Hard rods in the presence of a uniform external field
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We sum the canonical partition function for a system of hard rods in a box of finite length in the
presence of a linear external potentigravity). From the canonical partition function closed
expressions for the pressure at the top and bottom walls, and the chemical potential follow. The
canonical number density and higher distribution functions are also determined. In particular it is
shown that the number densities at the extremes of the box are proportional to the associated
pressures at those points even though this is not generally true in the bulk of the system. It also is
shown that the system is naturally divided in twall zonesand, if the density is low enough, a
central zoneas it is the case for the free field system. An expression for the local pressure is also
derived and it is found that, in the thermodynamic limit and in a sufficiently weak external potential,
an exact local relation between the number density and the pressure (@gfittion of stateexists

in the canonical ensemble within the central region. We also compute the grand canonical partition
function for the system and generalize some results from other author$99® American Institute

of Physics[S0021-96087)50236-4

I. INTRODUCTION The existence of a local equation of state is then addressed
and it is shown that only if the strength of the external field
One dimensional systems have often been a source fag sufficiently weak does a local equation of state exist in the
exact results:? In the case of uniform or inhomogeneous thermodynamic limit and only in the central zone. As far as
fluids the hard rod system has proved to be useful and hase know this is the first time where the existence of a local
been revised from time to tinfe’ Its equation of state was equation of state can be explicitly shown for a nonideal gas.
first derived by Rayleigh,and rediscovered some time later (iv) In the grand canonical ensemble a simple relation is
by Tonks® The distribution functions for the homogeneous found between the grand partition function and the local
system in the thermodynamic limit were first calculated bypressure.
Salsburget al.® and later Leffet al. obtained the number and The paper is organized as follows: In section Il we sum
pair densities for a system confined to a finite length using irthe canonical partition function and generalize some thermo-
the canonical ensembfeRobledoet al® studied the finite dynamic relations valid for the zero field system. In section
length effects on the equilibrium properties of the hard rodlll the canonical molecular distribution functions are calcu-
fluid and they found a relation between the distribution func-lated emphasizing the number density profile features. In
tions and the grand canonical partition function. Dagien-  section IV we compute the pressure profile and consider the
eralized this last result to a system under the presence of @xistence of a local equation of state. In section V some
arbitrary external field, but explicit calculations were maderelations regarding the grand canonical ensemble will be
only for the free field case. An equation for the density pro-shown. In section VI we summarize our main results with
file for hard rods in an arbitrary external field was derived bysome additional comments. The explicit formulae for the ca-
Percud® while Vanderlicket al. showed that Percus’ equa- nonical number density, pair distribution function and pres-
tion admits an analytic solutioft. sure profile for the system are displayed in the appendix at
The present work deals with a hard rod fluid in the presthe end of the article.
ence of a linear external potential that we call gravity. Both
the canonical and grand canonical formalisms are developed.
For the canonical ensemble it is found that the system i cANONICAL ENSEMBLE
naturally divided in two or three regions: two walls zones
and acentral zoneas it is also the case for the free field Let us consider a fluid composed of hard rods, i.e. inter-
system’ The latter exist only under certain conditions. The acting through the pair potential
main achievements of the present work drgderivation of
a closed form for the canonical partition function. From it ®, |x|<a,
generalizations of results already known for the null external u(x)= 0, |x|=o,
field follow. The canonical distribution functions of the sys-
tem are also derived and in particular the number densitwhereo is the length of each rod. The system Mparticles
function n(x) is carefully studied.(ii) An explicit closed (rods confined to a “volume” of lengti. (Fig. 1) under the
form for the canonical local pressure is derived from thepresence of a uniform external field of strengthwhich we
knowledge ofn(x) and the pair distribution functioriii) call gravity.
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temperature. The difference between the position of the last
Xyt particle and the floor particle satisfy the inequality

LI

L=xy—Xo. 4

The evaluation of the partition function can be done intro-
ducing variables,=x,—xy_1— o, k=1,... N. From(4), the
relative distances, satisfy

e (5)

where/=L—No correspond to the reduced volume and the
integration has to be done over all positive values,afom-
patible with (5). The configurational partition function then
becomes

