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We sum the canonical partition function for a system of hard rods in a box of finite length in the
presence of a linear external potential~gravity!. From the canonical partition function closed
expressions for the pressure at the top and bottom walls, and the chemical potential follow. The
canonical number density and higher distribution functions are also determined. In particular it is
shown that the number densities at the extremes of the box are proportional to the associated
pressures at those points even though this is not generally true in the bulk of the system. It also is
shown that the system is naturally divided in twowall zonesand, if the density is low enough, a
central zoneas it is the case for the free field system. An expression for the local pressure is also
derived and it is found that, in the thermodynamic limit and in a sufficiently weak external potential,
an exact local relation between the number density and the pressure profile~equation of state! exists
in the canonical ensemble within the central region. We also compute the grand canonical partition
function for the system and generalize some results from other authors. ©1997 American Institute
of Physics.@S0021-9606~97!50236-4#
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I. INTRODUCTION

One dimensional systems have often been a source
exact results.1,2 In the case of uniform or inhomogeneou
fluids the hard rod system has proved to be useful and
been revised from time to time.2,3 Its equation of state wa
first derived by Rayleigh,4 and rediscovered some time lat
by Tonks.5 The distribution functions for the homogeneo
system in the thermodynamic limit were first calculated
Salsburget al.,6 and later Leffet al.obtained the number an
pair densities for a system confined to a finite length using
the canonical ensemble.7 Robledoet al.8 studied the finite
length effects on the equilibrium properties of the hard r
fluid and they found a relation between the distribution fun
tions and the grand canonical partition function. Davis9 gen-
eralized this last result to a system under the presence o
arbitrary external field, but explicit calculations were ma
only for the free field case. An equation for the density p
file for hard rods in an arbitrary external field was derived
Percus10 while Vanderlicket al. showed that Percus’ equa
tion admits an analytic solution.11

The present work deals with a hard rod fluid in the pr
ence of a linear external potential that we call gravity. Bo
the canonical and grand canonical formalisms are develo
For the canonical ensemble it is found that the system
naturally divided in two or three regions: two walls zon
and acentral zoneas it is also the case for the free fie
system.7 The latter exist only under certain conditions. T
main achievements of the present work are:~i! derivation of
a closed form for the canonical partition function. From
generalizations of results already known for the null exter
field follow. The canonical distribution functions of the sy
tem are also derived and in particular the number den
function n(x) is carefully studied.~ii ! An explicit closed
form for the canonical local pressure is derived from t
knowledge ofn(x) and the pair distribution function.~iii !
J. Chem. Phys. 107 (14), 8 October 1997 0021-9606/97/107(14)/
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The existence of a local equation of state is then addres
and it is shown that only if the strength of the external fie
is sufficiently weak does a local equation of state exist in
thermodynamic limit and only in the central zone. As far
we know this is the first time where the existence of a lo
equation of state can be explicitly shown for a nonideal g
~iv! In the grand canonical ensemble a simple relation
found between the grand partition function and the lo
pressure.

The paper is organized as follows: In section II we su
the canonical partition function and generalize some therm
dynamic relations valid for the zero field system. In secti
III the canonical molecular distribution functions are calc
lated emphasizing the number density profile features.
section IV we compute the pressure profile and consider
existence of a local equation of state. In section V so
relations regarding the grand canonical ensemble will
shown. In section VI we summarize our main results w
some additional comments. The explicit formulae for the
nonical number density, pair distribution function and pre
sure profile for the system are displayed in the appendix
the end of the article.

II. CANONICAL ENSEMBLE

Let us consider a fluid composed of hard rods, i.e. int
acting through the pair potential

u~x!5H `, uxu,s,

0, uxu>s,
~1!

wheres is the length of each rod. The system hasN particles
~rods! confined to a ‘‘volume’’ of lengthL ~Fig. 1! under the
presence of a uniform external field of strengthg which we
call gravity.
55155515/9/$10.00 © 1997 American Institute of Physics
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5516 Ibsen, Cordero, and Tabensky: Hard rods in a uniform field
Due to the particular form of the interaction, the Bolt
mann factor reduces just to a Heaviside step function,
fined as the unity for positive values of the argument a
zero otherwise,

exp~2bu~x!!5u~x2s!, ~2!

and then the configurational partition function for the syst
is just

ZN~x0 ,xN11!5E
x0

xN112s

dxN•••E
x0

xk112s

dxk•••

E
x0

x22s

dx1)
k50

N

u~xk112xk2s!

