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Explicit analytic nonlinear laws of heat transport and of viscous flow are derived from Grad’s
approximate solution of Boltzmann’s equation and they are shown to describe quite well the obser-
vations made in molecular dynamic simulations. With this aim a planar Couette flow is studied ana-
lytically and by means of microscopic molecular dynamic techniques for the case of a bidimensional
gas of hard disks. The fluid develops a nonuniform temperature profile, shows a non-Newtonian
behavior and there is a heat current which obeys Fourier’s law with a tensorial shear rate dependent
thermal conductivity.
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I. INTRODUCTION

Transport in dilute systems far from equilibrium is not a simple hydrodynamic problem. Even though the Navier
Stokes equations are the main tool to study the hydrodynamic behavior of fluids, behind these equations is the basic
assumption that changes in a fluid take place smoothly and slowly so that the system can be considered in a state of
local thermodynamic equilibrium and the transport of momentum and energy in it is described by linear constitutive
equations (Newton’s and Fourier’s laws) which relate the gradients of the standard hydrodynamic variables (forces)
with the momentum and heat flux vectors. When the condition of smooth/slow variation is not fully satisfied the
fluid behavior may deviate from the predictions of standard hydrodynamic calculations: the linear relation between
the forces and the fluxes breaks down and the constitutive equations have to be extended beyond the linear regime.

Kinetic theory, on the other hand, gives a more fundamental theory but it has been well developed only for rather
dilute systems where Boltzmann’s (or Enskog’s) equation can be justified. The fundamental equation is that of
Liouville or equivalently the BBGKY hierarchy of equations for partial distributions.

Within the range of validity of Boltzmann’s equation, the challenge is to find approximate solutions. Boltzmann’s
equation is complex enough that it is not obvious which approximate scheme should be used: (1) Chapman-Enskog
method is perhaps the one most widely used, (2) the BGK approximation that, in a way, linearizes Boltzmann’s
equation modifying the collision operator or (3) Grad’s momentum expansion method.

The Chapman-Enskog method is an expansion about equilibrium in gradients of the hydrodynamic fields: density n,
velocity ¥ and temperature T'. The first order gives Euler’s ideal hydrodynamics and the second order provides a version
of Navier Stokes equations with linear transport equations and explicit expressions for the transport coefficients, [1,2].
The BGK approximation [3] deals with a kinetic equation where Boltzmann’s collisional operator has been replaced
by a simpler one J[f f] = nv (fe; — f) and it has been used to deal with the problem at stake as we comment below.

Grad’s method [4] uses a self-consistent approach involving higher momenta and no gradients of them. In particular
Grad worked out in detail the case when the distribution function f is written in terms of n, ¢, T" and also the
traceless and symmetric part of the pressure tensor, p;;, and the heat flux vector §. From Grad’s method nonlinear
transport equations emerge naturally. In connection with generalized hydrodynamics see [5,6]. For a comparison with
phenomenological derivations in the case of higher order corrections to the Navier-Stokes equations see [7].

Presently it is possible to get semi-experimental results from microscopic computational simulations using molecular
dynamic (MD) techniques in which the microscopic interactions are part of the data and they are not bound to being
realistic. MD simulations — in the sense of this paper — is a computational technique which traces the microscopic
Newtonian time evolution of a systems of IV classical particles in the phase space of all of them.



MD gives extra meaning to another fundamental approach: the linear response Green-Kubo method (G-K method
from now on) for the calculation of transport coefficients as time integrals of time correlation functions of certain
microscopic currents [8]. With the advent of computational physics it became possible to apply the G-K method to
obtain estimates of the transport coefficients for particular interaction laws. Simulations and these calculations led
not only to the conviction that there are long time tails of the G-K time correlation functions implying the divergence
of the G-K transport coefficients in 2D but also, for the 3D case, to numerous specific results for self-diffusion, mutual
diffusion, bulk and shear viscosity, and thermal conductivity of model gases and liquids, forming an important basis
for the dominant interpretation of both the theory and phenomenology of transport.

In particularly the divergence of the 2D transport coefficients has been widely accepted, [9]. They are expected to
diverge because the corresponding correlation integrals are believed to decay in 2D as (9(%) On the other hand, recent
high precision simulations as in [10-14] for short range steep repulsive potential (hard disks in [14]) produced what
looks like size-independent transport coefficients fairly close to the predictions derived from the 2D Enskog theory,
[15]. No divergence is detected. The reproducible finite nature of viscosity in [10-12] and thermal conductivity in
[13,14] could be made understandable if the coefficients give indications of their divergence for systems so large that
the limit is beyond present computational possibilities. Certainly the G-K derivation of divergence fails to hold for
finite systems with finite steady state non-equilibrium fluxes. One should find a bridge from finite to infinite systems,
goal that is beyond our present scope.