N(N+1)
2

N
XJ dr1~--J- drNH(/—E rk)
0 0 k=1
N-1

N
X H H(rk)ex;{ —,Bmgz (N=Kk+2)ry
k=1 k=1

NXy+ o

ZN(Xg XN+1) = ex;{ —pBmg

(6)

All the Heaviside functions evaluated in the variabigsare
equal to unity since’, goes from 0 to infinity in each inte-

gral. Replacing the remaining Heaviside function by its inte-
FIG. 1. Hard rod fluid between elastic hard walls. The particles are confine(@ra| representation,
to a “volume” of length L, and a uniform external field is present.

00— Lexprpr ™
X)=— —exp(pXx),
2 —io+7g p p
Due to the particular form of the interaction, the Boltz- ] ) ) )
mann factor reduces just to a Heaviside step function, de@nd reverting the order of integration each one can be easily

fined as the unity for positive values of the argument andEvValuated. The final result is
zero otherwise,

. . N N(N+1)
eX[I(—BU(X))Z G(X_O'), (2) N(XO!XN+1)_eX _Bmg XO+UT
and then the configurational partition function for the system 1 (1—exp—Bmg/)\N
is just xm Bma 0). (8
XN+1— O Xk41— O . . o, .
ZN(XOvXN+1)=f N+l dXN"'f k¥l dXp- - - The conﬂguratlorlal /p_artltlon functiody depends ony.
%o Xo through the relation”=xy 1 —Xo— (N+1)0.

N As the strength of the gravitational field vanishes the
XZ_"d H oy usual partition function for hard rods is recovere@n the
Xell 0(Xks1—X—0) L G -
k=0 other hand, for any finite value gfmg the partition function
N explicitly depends on the position of the bottom molecule
B and, if the length of the box goes to infinity, the only relevant
Xex;{ 3”‘92:1 Xk) ®) length scale for the system is

X0

wherex;<X,- - - <Xy_1=Xy are the positions of the centers kgT

of the particles andk, and xy; are the positions of the Ug:m_g' ©)
centers of fixed particles that define the bottom wall and the

top walls, respectively. They satisky, . 1—Xg=L+o asitis  The thermodynamics of the system can now be easily com-
illustrated in Fig. 1. The parametgris the reciprocal okgT ~ puted from the canonical partition function. The Helmholtz
wherekg is the Boltzmann’s constant aridis the absolute free energy for the system is
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N(N+1) or from the evaluation of the well known functional deriva-
A=kgTNIogA + mgNx+ mgaT tive
1—eX|0(—Bm9/)) _ oA
—kgTNIo , 10 n(x)= : 17
B g Bmg ( ) 5U(X) v(X)=mgx

whereA is the De Broglie wavelength. The press@i@ce)  |n the expression above(x) is an arbitrary external field
on each one of the walls can be computed simply by takingvhich has to be evaluated t(x)=mgx after differentia-
the partial derivative with respect to the position of thesetion. This functional derivative yields the well known
walls. The force exerted on the fluid by the bottom wall is factorizatior}?

A exp(— Bmg/) ) N
Fo=—=mgN 1+ 11 exp(— Bmgx)
b IXp mg 1—exp—Bmg/))’ 1 n(X):—E Zy—1(X0,X) Zn— (X, XN+ 1)
Zn(Xo XN+1) k=1
and the forced exerted on the top wall by the fluid is (19
dA exp—Bsmg/ The explicit form for the number density for the hard rod
F —mgN p—Bmg/) 12 P y

system is displayed in the appendix. The density profile has a

U oxner o © 1—exp(—Bmg/)’
- . . structure similar to the case of zero gravity, two border zones
Their difference is the weight of the system as expected. DUt width (N—1)o going from the bottom of the box to