3expS 2bmg(
k51

N

xkD ~3!

wherex1<x2•••<xN21<xN are the positions of the cente
of the particles andx0 and xN11 are the positions of the
centers of fixed particles that define the bottom wall and
top walls, respectively. They satisfyxN112x05L1s as it is
illustrated in Fig. 1. The parameterb is the reciprocal ofkBT
wherekB is the Boltzmann’s constant andT is the absolute

FIG. 1. Hard rod fluid between elastic hard walls. The particles are confi
to a ‘‘volume’’ of length L, and a uniform external field is present.
J. Chem. Phys., Vol. 107,
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temperature. The difference between the position of the
particle and the floor particle satisfy the inequality

L>xN2x0 . ~4!

The evaluation of the partition function can be done int
ducing variablesr k5xk2xk212s, k51,...,N. From~4!, the
relative distancesr k satisfy

l >(
k51

N

r k , ~5!

wherel 5L2Ns correspond to the reduced volume and t
integration has to be done over all positive values ofr k com-
patible with ~5!. The configurational partition function the
becomes

ZN~x0 ,xN11!5expS 2bmgS Nx01s
N~N11!

2 D D
3E

0

`

dr1•••E
0

`

drNuS l 2 (
k51

N

r kD
3 )

k51

N21

u~r k!expS 2bmg(
k51

N

~N2k11!r kD .

~6!

All the Heaviside functions evaluated in the variablesr k are
equal to unity sincer k goes from 0 to infinity in each inte
gral. Replacing the remaining Heaviside function by its in
gral representation,

u~x!5
1

2p i E2 i`1t0

i`1t0 dp

p
exp~px!, ~7!

and reverting the order of integration each one can be ea
evaluated. The final result is

ZN~x0 ,xN11!5expS 2bmgS Nx01s
N~N11!

2 D D
3

1

N! S 12exp~2bmgl !

bmg D N

u~ l !. ~8!

The configurational partition functionZN depends onxN11

through the relationl 5xN112x02(N11)s.
As the strength of the gravitational field vanishes t

usual partition function for hard rods is recovered.1 On the
other hand, for any finite value ofbmg the partition function
explicitly depends on the position of the bottom molecu
and, if the length of the box goes to infinity, the only releva
length scale for the system is

sg5
kBT

mg
. ~9!

The thermodynamics of the system can now be easily c
puted from the canonical partition function. The Helmho
free energy for the system is

d

No. 14, 8 October 1997
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5517Ibsen, Cordero, and Tabensky: Hard rods in a uniform field
A5kBTNlogL1mgNx01mgs
N~N11!

2

2kBTNlogS 12exp~2bmgl !

bmg D , ~10!

whereL is the De Broglie wavelength. The pressure~force!
on each one of the walls can be computed simply by tak
the partial derivative with respect to the position of the
walls. The force exerted on the fluid by the bottom wall i

Fb5
]A

]x0
5mgNS 11

exp~2bmgl !

12exp~2bmgl ! D , ~11!

and the forced exerted on the top wall by the fluid is

Ft52
]A

]xN11
5mgN

exp~2bmgl !

12exp~2bmgl !
. ~12!

Their difference is the weight of the system as expected. D
to the presence of gravity the pressure field is no lon
uniform. Equation~11! can be simply interpreted as the h
drostatic pressure plus an additional term that is related
the existence of the upper wall. If the position of the upp
wall goes to infinity, the fluid exerts no force on it and th
pressure on the bottom wall is just the hydrostatic term. T
ing the limit g→0 yields the well known equation o
state1,4,5

Fb5Ft5kBT
N

L2Ns
. ~13!

Taking the derivative of equation~10! with respect toN the
dependence of the chemical potentialm on g is found to be

bm5bmgx01bmgs~N11/2!

1bmgNs
exp~2bmgl !

12exp~2bmgl !

1 logS bmgNL

12exp~2bmgl ! D . ~14!

Introducing the reduced fugacity asz5exp(bm)/L and using
equations~11! and ~12! the following relation is found

z5exp~bmgx0!exp~bmg~N11/2!s!
Fb

kBT
expS Fts

kBTD .

~15!