The Couette flow of a dilute system of Maxwell particles under strong strain has been studied theoretically using
the BKG equation [16,17]. In [16] the momentum flux turns out to be a nonanalytic function of the shear rate and
the heat current obeys a Fourier law with a conductivity that depends on the shear rate as well. In [17] the authors
introduce an external nonconservative force that creates the heat flux. There is no temperature gradient, a drag force
is included to preserve the stationary state and it is shown that shear affects the heat flux. The authors present
explicit expressions for the shear dependent thermal conductivity tensor. The off diagonal terms imply a component
of the heat current normal to the temperature gradient as a second order effect not present in the linear constitutive
hydrodynamic equations.

We have performed MD simulations of a planar bidimensional Couette flow for a system of hard disks between two
flat parallel walls that move with velocities vy and —vg respectively. Particles obey straight Newtonian dynamics and,
in particular, the production of heat is only dissipated through the moving walls which are kept at a fixed temperature
Ty- Careful local measurements of the hydrodynamic fields show that our system of hard disks does not obey linear
transport equations. Because the system heats up at the center of the Couette channel we observe, as expected, a
heat flux with a component perpendicular to the walls which accounts for the heat being dissipated through the walls.
But we also observe a longitudinal heat current namely, a heat current parallel to the isotherms.

The aim of this paper is to show that there is an approximate nonlinear explicit analytic answer to the problem of
momentum and heat transport in the context of a planar Couette flow. This answer is then validated comparing the
analytic results with our MD simulations for the gas of hard disks.

What we have done is to apply the hydrodynamic equations that stem from Grad’s formalism to solve Boltzmann’s
equation without making any further approximations. Grad’s formalism adds to the standard hydrodynamic balance
equations of mass, momentum and energy, extra balance equations associated to the pressure tensor and the heat cur-
rent. These extra dynamical equations are nonlinear and take the place of the usual constitutive transport equations.
For the planar stationary Couette flow of hard disks we have been able to integrate this set of dynamic equations in
a closed form. In particular we have derived the density, velocity and temperature fields as well as explicit forms for
the pressure tensor field and the heat current.

With all this information we have been able to derive effective shear dependent analytic expressions for the viscosity
and thermal conductivity coefficients. In particular we show that the observed heat current vector is fairly well de-
scribed by our analytic results and the pressure tensor shows an excellent agreement between theory and observations.
Our simulations were done with our own algorithms as described in [18] and using the precise measurement routines
described in [19].

We have already reported simulations of sheared dense hard disk fluids in [19,20]. In them too a non-Newtonian
and “non-Fourier” behavior is observed in the sense, for example, that a heat flux not orthogonal to the isotherms is
observed.

In Sec. II the conditions under which the simulations were performed are described in detail. Section III describes
Grad’s general formalism and next specializes it to the laminar Couette flow under study getting a set of coupled
differential equations for the shear rate, the temperature profile and the two components of the heat flux. In it we
find the solution of these differential equations which show, in particular, nonlinear equations for heat conduction and
of viscous flow. In Sec. IV there is a comparison of the previous theory with the observed simulated system.



II. THE SYSTEM AND SIMULATIONAL CONDITIONS

The system of hard disks, of mass m, is inside a L x L square box. The vertical walls (along the Y direction) are
treated as periodic boundaries, the collisions among particles are perfectly elastic and the collisions with the hard
horizontal walls (along the X direction) are such that they impose a temperature Ty on the fluid as well as a velocity
vp at the top wall and —vg at the bottom wall. To do that the velocities of the particles after each hard wall collision

are chosen from a velocity distribution f(&) o exp [—% ((co £v0)* + cf/)] . Here and in the following temperature is

measured in energy units so that Boltzmann’s constant is kg = 1. The origin is chosen in the middle of the channel
so that the coordinate y varies from —L/2 to L/2.

The control parameters of the simulations were the number of particles, N = 2539 or N = 7680, v and the bulk
number density 7 = N/L2. The tangential velocity vy of the upper and lower walls was in the range vo = 0.25 \/To/m

to 128.0 \/To /m.