to the presence of gravity the pressure field is no Ionge;(O+NU and fromxy .1~ No to the top of the box, plus a
uniform. Equation(11) can be simply interpreted as the hy- central zone that exists only N< (L + o")/20. The behavior
drostatic pressure plus an additional term that is related tg¢ o density profile is dominated by the characteristic
the existence' of t'he upper yvall. If the position of.the UpPeliength o4 introduced in equatior(9). For values ofc,

wall goes to infinity, the fluid exerts no force on it and the e ater than the length of the box the number density is just
pressure pn_the bottom wall is just the hydrostatic term. Tak'slightly modified from the zero gravity case. &g decreases
ing the limit g—0 yields the well known equation of (;5rgerg) the particles move to the bottom of the vessel,

4,5
state increasing the number of density oscillations and compress-
ing the oscillatory structure in the same direction. Fgy
Fo=Fi=ke T —5- (13)  small enough, with respect to the length of the box, the par-

ticles never reach the upper wall and the behavior of the
Taking the derivative of e_quatioﬁiO) _with re_speCt taN the  system is just the same as a fluid confined to smaller region.
dependence of the chemical potengiabn g is found to be  The density decreases exponentially down to zero with
_ height in this case. The dependence on the position of the
=pBmgx+ Bmgo(N+1/2
Bu=pmgx+ Amgo ) bottom wall is trivial because it is just a shift in the choice of

exp—Bmg/) the origin of coordinates. Figure 2 shows the number density
+’8mgN01—exp(—,8mg/) for 10 rods and some values of, andL.
The contact values of the density are
+1 AmgNA ) (14
0 ~1.
I T-exp—pme/) im noo=—bmIN ____ Py (19
) l—exp—Bmg/) kgT’
Introducing the reduced fugacity §s-exp(Bw)/A and using x=(xot )
equationg11) and(12) the following relation is found exp( - Bmg/) =
. / ¢
lim n(x)=BmgN =—,
Fp Fio 1-exp—Bmg/)  kgT
= i — —( —0o) B
I=exp Bmgxy)exp Bmg(N+1/2) o) KT exp{ kBT)' X—(XN+1 20

(19

As the parametepmg goes to zero the pressure become
uniform and the relation found by Robled al® is reob-
tained.

which means that these values of the number density are
Sproportional to the pressure exerted by the fluid to the wall.
This generalizes a relation found by Robleetcal®

Higher order distribution functions can be determined in
a similar fashion from their definition in the canonical en-

semble
11l. CANONICAL MOLECULAR DISTRIBUTION
FUNCTIONS nO(xy,... X) = j zj S(Xj,=X1)- -+ 8(x;, = %) ). (2D
The number density at a given heightan be computed Lk
from both its definition as an ensemble average, Due to the hard rod repulsive nature of the potential the
N particle order remains unchanged during the evolution.
n(x) = E S(x—X) ), (16) Hence if the coordmgtgs satlsfy_ the relgt|mp<- <X,
k=1 only the terms satisfying; <- - - <j| contribute to the sum,
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FIG. 3. The non-ideal contribution to the local pressure can be computed
making a detailed balance of the intermolecular forces that cross the imagi-
nary point located ax.

Number Density, n (X)o

Position, X/o

FIG. 2. Number density as a function of heightThe top figure shows a : P . .
system with reduced bulk densio/L = 0.3 while the bottom figure shows and then all the canonical molecular distribution functions

a system withNo/L=0.7. In both cases the origin is at the bottom wall Can be ?OlmpUted frf)m the Conﬁgu_ratipn"_i' pgrtition fU_nCti(_)n-
(xo=—0/2) and the distances are measure in units of rod length. An explicit expression for the pair distribution function is
displayed in the appendix.