As the parameterbmg goes to zero the pressure becom
uniform and the relation found by Robledoet al.8 is reob-
tained.

III. CANONICAL MOLECULAR DISTRIBUTION
FUNCTIONS

The number density at a given heightx can be computed
from both its definition as an ensemble average,

n~x!5K (
k51

N

d~xk2x!L , ~16!
J. Chem. Phys., Vol. 107,
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or from the evaluation of the well known functional deriv
tive

n~x!5
dA

dv~x!
U

v~x!5mgx

. ~17!

In the expression abovev(x) is an arbitrary external field
which has to be evaluated tov(x)5mgx after differentia-
tion. This functional derivative yields the well know
factorization12

n~x!5
exp~2bmgx!

ZN~x0 ,xN11! (
k51

N

Zk21~x0 ,x!ZN2k~x,xN11!.

~18!

The explicit form for the number density for the hard ro
system is displayed in the appendix. The density profile ha
structure similar to the case of zero gravity, two border zo
of width (N21)s going from the bottom of the box to
x01Ns and fromxN112Ns to the top of the box, plus a
central zone that exists only ifN<(L1s)/2s. The behavior
of the density profile is dominated by the characteris
length sg introduced in equation~9!. For values ofsg

greater than the length of the box the number density is
slightly modified from the zero gravity case. Assg decreases
~larger g) the particles move to the bottom of the vess
increasing the number of density oscillations and compre
ing the oscillatory structure in the same direction. Forsg

small enough, with respect to the length of the box, the p
ticles never reach the upper wall and the behavior of
system is just the same as a fluid confined to smaller reg
The density decreases exponentially down to zero w
height in this case. The dependence on the position of
bottom wall is trivial because it is just a shift in the choice
the origin of coordinates. Figure 2 shows the number den
for 10 rods and some values ofsg andL.

The contact values of the density are

lim
x→~x01s!

n~x!5
bmgN

12exp~2bmgl !
5

Fb

kBT
, ~19!

lim
x→~xN112s!

n~x!5bmgN
exp~2bmgl !

12exp~2bmgl !
5

Ft

kBT
,

~20!

which means that these values of the number density
proportional to the pressure exerted by the fluid to the w
This generalizes a relation found by Robledoet al.8

Higher order distribution functions can be determined
a similar fashion from their definition in the canonical e
semble

n~k!~x1 ,...,xk!5K (
j 1 ,...,j k

d~xj 1
2x1!•••d~xj k

2xk!L . ~21!

Due to the hard rod repulsive nature of the potential
particle order remains unchanged during the evoluti
Hence if the coordinates satisfy the relationx1,•••,xk ,
only the terms satisfyingj 1,•••, j k contribute to the sum,
No. 14, 8 October 1997
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5518 Ibsen, Cordero, and Tabensky: Hard rods in a uniform field
n~k!~x1 ,...,xk!5K (
j 1,•••, j k

d~xj 1
2x1!•••d~xj k

2xk!L .

~22!

The function n(k) can be computed for all the values
x1 ,...,xk using its symmetry

n~k!~x1 ,...,xj ,...,xj 8,...,xk!

5n~k!~x1 ,...,xj 8,...,xj ,...,xk!, ~23!

for all j , j 851,...,k. Using functional differentiation of the
canonical partition function it can be shown that~22! takes
the form

n~k!~x1 ,...,xk!5expS 2b(
j 51

k

mgxj D 1

ZN~x0 ,xN11!

3 (
j 1,•••, j k

Zj 121~x0 ,x1!

3Zj 22 j 121~x1 ,x2!•••Zj k2 j k2121

3~xk21 ,xk!ZN2 j k
~xk ,xN!, ~24!

FIG. 2. Number density as a function of heightx. The top figure shows a
system with reduced bulk densityNs/L50.3 while the bottom figure shows
a system withNs/L50.7. In both cases the origin is at the bottom wa
(x052s/2) and the distances are measure in units of rod length.
J. Chem. Phys., Vol. 107,
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and then all the canonical molecular distribution functio
can be computed from the configurational partition functio
An explicit expression for the pair distribution function
displayed in the appendix.