In every simulation the system was relaxed for about 20 thermal diffusion times tg;¢ before local time averages
of the main momenta of the distribution (n, ¥, T, pij, §) were taken, in some cases for as long as 4000 tqig. The
order of magnitude of tgir comes from the energy balance: tqiz ~ L?/ko where kg is taken to be the ideal gas
thermal diffusivity. In one tg;¢ each particle suffers about 100 particle collisions when N = 2539 and about 300 when
N = 7680.

One has to bare in mind though that, for finite systems as the present one, there are velocity and temperature
jumps which cannot be neglected implying that the limit of T'(y) and v,(y) as y — £L/2 do not give exactly the
values externally imposed.

Calling o the diameter of the disks, the bulk density i = 4pa/mo? was fixed so that the fraction of area covered
by the disks was 1% (area density pao = 0.01). With this choice the non-ideal corrections to the equation of state are
less than 2%.

Throughout this paper some quantities will play a particularly important role among them the free flight time 7,
the adimensional shear rate v, an adimensional measure of the range of the wall effects, B and a small adimensional
parameter 7o (the externally imposed adimensional shear) defined in such a way that it would coincide with ~ if the
strain were small and uniform (vg ~ 0),
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where p is the hydrostatic pressure, £ the ideal gas mean free path, ¢ = 7o/ 8v/2pa, 1o the strain-free mean free flight
time, 70 = 1/(207)/m/(nTy) and the prime indicate derivative with respect to y. Most of our results are presented
for situations where v = 0.06.

The number of disks was chosen so that B be small enough to keep the boundary effects constrained to a small
fraction of the system and guarantee that far from the walls the fluid has a hydrodynamic behavior. For our choice
pa = 0.01, this implies B = 0.062, L = 446.60 for N = 2539 and B = 0.036, L = 776.7¢ for N = 7680.

III. BALANCE EQUATIONS AND BOUNDARY CONDITIONS
A. General Theoretical Framework

For two dimensional dilute gases Grad’s distribution is

2
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where ¢ is the heat flux vector, p is the traceless and symmetric part of the pressure tensor and fy is Maxwell’s local
equilibrium distribution



fO(T;C; t) = 271'—T €xp 2T (6)
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¢ is the microscopic velocity, 7(7,t) is the hydrodynamic velocity and C(7,t) = &@— #(, t) is the peculiar velocity.

From Boltzmann’s equation it is possible to derive balance equations for the momenta of the distribution as a
textbook exercise [21]. The first momenta give rise to the standard hydrodynamics equations: the mass, momentum
and energy balance equations. The balance equations associated to the following momenta lead to equations that
take the place of the constitutive equations but, strictly speaking, they are dynamic equations for p;; and ¢.

We have reconstructed Grad’s derivation of these extra approximate equations, for the bidimensional case of a gas
of hard disks obtaining
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where 7 was defined in (1) and p is the hydrostatic pressure. The hydrodynamic equations for the dilute 2D system
of hard disks correspond to the standard balance equations plus (7) and (8). In the final results it is convenient to

replace p;; in favor of the complete pressure tensor P;; = p;; + pdi;-
As an illustration of their use consider the first equation. Neglecting time variations and all gradients except for

the velocity gradient yields
Ov; Ov; Ovu,
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where the shear viscosity ng for hard disks is 7p which can be reduced, using (1), to the standard expression 7y =

1
20

2L In a similar fashion one can find, from (8) the expression for the thermal conductivity ko = 47p/m.

B. The Laminar Flow Case

Under conditions of laminar Couette flux and after times much larger than tq;¢ the system is in a stationary regime
and the flux presents translation invariance along the Couette channel. All quantities of interest are either uniform or
they depend solely on the transversal coordinate y. The hydrodynamic velocity has a unique non-vanishing component
vz (y). The mass balance equation is identically satisfied.

To compare our simulational results with theory the following considerations are made. 1) Grad’s solution cannot
be expected to be valid near the boundaries (y = +L/2), where the interaction with the walls plays an important
distorting role particularly at low densities. %) Assuming that Grad’s solution gives the correct behavior for the
system in the bulk, the expressions should reproduce the simulational results using corrected values for vy and Tj.