IV. LOCAL PRESSURE AND A LOCAL EQUATION OF
NM(xy,... )= j <E<,‘ S(Xj, = %) - - 5(xjk—xk)>. STATE
<<k

(22 The local pressure can be evaluated from the knowledge

of the density and the pair distribution function. The kinetic
contribution to the pressure is the same as in the ideal case,
i.e., kgT times the number density. The intermolecular con-

The functionn® can be computed for all the values of
X1,.-. X, USing its symmetry

n(k>(xl,...,xj pee e Xy X)) tribution can be computed in the one dimensional case fol-
) lowing the mechanical arguments due to Irviagal. and
=Ny Xy Xy X, (23)  otherst®and they are reproduced here for completeness. Fol-

for all j,j’=1,... k. Using functional differentiation of the 'owing their arguments, let us divide the space in two re-

canonical partition function it can be shown th{ap) takes ~ 9ions, below(zone 3 and above(zone 2 some heighk, as
the form shown in Fig. 3.

The force that a molecule & in zone 2 senses, due to
1 the presence of a moleculeat in zone 1, is

K
(k) — _ o P
O ex;{ ﬂjgl mg)g)ZN(XO’XN“) Fa1=—sgn(x;)u’ (|x12), (25

S Zo (%) vyherex12=x2—x1. T_he mean _number of parti_cle_pai_rs posi—
<< jp— 187007 tioned atx, and x, is proportional to the pair distribution
function evaluated at those positions. We can refer those
XZj —j,—1(X1.X2) -+ Zj —j, -1 positions to the height x as X;=Xx—aX;, and
Xo=X+(1— a)X,, Where « is the ratio betweex—x,; and
X (K= 1:%0) 2=, (X X, (24 4|, and satisfies &a<1. For a fixed value ok, the vol-
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ume element where particle 1 has to be located in order that 0.8 e 1

the lengthax,, ends inx is x;,da. The mean number of N=10, L=33.335,'

pairs with particle 1 betweexy andx; + |x;5da and particle i o =L l
H g

2 betweerx, andx,+dxy, is . Fexior k1]

n(z)(X—a'Xlz,X-i-(l—a)X12)|X12|dadX12. (26)

The force felt at a given height due to the intermolecular
interaction between the molecules is

o 1
Fo(X)=— fo Xmzfo daSdelz)U'(|X12|)n(2)(X

~ afxed X+ (1- @)l xad) xad, @7 O

and then the pressure of the fluid at height given by

% 1
= — ’ (2)(y— 3.5 T T T T T T
F(x)=kgTn(x) fo dxlzfo dau’ (XN (X— axqp,X I N=10, L=3333, 1
0n o=0.1L .
+(1— a)X1p)Xq. (28) Fool k1 i
It was shown by Schofielét al!* that the pressure is not ~ , [&t \ =7 F ol k1]

uniquely determined, and that its form depends on the path N n(x)o
chosen to join the interacting molecules. Only in the one
dimensional case the local pressure is unique as there is no
room for such ambiguity. For hard rods this equation is re-
duced to

. . 3
F(X)ZkBTn(X)+kBT0'fO dan®@(x—ao,x+(1—a)o), 0 10 Position. f/(; 30,
(29

- . . . . FIG. 4. Pressure profile, collisional pressure and number density versus
and it is straightforward to see that the collisional Contrll:)u'heightx. The number of particle is 10, the length of the system is 3383

tion vanishes at the ends of the box because the pair distrjmdag:L (top figure and oy =0.1L (bottom figure.
bution function is zero for values of its arguments outside the
system. This is consistent with relatiofkl) and (12) be-

tween the pressure and the contact number density. ) o
The elastic hard collision between the rods yields afhree different zones can be distinguished, border zones of