IV. LOCAL PRESSURE AND A LOCAL EQUATION OF
STATE

The local pressure can be evaluated from the knowle
of the density and the pair distribution function. The kine
contribution to the pressure is the same as in the ideal c
i.e., kBT times the number density. The intermolecular co
tribution can be computed in the one dimensional case
lowing the mechanical arguments due to Irvinget al. and
others,13 and they are reproduced here for completeness.
lowing their arguments, let us divide the space in two
gions, below~zone 1! and above~zone 2! some heightx, as
shown in Fig. 3.

The force that a molecule atx2 in zone 2 senses, due t
the presence of a molecule atx1 in zone 1, is

F2152sgn~x12!u8~ ux12u!, ~25!

wherex125x22x1. The mean number of particle pairs pos
tioned atx1 and x2 is proportional to the pair distribution
function evaluated at those positions. We can refer th
positions to the height x as x15x2ax12 and
x25x1(12a)x12 wherea is the ratio betweenx2x1 and
x12 and satisfies 0<a<1. For a fixed value ofx12 the vol-

FIG. 3. The non-ideal contribution to the local pressure can be comp
making a detailed balance of the intermolecular forces that cross the im
nary point located atx.
No. 14, 8 October 1997
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5519Ibsen, Cordero, and Tabensky: Hard rods in a uniform field
ume element where particle 1 has to be located in order
the lengthax12 ends inx is x12da. The mean number o
pairs with particle 1 betweenx1 andx11ux12uda and particle
2 betweenx2 andx21dx12 is

n~2!~x2ax12,x1~12a!x12!ux12udadx12. ~26!

The force felt at a given heightx due to the intermolecula
interaction between the molecules is

Fc~x!52E
0

`

dx12E
0

1

dasgn~x12!u8~ ux12u!n~2!~x

2aux12u,x1~12a!ux12u!ux12u, ~27!

and then the pressure of the fluid at heightx is given by

F~x!5kBTn~x!2E
0

`

dx12E
0

1

dau8~x12!n
~2!~x2ax12,x

1~12a!x12!x12. ~28!

It was shown by Schofieldet al.14 that the pressure is no
uniquely determined, and that its form depends on the p
chosen to join the interacting molecules. Only in the o
dimensional case the local pressure is unique as there i
room for such ambiguity. For hard rods this equation is
duced to

F~x!5kBTn~x!1kBTsE
0

1

dan~2!~x2as,x1~12a!s!,

~29!

and it is straightforward to see that the collisional contrib
tion vanishes at the ends of the box because the pair d
bution function is zero for values of its arguments outside
system. This is consistent with relations~11! and ~12! be-
tween the pressure and the contact number density.

The elastic hard collision between the rods yields
simple exchange of their velocities or, in an equivalent p
ture, one could equally well relabel the particles in each c
lision and think that they pass through each other with
altering their speed. From this second viewpoint appare
then the system is equivalent to one of noninteracting p
ticles and therefore the pressure should be of pure kin
origin contrary to what~29! states. This is not so and the g
is not totally trivial because either the particles bounce ba
exchanging their velocities, or else they suffer an infin
acceleration that instantaneously displaces them to a new
sition s away. In either picture collisions are a nontrivi
processes, responsible for the additional term to the pres

Evaluating the pair distribution function—see the appe
dix, equation~A2!—at x15x2as and x25x1(12a)s it
is seen that only the nearest neighbor particles contribut
the collisional pressure as expected. The explicit form for
pressure profile is also given in the appendix. Figures 4
5 show the collisional and total pressure for 10 molecu
and several values ofsg andL.

The structure of the pressure profile is similar to t
number density profile. As it has already been mention
J. Chem. Phys., Vol. 107,
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three different zones can be distinguished, border zone
width (N21)s on both extremes of the box and, if the bu
density is low enough, a central zone.

A local equation of state between both profiles arises
two cases:~i! when the density is low enough and~ii ! when
the length associated to the gravity field,sg , is greater than
the size of the vessel. In the first case the collisional con
bution to the pressure is negligible with respect to the kine
term and therefore the pressure profile equalskBTn(x). The
second case is the usual local thermodynamic assump
widely used, for instance, in fluid dynamics,15 and can be
explicitly demonstrated for this system. Indeed, expand
equations~A1! and ~A3! to first order inL/sg for heights
belonging to the central zone and taking the thermodyna
limit, N,L→` with nB5N/L constant, the profiles becom

n~x!5nB1
L

sg
nB~12nBs!2S 1

2
2

x

L D , ~30!