From the momentum balance equation it follows that both P, and P,, are uniform. Hence, the balance equations
(7) for P,, and Py, yield two algebraic relations,

) Pey. Pea(®) = Py = 31(4) Pay (10)

where 7(y) is the adimensional shear rate defined in (1).
The rest of the balance equations yield

ply) = Py, -
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The primes indicate derivatives with respect to y. The above system of equations has as unknowns the fields ~, T,
Gz, qy- The boundary conditions are

T(£L/2) =Ty, ¢:(0) =0, g,(0) =0 (15)

plus two integral conditions, one that follows simply from [ ndz dy = N and the second that states that the velocities
+vy at the boundaries are known

2 py) N P2y
/_L/z w=1 ™ // () =2 (16)

The ideal gas equation of state, p = nT, was used in the first integral expression while in the last expression the
integrand is vl,.
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FIG. 1. Profile of the shear rate v for a system with N = 7680, pa = 0.01 and vo = 1.4 4/To/m. The horizontal line
represents the theoretical value ¥ = 0.066869 + 0.000062 explained in the main text. Away from the walls the discrepancy is
about of 0.9%.

C. Expansions

At first glance one cannot hope to find a closed analytic solution to the above system of differential equations
therefore we expand in terms of g defined in (4)

(W) =0 + v (y) + s (y) + - - (17)

There is a symmetry related to inverting the sign of vy (or 7 or 7g). It is easy to see that T, g, and P,, have to be
even in g while ¢, and P,, have to be odd functions of .

Since ¢, vanishes for zero strain its expansion begins with a term O(1g). Similarly, since T’ vanishes for zero strain
then T' = Ty + O(12). From this and (12) it follows that g, is O(1g). Finally since for zero strain the component P,
coincides with the hydrostatic pressure and the pressure is nT then the form Py, = nTy + O(73) is used.

With all the above considerations we have solved the system of equations and their boundary conditions in a
consistent way using expansions up to v§. All the algebraic manipulations were done using the symbolic language
MAPLE. To our surprise the coefficients 7, that appear in the expansion of v turn out to be independent of y as if
the shear rate in the bulk of the system were uniform. The conclusion then is that within the theoretical picture
constructed from Grad’s 2D eight momentum distribution function (5) (for the bulk of the system) it is reasonable to
assume that the shear rate 7y is uniform. The nonuniformity observed in Fig. 1, when the externally imposed strain
is high, may be due to boundary effects and not to a deviation of the theory in the bulk where Grad’s distribution
should be good.




Regarding the last point it is necessary to bear in mind that Grad’s approximate solution (5) neglects the contri-
bution from higher momenta which will become important if the shear rate is sufficiently large. The higher balance
equations (7) and (8) are implications of Grad’s solution where again the contributions from higher momenta are
consistently dropped. We have not worked out the necessary formalism to estimate up to which value of the shear
rate the present approximation should be expected to be valid.

The Reynolds number Re = ”fjoL , where v is the ideal gas kinematic viscosity, reduces in the present case to 8pa IV 7y
which for the typical values we use amounts to Re up to 20 (N = 2539) and up to 60 (N = 7680). However since for
fixed values of vy and T the variables v or v get smaller for larger systems the higher order corrections would be

important only for not too large N but, according to (17), v ~ O(ﬁ) implying the Reynolds number increases as

VN with N.

D. Closed Solution when the Shear Rate is Uniform

First we are going to derive expressions where the coordinate y does not appear explicitly. They are obtained by
simple algebraic manipulations of our equations after the term +' has been erased.

Since v does not depend on y both (12) and (13) have right hand sides proportional to 7 7" with constant coefficients.
From (12) follows an expression for T” which is replaced in (13) to get an expression for g, proportional to g,. This g,
is used in (11) to get an expression for g, which is equated to the expression for g; in (14). The result is an algebraic
expression for P,,/P,, and if this P,, is replaced back in the expression for g, an expression for the ratio between
the two components of the heat current follows. The two ratios turn out to be

P, 4+ 3y — VA 9
zyzi—i_ il 2\/_m—'y+—’y3+... (18)
Pyy 3(4-37)y 4
4z 18(2-1%) 9 2 135 4
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where A = 16 + 12072 — 63~+*. Observe that (19) implies that there is a heat flux current g, along the Couette
channel. For shears as small as v = 0.065 (19) predicts a heat current which can be as large as 30% the size of the
transversal heat current g, as indeed is observed in our simulations described in the next section.

a. Shear Viscosity. From the expression for P,y /Py, and p = Py, — 3y P,, it is direct to obtain that the shear

. . _ Py .
viscosity n = — 18

7 8 15 , 297 ,

L= 2 N1 20

o 1592 +4+VA T (20)
where 19 was already defined below (9). The expression above predicts an effective shear thinning which is compared
with our observations in Fig. 4. The agreement is excellent as we show in the next section.

b. Thermal Conductivity Tensor. Once the term with 7' was eliminated from (13), the use of that equation and
(12) directly leads to expressions