simple exchange of their velocities or, in an equivalent pic-Width (N—1)o on both extremes of the box and, if the bulk
ture, one could equally well relabel the particles in each col9€nsity is low enough, a central zone. _ o
lision and think that they pass through each other without A local équation of state between both profiles arises in
altering their speed. From this second viewpoint apparentlfV0 cases(i) when the density is low enough afid) when
then the system is equivalent to one of noninteracting parth€ length associated to the gravity fietd,, is greater than
ticles and therefore the pressure should be of pure kinetif€ Size of the vessel. In the first case the collisional contri-
origin contrary to what29) states. This is not so and the gas bution to the pressure is negligible W|_th respect to the kinetic
is not totally trivial because either the particles bounce backi€rm and therefore the pressure profile eqkaEn(x). The
exchanging their velocities, or else they suffer an infiniteSécond case is the usual local thermodynamic assumption,
acceleration that instantaneously displaces them to a new p¥ddely used, for instance, in fluid dynamitsand can be
sition o away. In either picture collisions are a nontrivial €XPlicitly demonstrated for this system. Indeed, expanding
processes, responsible for the additional term to the pressurgduations(Al) and (A3) to first order inL/oy for heights
Evaluating the pair distribution function—see the aploen_belonglng to the central zone and taking the thermodynamic

dix, equation(A2)—at x;=x— ao andX,=x+(1—a)o it limit, N,L—o with ng=N/L constant, the profiles become
is seen that only the nearest neighbor particles contribute to L 1 x

the collisional pressure as expected. The explicit form for the n(x)=ng+ —ng(1— nBU)2(§ - E) , (30
pressure profile is also given in the appendix. Figures 4 and %9

5 show the collisional and total pressure for 10 molecules  F(x) Ng L 1 x

and several values afy andL. KeT m + a_gnB(E_ E) ) (31

The structure of the pressure profile is similar to the
number density profile. As it has already been mentionedand then the pressure and density profiles are related through

J. Chem. Phys., Vol. 107, No. 14, 8 October 1997
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FIG. 5. Pressure profile, collisional pressure and number density versuslG. 6. Probabilities that the system has zero to four particles as a function

heightx. The length of the system is 142%nd o,=L (top figurg and
ag4=o (bottom figurg. The reduced bulk densitfo/L=0.7 in this case
and therefore there is no central zone.

F(X)  ng
kBT B l_nB(T

n(x)—ng
(1-ngo)?’

which is the expansion, to first order i#fn(x)=n(x)—ng

(32

aboutng, of the equation of state for the system with zero
gravity. As far as we know this is the first nontrivial system

of L are shown. In both cases the reduced fugacity is unityxgrd— o/2.
In the top figure the probabilities go to zero with In the lower figure the
probabilities reach a stationary value because of the finite valug, of

where( is the reduced fugacity introduced (h5). The ther-

modynamic probability for a system to have exadtlypar-
ticles is

{NZ(Xo XN+ 1)

PN(XOHXN+1): :(XO XN _‘]_) .
i I +

(35

where a local equation of state can be explicitly derived from, the absence of gravity the probabiliti&s, are functions
statistical mechanics arguments. The finite size corrections 9 | and ¢ only. However, for nonvanishing these prob-

equation(32) can be derived straightforwardly from the ex-
act expressiongA5) and (A6) given in the appendix.

V. GRAND CANONICAL ENSEMBLE.

abilities are also functions of, and oy, i.e., different sys-
tems can be distinguished by the position of the bottom wall.
For zero gravity and a fixed value ¢f all probabilities go to
zero asL increases. If instead the value @f is finite, they

The thermodynamic state of the system in the grand ca@'l reach a stationary value asgrows(see Fig. 6, as can be

nonical ensemble is defined by the positions of each wall,
and xy 4 1, the temperaturd and the chemical potentigl.
The grand canonical potential is

Q(Xg,Xn+1)=—KgT 10gZ (Xg,XN+1)s (33
where
E(xo,xNH):NZO MNZ(Xo Xn11), (39

readily seen using equatiofi®) and (35).