F~x!

kBT
5

nB

12nBs
1

L

sg
nBS 1

2
2

x

L D , ~31!

and then the pressure and density profiles are related thro

FIG. 4. Pressure profile, collisional pressure and number density ve
heightx. The number of particlesN is 10, the length of the system is 33.33s
andsg5L ~top figure! andsg50.1L ~bottom figure!.
No. 14, 8 October 1997
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5520 Ibsen, Cordero, and Tabensky: Hard rods in a uniform field
F~x!

kBT
5

nB

12nBs
1

n~x!2nB

~12nBs!2
, ~32!

which is the expansion, to first order indn(x)5n(x)2nB

aboutnB , of the equation of state for the system with ze
gravity. As far as we know this is the first nontrivial syste
where a local equation of state can be explicitly derived fr
statistical mechanics arguments. The finite size correction
equation~32! can be derived straightforwardly from the e
act expressions~A5! and ~A6! given in the appendix.

V. GRAND CANONICAL ENSEMBLE.

The thermodynamic state of the system in the grand
nonical ensemble is defined by the positions of each wallx0

and xN11, the temperatureT and the chemical potentialm.
The grand canonical potential is

V~x0 ,xN11!52kBT logJ~x0 ,xN11!, ~33!

where

J~x0 ,xN11!5 (
N>0

zNZ~x0 ,xN11!, ~34!

FIG. 5. Pressure profile, collisional pressure and number density ve
height x. The length of the system is 14.29s and sg5L ~top figure! and
sg5s ~bottom figure!. The reduced bulk densityNs/L50.7 in this case
and therefore there is no central zone.
J. Chem. Phys., Vol. 107,
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wherez is the reduced fugacity introduced in~15!. The ther-
modynamic probability for a system to have exactlyN par-
ticles is

PN~x0 ,xN11!5
zNZ~x0 ,xN11!

J~x0 ,xN11!
. ~35!

In the absence of gravity the probabilitiesPN are functions
of L and z only. However, for nonvanishingg these prob-
abilities are also functions ofx0 and sg , i.e., different sys-
tems can be distinguished by the position of the bottom w
For zero gravity and a fixed value ofz, all probabilities go to
zero asL increases. If instead the value ofsg is finite, they
all reach a stationary value asL grows~see Fig. 6!, as can be
readily seen using equations~8! and ~35!.

As a consequence for a fixed value ofg the mean num-
ber of particles reaches an asymptotic value when the siz
the system is just a few times the associated lengthsg ~see
Fig. 7, top!. This result can be derived intuitively recallin
that the velocity distribution function for the system does n
depends onL. Since we have fixed the temperature, t
larger velocities needed to reach the top wall asL grows will
be very unlikely, and hence almost all the particles will

usFIG. 6. Probabilities that the system has zero to four particles as a func
of L are shown. In both cases the reduced fugacity is unity andx052s/2.
In the top figure the probabilities go to zero withL. In the lower figure the
probabilities reach a stationary value because of the finite value ofsg .
No. 14, 8 October 1997
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5521Ibsen, Cordero, and Tabensky: Hard rods in a uniform field
below that wall. The asymptotic mean number depends
besidessg , the position of the bottom wall and the reduc
fugacity. It does not scale linearly withL as is the case fo
vanishing gravity. On the other hand, keepingx0, L and z
fixed, the averagêN& is a strictly increasing function ofsg

~see Fig. 7, bottom!. This is intuitive because as gravity in
creases less particles pass from the particle bath to the
tem.

The mean number of particles for a box of lengthL1s
can be related to averages of quantities for a box of lengtL
and therefore an expression for the reduced fugacity ca
found. It is

z5exp~bmgx0!^exp~2bmg~N11/2!s!&x0 ,L
21

3
bmĝ N&x0 ,L1s

^12exp~2bmgl !&x0 ,L

3exp~bmgs/2!
J~x0 ,xN111s!

J~x0 ,xN11!
. ~36!

It generalizes the result found by Robledoet al.8 and it has a

FIG. 7. Top: For finite values ofsg the mean number of particles saturat
asL increases. The reduced fugacity in all cases has been set to 20/s and
x052s/2. Bottom: The mean number of particles goes to zero as gra
increases~vanishingsg), and then most of the molecules will be at th
particles bath surrounding the system.
J. Chem. Phys., Vol. 107,
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resemblance to equation~15! found in the canonical en
semble.