@y =~kyy T' and g, = —kyy T’ (21)
with
Pay 3P,
- - _—3W+m(1—372)k 0
b =g ko and ke =R 0 (22)
but since the ratio P,,/P,, was already determined in (18) it follows that
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In the above results there appears no explicit dependence on the coordinate y. Notice however that 1y and kg

are proportional to /7T (y). The problem of determining the transport coefficients themselves has been reduced to
determining 79 and ky and therefore to determining the temperature profile.



c. The Temperature Profile
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FIG. 2. At top T'(y) for two systems with pa = 0.01: N = 2539, v = —0.063 and N = 7680, v = —0.058. The theoretical
profile 7" for both cases are indistinguishable in this top figure. The smaller system clearly differs from the theoretical profile.
At bottom two profiles T'(y) for N = 7680 but different v. Away from the walls theory and observations coincide. The
temperature gradient is scaled with the square root of 2K.

If we go back to the original equations and notice that 7 depends on y only through +/T then (12) and (13) imply

that both heat currents g; are proportional to (7%/2)". Hence both (11) and (14) imply that +/T (T°/2)" is a constant
and an expression for the temperature profile is easily obtained.

1_,
TT" + §T'2 +K=0 (25)
which can be integrated for y in terms of T,

me_T me_T
+V2Ky = TM"T + Trax arctan\/aT (26)

where



\/8174 — 26492 4+ 16 + (1572 + 4) VA

V2K = 1-37 VT oy Py, (27)
N 353 95 27 4
= (fy 57 87 327 +...] V2mo Py,

V2K is real in the interval 0 < 72 < % The + on the left hand side of (26) is natural because the symmetry of the
system implies that under laminar conditions the temperatures at y and —y are the same. In practice to integrate
(25) we imposed that at the center of the channel T'(0) = Tnax and (dT'/dy),_, = 0 even though we do not know yet
the value of Tp,ax. In Fig. 2 there is a comparison of the observed values of 7' and the corresponding profiles obtained
from the above expressions. Comments are deferred to §IV.

What remains now is to connect the uniform fields Py, Tiax and 7 with the control parameters vo and Ty (or
rather to adimensional parameters 7o and B) and the parameters of the system (pa, o, L, N ...)

d. Using the Integral Boundary Conditions. From the knowledge of T'(y) it is quite easy to actually make the

integrals that appear in the integral boundary conditions, for example: [ d—ff = \/% arctan v/ (Tmax — T0)/To.

256.0

v sim.

0.010285
0.040127
0.049442
0.066253
0.087807
0.166661
0.184631
0.192817
0.195729
0.199432
0.201661

7 theor.

0.010370
0.040437
0.049547
0.066869
0.088711
0.169997
0.189379
0.198525
0.202106
0.205384
0.207323

Py
T0/<72

0.000140+ 7E-11
0.000580+ 4E-6
0.000735+ 4E-6
0.001079+ 1E-6
0.001668+ 4E-6
0.014237+ 2E-5
0.050967+ 3E-5
0.193722+ 2E-4
0.578589+ 6E-1
2.966890+ 5E-3
11.69858+ 2E-2

Pyy
T0/02

0.013511+ 6E-8
0.014399+ 6E-8
0.149180+ 1E-11
0.016297+ 1E-7
0.019129+ 5E-7
0.088909+ 1E-7
0.289465+ 1E-6
1.056361+ 2E-6
3.107144+ 4E-5
15.71608+ 2E-4
61.47708+ 3E-4

Table I: Simulational values of P, Py, and -y versus the imposed tangential velocity vo. In

column 3 are the values of the shear rate obtained from (18). The averages for the uniform

quantities where taken in the whole volume of the system. The simulational value of v is an
average over four values measured at the central part of the fluid.

The two integral boundary conditions (16) combined render

1— 392
4+972+\/Z
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Tmax = To _ %0 arctan\/aio (29)
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Using (28) on both sides of (29) one has « as a function of the external parameters vy and B. Fixing B one can plot
~ as a function of vy. Once this is done (28) gives Tmax in terms of Tp, 7o and B. Since the previous equations are
implicit such plots have to be constructed using numerical methods

When 1mu < Ty (v = 0) equation (28) leads to |/ Imex=T0 ~ /7y, /(8B). On the other hand, the large shear

limit cannot be reliable since in the present approach it is bemg assumed that the shear rate is not too large. Still,
this limit corresponds to neglecting Tp in front of Thax and (28) leads t0 Tmax & 2mvd and v = Yoo = T —=2

v/ 2Npa
suggesting that — for a given system (N fixed) — v does not grow indefinitely. Qualitatively our simulational results
suggest that v saturates, see Table I. Understandably though, the observed asymptotic value that v seems to have is

not close to the previous v

max 0

(28)