As a consequence for a fixed valuegpthe mean num-
ber of particles reaches an asymptotic value when the size of
the system is just a few times the associated lengtlisee
Fig. 7, top. This result can be derived intuitively recalling
that the velocity distribution function for the system does not
depends orL. Since we have fixed the temperature, the
larger velocities needed to reach the top walLagrows will
be very unlikely, and hence almost all the particles will be

J. Chem. Phys., Vol. 107, No. 14, 8 October 1997
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FIG. 7. Top: For finite values o, the mean number of particles saturates FIG. 8. Density profiles in the grand canonical ensemble. In both cases the
asL increases. The reduced fugacity in all cases has been setadca®@/  fugacity has been set to give 10 particles for the zero gravity systefris|f

Xo=—0o/2. Bottom: The mean number of particles goes to zero as gravitykept fixed, the mean number of particles decreasas,dacreases.
increasegvanishing o), and then most of the molecules will be at the
particles bath surrounding the system.

resemblance to equatiofi5) found in the canonical en-
below that wall. The asymptotic mean number depends Orﬁemble. . , o , ,
besidesoy, the position of the bottom wall and the reduced The number _denSIty and higher dIS'[I’IbU'FIOI’l functions in
fugacity. It does not scale linearly with as is the case for the gr_and can_onlcal ensemble can be obtained from the ex-
vanishing gravity. On the other hand, keepiag L and ¢ pressions der_lved by Davisadapted to the presence of a
fixed, the averagéN) is a strictly increasing function af, gravitational field. They are
(see Fig. 7, bottom This is intuitive because as gravity in- K £
creases less particles pass from the particle bath to the SYt(xy ... Xi) = X _Bmgz X; | =
tem. i= E(Xo,Xnt1)

The mean number of particles for a box of lengjth o

k
can be related to averages of quantities for a box of lehgth (X X 2% X)E (X X
and therefore an expression for the reduced fugacity can be =, 1)11:[2 =0 12) = Ot X ).
found. It is
) (37)
I=exp Bmagxy){exp(—Bmg(N+1/2)0)), ) ) )
PBmG){exp~ fmg >X°'L Figure 8 shows the number density profiles for some values
BMIN)y | 4o of { andoy. As g4 goes to zero with fixed, the density
X T exn — r:g/) profile shows less density oscillations than the canonical
{ XP(=BMG ) 1 counterpart. The reason for this is that there is an exchange
2 (Xo,Xns1+ 0) of particles between the system and a reservoir. Hence the

X exp Bmgo/2) (36 mean number of molecules decreasegrgincreases.

(X0 Xn+1) The pressure profile has a simple expression in terms of
It generalizes the result found by Robleeial® and it has a  the grand canonical partition function also,
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0.6

02

tion is found and from it the number density, the pair distri-

§6='0A687002'« bution function and higher distribution functions are derived.

L=33.33c. (i) The contact number density density, i.e., the number den-

o =L sity at the extremes of the box, is proportional to the forces
Foak T exerted on each wall by the fluid and this result generalizes

——a.
---------

the zero field case where the contact number density is pro-
portional to the bulk pressure of the fluid. A similar gener-
alization is achieved for the fugacity of the system, which is
now a function of the pressure on each wall and the position
of the bottom wall.(iii) The pressure profile can be com-
puted explicitly for the system and, for a sufficiently weak
gravity field, a local relation with the density profile in the

0.0 L A . A L
0 5 10 15 20 25 30 thermodynamic limit emerges. This relation corresponds to
Position, x/¢ . L L ..

the equation of state for the system with zero gravity. Finite
size effects can be directly considered from the exact expres-
sions(A5) and (A6) given in the appendix.

35 T T y T Regarding the grand canonical ensemble, it can be

ol N=10,1~33.330, 1 pointed out that the number density shows that if the value of

o ~0.1L
Fiol k1

the reduced fugacity is kept fixed and the gravity field in-
creases, the number of density oscillations is smaller that the
canonical counterpart. The reason for this is that now the

system can exchange particles with an environment and,
- when gravity becomes stronger, less particles can pass from
the particles bath to the system, reducing the mean number
of particles. In order to keep the number of particles constant
one has to raise the value of the chemical potential.

Finally we would like to remark that besides its aca-
demic importance, this result should be useful when compar-
ing approximations in the study of nonuniform fluids. As far
as we know this may be the first example of nonuniform
FIG. 9. The pressure profile, collisional contribution and number density ardluid, besides the ideal gas, for which all molecular distribu-

shown. The reduced fugacity was set to give 10 particles in the free fieldjon functions can be explicitly computed directly from sta-
case. In the top figure the bulk densitif)o/L=0.231 and the collisional tistical mechanics arguments

contribution to the pressure is always present. In the bottom figure the grav- '
ity field is strong and then for heights beyond a determined value the non-
ideal contribution to the pressure is negligible. The bulk density
(N)Yo/L=0.041 in this case.

