

reading of the manuscript. This work has been partially fi-
the corresponding configuration for the rod system would benanced byFondecytunder Grant Nos. 197-0786 and 296-
z.=ko+x,. Since the collision rule is the same, it follows 0021, and by theFundaci;m Andes under Grant No.
that starting from equivalent initial conditiofx,,c,} and  C-12971. One of ugR.R) thanks Becas Mutis from the
{z:,ci} the two systems evolve to equivalent states at theAgencia Espanla de CooperacioInternacional for support.
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