=2
“[%

and



From the condition T'(+L/2) = T follows an expression for P,, which can be reduced to

NT, 4 — 372 Tmax — Tt
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v T
The expression for (Tmax — To)/To given in (28) can be replaced in (30) to have an explicit expression for Py, in
terms of the shear rate . In the small shear rate limit the last bracket tends to 2 and the middle fraction tends to
%, making Py, tend to the hydrostatic pressure p = 71y as it should. This expression of P, in terms of v can be

replaced back in (27) and get an expression for v2K.

Py = (30)

IV. OBSERVATIONS VERSUS THEORY
A. Generalities and Boundary Effects

To measure the hydrodynamic behavior of the system, the box was divided in M, x M, rectangular cells. In each
cell the time average of the first momenta of the distribution were made. For the system with N = 7680 particles
the choice was M, = M, = 20, which corresponds to about 19.2 disks per cell and in the case with N = 2539 it was
M, = M, = 23 or about 4.8 disks per cell. Units are chosen so that the mass of each particle is m = 1, their diameter
is 0 = 1 and time units such that the temperature Ty at the horizontal walls, measured in energy units (kg = 1), is
fixed to be Ty = 1.

To measure the number density n, the hydrodynamic velocity ¥ a and the temperature T the algorithm carries in
each cell an exact integration over time of the number of disks, total momentum and total kinetic energy (densities).
To measure currents, namely, the pressure tensor P;; and the heat current g, it is necessary to measure separately the
kinetic and the collisional contributions. The kinetic contributions come from the fluxes using the peculiar velocity
C_", namely the fluxes mC;C; and %mCQCk that take place each time a disk enters or leaves a cell. Regarding the
collisional contributions we estimate, using Gass’s expressions for the transport coefficients [15] for hard disks (linear
constitutive equations) that they will be of the order of 2%.

Most quantities show boundary effects. The temperature field shows isotherms parallel to the flow but — as
predicted by (19) — the heat flux is not orthogonal to them: it bends in the direction of the mass flow. The equation
of state is well satisfied across the fluid, including the regions near the walls. Observed discrepancies with the ideal
gas equation were always below 2% and if Henderson’s equation of state [22] is used the discrepancies are below 0.1%
for the N = 7680 system. The components P, and P,, of the pressure tensor show no boundary effects but P,
does.

Taking advantage of the translation invariance in the X direction, it was natural to take horizontal averages of the
observed cell-results getting in this way smooth vertical profiles for the observed hydrodynamic fields.

As mentioned above (10), Py, and Py, should be uniform and this is what we in fact observe. From the horizontal
averages of P,y and P, for N = 2539 particles, their values at each y are obtained with errors of less than 0.6% and
less than 0.07% respectively. For the larger system the errors are still smaller. An additional vertical average over each
of the previous profiles produce a variance of about 0.1% for P,, and of about 0.008% for P,, when N = 2539 and
smaller when NV = 7680. In this sense it can be stated that these two quantities are independent of y as hydrodynamics
predicts. In Table I we have summarized our results for the system with NV = 7680 and pa = 0.01.

Even though we derived that up to 8th order in vy the adimensional shear rate < is uniform, the simulations for
shear rates as small as v ~ 0.06 show a wide region near the boundaries of the channel where v (evaluated through
(1), (2) and p = 1TrP) noticeable varies with y. In the central region v is quite uniform as seen in Fig. 1.

From these considerations it is clear that the theoretical framework presented in §IIT needs a reassessment because,
even though the differential equations are expected to be valid in the bulk, this is not true near the boundaries. The
closed expressions found in §IITD should be expected to fit well away from the walls and the values associated to the
boundary conditions (7o, vo) should be adjusted to make this fit.

B. Results Fits

To adjust the observed results we proceeded as follows.
The shear rate . Since both P, and P,, are independent of the coordinate y within a very small error, vertical
averages of these two quantities were taken and from them and (18) an effective value for the shear rate - is obtained.



Columns 4 and 5 of Table I show the measured values of P,,, Py,. In column 2 is the value of v evaluated using (1)
for the four values measured at the center of the channel while in column 3 is the effective theoretical value of . For
vo < 8 /Tp/m the discrepancies are less than 1%.