The number density and higher distribution functions
the grand canonical ensemble can be obtained from the
pressions derived by Davis,9 adapted to the presence of
gravitational field. They are

n~k!~x1 ,...,xk!5expS 2bmg(
j 51

k

xj D zk

J~x0 ,xN11!

3J~x0 ,x1!)
j 52

k

J~xj 21 ,xj !J~xk ,xN11!.

~37!

Figure 8 shows the number density profiles for some val
of z and sg . As sg goes to zero with fixedz, the density
profile shows less density oscillations than the canon
counterpart. The reason for this is that there is an excha
of particles between the system and a reservoir. Hence
mean number of molecules decreases assg increases.

The pressure profile has a simple expression in term
the grand canonical partition function also,

y

FIG. 8. Density profiles in the grand canonical ensemble. In both cases
fugacity has been set to give 10 particles for the zero gravity system. Ifz is
kept fixed, the mean number of particles decreases assg increases.
No. 14, 8 October 1997
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5522 Ibsen, Cordero, and Tabensky: Hard rods in a uniform field
F~x!

kBT
5n~x!1z2sexp~22bmgx!E

0

1

daexp~2bmg~1

22a!s!
J~x0 ,x2as!J~x1~12a!s,xN11!

J~x0 ,xN11!
.

~38!

It shows that the collisional pressure decays to zero fa
with height than the number density. Figure 9 shows
pressure profile and the nonideal contribution to the pres
for two values ofz and some values ofsg .

In the grand canonical ensemble no central zone ex
for finite length because the number density and pres
profiles both have contributions from all the canonical p
files from one molecule to the largest number of partic
that the system allows.

VI. CONCLUSIONS

Our main results for the canonical ensemble can be s
marized as follows:~i! A closed form for the partition func-

FIG. 9. The pressure profile, collisional contribution and number density
shown. The reduced fugacity was set to give 10 particles in the free
case. In the top figure the bulk density^N&s/L50.231 and the collisional
contribution to the pressure is always present. In the bottom figure the g
ity field is strong and then for heights beyond a determined value the
ideal contribution to the pressure is negligible. The bulk dens
^N&s/L50.041 in this case.
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tion is found and from it the number density, the pair dist
bution function and higher distribution functions are derive
~ii ! The contact number density density, i.e., the number d
sity at the extremes of the box, is proportional to the forc
exerted on each wall by the fluid and this result generali
the zero field case where the contact number density is
portional to the bulk pressure of the fluid. A similar gene
alization is achieved for the fugacity of the system, which
now a function of the pressure on each wall and the posi
of the bottom wall.~iii ! The pressure profile can be com
puted explicitly for the system and, for a sufficiently wea
gravity field, a local relation with the density profile in th
thermodynamic limit emerges. This relation corresponds
the equation of state for the system with zero gravity. Fin
size effects can be directly considered from the exact exp
sions~A5! and ~A6! given in the appendix.

Regarding the grand canonical ensemble, it can
pointed out that the number density shows that if the value
the reduced fugacity is kept fixed and the gravity field
creases, the number of density oscillations is smaller that
canonical counterpart. The reason for this is that now
system can exchange particles with an environment a
when gravity becomes stronger, less particles can pass
the particles bath to the system, reducing the mean num
of particles. In order to keep the number of particles const
one has to raise the value of the chemical potential.

Finally we would like to remark that besides its ac
demic importance, this result should be useful when comp
ing approximations in the study of nonuniform fluids. As f
as we know this may be the first example of nonunifo
fluid, besides the ideal gas, for which all molecular distrib
tion functions can be explicitly computed directly from st
tistical mechanics arguments.
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APPENDIX: EXPLICIT FORMULAE

~1! Number density:

n~x!5
bmgN

~12exp~2bmgl !!N(
k51

N S N21

k21 D u~jk!

3u~ l 2jk!exp~2bmgjk!

3~12exp~2bmgjk!!k21~exp~2bmgjk!

32exp~2bmgl !!N2k, ~A1!

wherejk5 x̂2(k21)s, and x̂5x2(x01s). This equation
recovers the result for the number density found by L
et al.7 wheng goes to zero.

~2! Pair distribution function:

re
ld

v-
n-
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n~2!~x1 ,x2!5
~bmg!2N~N21!

~12exp~2bmgl !!N (
j 252

N

(
j 151

j 121
~N22!!