20 30
Position, X/c
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F(x) 1
o e+ gzaexq—ZBmgx)f daexp — Bmg(1
B 0

E (X0, X~ o) E(x+ (1= a)aXy+1)

~2)9) (X0, XN+1)

(38) APPENDIX: EXPLICIT FORMULAE

It shows that the collisional pressure decays to zero faster
with height than the number density. Figure 9 shows the
pressure profile and the nonideal contribution to the pressure
for two values of{ and some values afy .

In the grand canonical ensemble no central zone exists
for finite length because the number density and pressure
profiles both have contributions from all the canonical pro-
files from one molecule to the largest number of particles
that the system allows.

(1) Number density:
mgN N
(1—exs—img/))Nl§1
X 0(/ = &exp— Bmgéy)
X (1—exp(— Bmgé))*(exp(— Bmgé)
X —exp(— pmg/ )N,

where &=x—(k—1)o, andx=x—(xo+ ). This equation

recovers the result for the number density found by Leff
Our main results for the canonical ensemble can be sunet al.” wheng goes to zero.

marized as follows(i) A closed form for the partition func- (2) Pair distribution function:

N—-1
(k )e<§k>

n(x)= .

(A1)

VI. CONCLUSIONS
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N -1

(BMg*N(N-1)

(N—

5523

2)!

n(z)(xl,xz):

(1—exp(—Bmg/ )N iz=2 j1=1 (N=j2)!(J2—]1—

D1 =11 260 08,27 &,2)

X 0(/ =&, )exp(— M| ) (1—exp(— Bmgé; 1))'1 'exp(— BmgE;, o) (exp(— BmE;, 1)

—exq—,Bmggjz,z))jfjl_l(exq—ﬂmgfjlyl)—

Wheregj’k:Xk_(j _1)0'_(X0+ O').
(3) Pressure profile:

BmMgN(N—1)
(1—exp(—pmg/ )N
(— 1)(k 2-j)
(N=j—=]j")

F(X) = kBTn(X) + kBT

.

N—k
j/

k]] (gk 1)( qu ﬁmg/

where
1—exp(—Bmg(N—j—j')x),

iy (=1 exp(— BMN=—j =) (x— o)) —exp(— Bmg(N—] —")x),

exp —Bmg(N—j—j")(x—o))—exp(—Bmg(N—j—]j')/),

and &, was introduced in equatiofAl).

exp(— Bmg/ )Nz, (A2)

N /N=2 k=2 N-k /o
E( 2)e<§k_1)e(/—§k)2 2 ( . )
k=2 i=0jr—o\

(A3)

xe[0,0]
xelo,/] | (A4)

xel[/,/+ o]

(4) Number density and pressure profiles expanded to first ordefdy:

N—-1

72

N—-1

N (N=1)! (=) N (N—=1)!

(—o)"

n(x)—

L (
+_
09

(—o)"

5 (N—1—K)! k& L& (N—1—K)!

N—-1

N! (N—

(k+1

//k
(k+1))(k+2)o

(k+1)

2

1

/X 2/?

F(x) N (—o)¥| Nk+1lo

7 (A5)

|

(N—1—K) L(k+1)o

kgT 2

(N—1-k)!
LNa' oy

(Zle)
(N—

N—1-k)
t—
277

(k+1)

/k+1

2

(k+ 1)(k+2)[ (L—(k+ 2)0)%—

N-1 _ k
o2(N—1-K)| + XE N! (—o)

(k+2)o+

2 2

2] (k+1)
(L+No—2(k+2)0) 5 | =~ ko(L+No—2(k+1)o)

(N—1—K)

/ (N—1-K)I k1
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