Figure 1 shows the adjusted v and the observed shear rate profile. The figure corresponds to the case N = 7680
and vg = 1.4/Tp/m. Away from the walls the adjusted value of 7 is v = 0.066869 £ 0.000062 which differs from
the observed value in about 0.9%. Similar differences are obtained for other values of vg. In the extreme case
vo = 128 1/To/m the ~y profile is less uniform and the values in the central part of the box and border differ by about
4% and the difference between the simulational value of +y in the central zone and the theoretical value reaches a 3%.

The constant V2K is evaluated from (27).

The temperature Ty, and T'(y). Tax was obtained making a mean square fit of (26) adjusting both, the values
of Tmax and again the value of /2K . Since the temperature profile shows a strong and wide boundary effect different
fits were made eliminating one, two, three etc points on each extreme and finally an extrapolation was made. The
value for v/2K obtained in this way differs from the one obtained from (27) by a few percent.

The previous fit yields what we will be calling the theoretical temperature profile T'(y) from now on. It coincides
with the observed T profile only in the central region and fails badly away from it. From the theoretical temperature
profile T'(y) follows its gradient 7"(y). In Fig. 2 there is a comparison of the latter with the observed values. The T’
profile agrees quite well away from the walls when the system is larger (N = 7680).
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FIG. 3. The theoretical and observed profiles of the heat currents ¢ for a system of N = 7680. The theoretical v is
v = 0.066869 + 0.000062. The transversal heat current g, (with crosses) shows excelent agreement with the theory, while
the agreement between the theoretical and observed profiles of the longitudinal heat current g, (with rhombus) is fair. Both
currents are scaled with the factor To/To/m.

The heat currents ¢, and g,. Figure 3 compares the observed heat flux profiles with the theoretical profiles given
in (21) for the case N = 7680, v ~ 0.067. Crosses indicate the simulational values of the transversal heat current g,.
Notice that gy, as seen in (21) obeys a Fourier type of law with an effective conductivity that depends on the shear
rate. The agreement with the predicted values of g, is excellent. Rhombus are used to show the component of the
heat flux current g, along the isotherms. It is seen that, in the last case, the agreement is fair. For N = 2359 the
g, fit is rather poor (the boundary effects propagate deeper into the system) and we did not make the corresponding
plot. In general the boundary effects for a fixed 7 are seen to be smaller for larger systems as the definition (3) of B
suggests.

The integral boundary conditions. To check the implications of the integral boundary conditions we proceeded
to determine the value of v that follows from (28) and (29). Taking the system with N = 7680, vo = 1.0 \/Tp/m and
using for Ty the value obtained from the theoretical profile, we obtain v = 0.0495378 while the value of v derived
from P,,/P,, is v = 0.0495468 which is better than what one could expect.

In the case of small v, the expression (28) predicts via (3) and (4) a temperature difference Trax —To & 2570 (%)2,
implying that, because B is small, there is a significant heating of the central part of the channel. In particular, for
the case v ~ 0.04954 (which corresponds to vg = 1.44/T/m) equation (28) predicts (Tmax — T0)/To =~ 0.125 while
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we observe 0.2 and for v ~ 0.06625 (which corresponds to vy = 1.04/To/m) equation (28) predicts 0.245 while we
observe 0.29. The discrepancies may be due to boundary effects.

Yo

\/To/m

0.2
0.8
1.0
14
2.0
8.0
16.0
32.0
56.0
128.0
256.0

7y sim.

0.010285
0.040127
0.049442
0.066253
0.087807
0.166661
0.184631
0.192817
0.195729
0.199432
0.201661

n/Mo

1.012652
1.001918
0.993623
0.993362
0.981536
0.924016
0.910397
0.905053
0.903687
0.898152
0.894963

kwy/ko

-0.0318=+ 0.014
-0.1557+ 0.007
-0.1982+ 0.020
-0.2699+ 0.006
-0.3459+ 0.014
-0.5360+ 0.006
-0.5599+ 0.003
-0.5734+ 0.002
-0.6248+ 0.027
-0.5790=+ 0.010
-0.5782+ 0.008

kyy/ ko

*

0.9550+ 0.007
1.1190+ 0.040
1.0210+ 0.015
1.0560+ 0.040
0.8534+ 0.005
0.8166+ 0.006
0.7995+ 0.005
0.8569+ 0.046
0.7887+ 0.008
0.7857+ 0.004

Table II: Simulational viscosity n/no and conductivities kzy/ko, kyy/ko versus the simulational ~y
for the N = 7680 system.
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FIG. 4. The predicted viscosity ratio n/no, versus +y showing shear thinning, is compared with the viscosity ratio derived
directly from the observations (N = 7680).