~N2 j 2!! ~ j 22 j 121!! ~ j 121!!
u~j j 1,1!u~j j 2,22j j 2,2!

3u~ l 2j j 2,2!exp~2bmgj j 1,1!~12exp~2bmgj j 1,1!! j 121exp~2bmgj j 2,2!~exp~2bmgj j 1,1!

2exp~2bmgj j 2,2!! j 22 j 121~exp~2bmgj j 1,1!2exp~2bmgl !!N2 j 2, ~A2!

wherej j ,k5xk2( j 21)s2(x01s).
~3! Pressure profile:

F~x!5kBTn~x!1kBT
bmgN~N21!

~12exp~2bmgl !!N (
k52

N S N22

k22 D u~jk21!u~ l 2jk!(
j 50

k22

(
j 850

N2k S k22

j D
3S N2k

j 8
D ~21!~k222 j !

~N2 j 2 j 8!
I k, j , j 8~jk21!~2exp~2bmgl !! j 8, ~A3!

where

I k, j , j 8~x!55
12exp~2bmg~N2 j 2 j 8!x!, xP@0,s#

exp~2bmg~N2 j 2 j 8!~x2s!!2exp~2bmg~N2 j 2 j 8!x!, xP@s,l #

exp~2bmg~N2 j 2 j 8!~x2s!!2exp~2bmg~N2 j 2 j 8!l !, xP@ l ,l 1s#

, ~A4!

andjk was introduced in equation~A1!.
~4! Number density and pressure profiles expanded to first order inL/sg :

n~x!5
N

l (
k50

N21
~N21!!

~N212k!!

~2s!k

l k
1

L

sg
S N

L (
k50

N21
~N21!!

~N212k!!

~2s!k

l k
~k11!F1

2
1

~N212k!

2l 2
~k12!S ks2

3
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s2

2 D 2
ks
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x
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k50

N21
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~N212k!!

~2s!k

l k
~k11!F ~N2~k11!!~k12!s

2l 2
2

1

l G D , ~A5!
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kBT
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L
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l k11 F2
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2
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1
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2 J 2
~k11!

2l
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1
~k11!

l
s2~N212k!G1

x
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k50

N21
N!

~N212k!!

~2s!k

l k11 F ~N212k!

2l 2
~k11!~k12!~L2~k12!s!s

2
~k11!
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~L1Ns22~k11!s!G D . ~A6!
1E. H. Lieb and D. C. Mattis, Editors,Mathematical Physics in One Di-
mension~Academic, New York, 1966!.

2J. L. Lebowitz, Editor,Simple Models of Equilibrium and Nonequilibrium
Phenomena~North Holland, Amsterdam, 1987!, pp. 5–158.

3E. W. Montroll and J. L. Lebowitz, Editors,The Liquid State of Matter:
Fluids, Simple and Complex~North-Holland, Amsterdam, 1982!, pp. 31–
140.

4Lord Rayleigh, Nature Lond.45, 80 ~1891!.
5L. Tonks, Phys. Rev.50, 955 ~1936!.
6Z. W. Salsburg, J. G. Kirkwood, and R. W. Zwanzig, J. Chem. Phys.21,
1098 ~1953!.

7H. A. Leff and M. J. Coopersmith, J. Math. Phys.8, 306 ~1967!.
J. Chem. Phys., Vol. 107,

Downloaded 27 Jan 2009 to 200.9.100.136. Redistribution subject to AIP
8A. Robledo and J. S. Rowlinson, Mol. Phys.58, 711 ~1986!.
9H. T. Davis, J. Chem. Phys.93, 4339~1990!.

10J. K. Percus, J. Stat. Phys.15, 505 ~1976!
11T. K. Vanderlick, L. E. Scriven, and H. T. Davis, Phys. Rev. A34, 5130

~1986!.
12J. K. Percus, J. Stat. Phys.28, 67 ~1982!.
13J. S. Rowlinson and B. Widom,Molecular Theory of Capillarity~Claren-

don, Oxford, 1982!.
14P. Schofield and J. R. Henderson, Proc. Roy. Soc. London Ser. A379, 231

~1982!.
15A. L. Fetter and J. D. Walecka,Theoretical Mechanics of Particles and

Continua~McGraw-Hill, New York, 1980!, Chap 9.
No. 14, 8 October 1997

 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