The shear viscosity. Using the observed values of v}, and P,, at different points in the channel and in different
simulations it is possible to extract a simulational value for the shear viscosity ratio n/no (see Table II ) which turns
out to follow quite well the value given in (20) within less than 1% in a range of v up to v = 0.2 (see Fig 4). We have
not enough data to derive error bars but all points are seen to fall close to the theoretical curve.
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FIG. 5. The predicted kzy/ko conductivity ratio versus 7y is compared with the conductivity ratio derived directly from the
observations (N = 7680).
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FIG. 6. The predicted ky,/ko conductivity ratio versus 7 is compared with the conductivity ratio derived directly from the
observations (N = 7680).

The thermal conductivity coefficients. Similarly, the observed components of the thermal conductivity tensor
are compared with the expression implied by (23) and (24). From the observed values for ¢, g, and T’ we have
derived profiles for the conductivities kzy = —gz/T", kyy = —q,/T" after eliminating 2 or 3 data points from the
borders and four noisy points from the central part where T", g, ¢, are too small. An extrapolation of the profiles
of kgy/ko and ky,/ko at y = 0 using a parabolic fit yields the simulational values presented in Table II for different
values of the simulational ~.

For k;,/ko the agreement is quite good if vy < 2/To/m (v < 0.087807) when N = 7680 (see Fig 5). For ky,/ko
(see Fig 6) the statistics is rather poor. The results show a behavior consistent with the theory for small values of
the shear rate, but we do not have enough data to make stronger statements.

Our data is less noisy when the shear rate gets larger (vg > 2.0 /To/m) but in that case the discrepancy with
theory is substantial both for k;, and k,,. There are many possible sources for these discrepancies. The higher
balance equations (7) and (8) are derived, according to Grad, neglecting terms that involve still higher momenta
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which possibly are no longer negligible at such high shear rates. The boundary effects, on the other hand, are also
more complex since the discontinuities of the hydrodynamic fields at the walls are related to their own gradients. This
seems particularly relevant in the case of the temperature field.

In summary we have used Grad’s momentum to derive, from Boltzmann’s equation a hydrodynamics for the gas of
hard particles. This hydrodynamics comprises the standard hydrodynamic equations plus dynamic equations for the
pressure tensor and the heat current. Hence the only constitutive equation is the equation of state. When applying
these equations to the case of a planar Couette laminar flow we find a closed solution which includes the description
of nontrivial temperature profile, heat flow both orthogonal and along the isotherms. The solution is in general
an excellent description of what is actually seen, away from the walls, in our molecular dynamic simulations with
systems of less than 10* particles subjected to extreme shear conditions. In particular we have found closed analytic
expressions for the effective nonlinear transport coeflicients for this planar Couette flow.
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APPENDIX A: SOLUTION IN THREE DIMENSIONS

We have been able to find a closed analytic solution in 3D quite similar to the one we have presented for the
bidimensional case, only that we do not have simulations to compare with. We have chosen hard walls parallel to the
XY plane moving with velocities £vg in the X direction. The only coordinate that plays an interesting role is the z.
From the balance equations and symmetry of the problem we have derived that ¢, = 0, Py = 0, P, = 0 while P,,
and P, are uniform. Again we are able to see that Grad’s solution yields a uniform the shear rate.

Exact expressions are simpler when expressed in terms of 5 = %7, where v = 7v,(2) and 7 =

5v/mT(z)/m/(1602 p(z)). Series expansions are in terms of  itself. The expression Az = /1 + 2972 — 54v% ap-

pears everywhere.

!

n 2
no_ Al
Mo 1 + 18’)’3 + A3 ( )
13 , 5282 ,
=1-— — A2
Yt T (A2)
P:cz _273
- “fs A
P.. 1+4+3y2+A; (A3)
7 2282
kzz _7’7 (1 - %72) (A5)

ko 1+ 592+ (1— 842) A,
7 1379 5 87647

=277 5007 ~ 5000 (46)
kk_f T1- 54% +3A; (A7)

=14 2 4 iy (a8)
&« __ 1-97% (49)
V4 1-3v:+4;

= ; %50772 - %v“ (A10)
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The differential equation for T'(z) is the same equation (25) as before except that instead of the constant K now
the constant is K3,

256 (8- 6372) (1 +5472)°
14 2272 4 406894 4 364595 + A (1 + 2242 + %)

Ky = (A11)

We thank V. Garzd for pointing out the mistake.
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