
Numerical Methods for Natural Sciences IB Introduction

– 1 –

Numerical Methods
Natural Sciences Tripos 1B

Lecture Notes
Lent Term 1999

© Stuart Dalziel
Department of Applied Mathematics and Theoretical Physics

University of Cambridge

Phone: (01223) 337911
E-mail: s.dalziel@damtp.cam.ac.uk

WWW: http://www.damtp.cam.ac.uk/user/fdl/people/sd103/
Lecture Notes: http://www.damtp.cam.ac.uk/user/fdl/people/sd103/lectures/

Formatting and visibility in this version:

Subsections

Sub-subsections

Fourth order subsections
All versions

Full text

Common equations – complete equation given in handouts

Hidden equations – these were left incomplete in handouts

Full figures
Tables

Numerical Methods for Natural Sciences IB Introduction

– 2 –

CONTENTS

• Page numbers are correct only for the hand-out with which they are given

Formatting and visibility in this version: ... 1
Subsections ... 1

Sub-subsections... 1

1 Introduction.. 6
1.1 Objective... 6

1.2 Books .. 6
General: .. 6
More specialised:.. 6

1.3 Programming... 7

1.4 Tools ... 7
1.4.1 Software libraries .. 7
1.4.2 Maths systems .. 7

1.5 Course Credit .. 8

1.6 Versions .. 8
1.6.1 Notes disctributed during lectures... 8
1.6.2 Acrobat... 8
1.6.3 HTML... 8
1.6.4 Copyright ... 9

2 Key Idea .. 10

3 Root finding in one dimension .. 11
3.1 Why?... 11

3.2 Bisection ... 11
3.2.1 Convergence .. 12
3.2.2 Criteria... 12

3.3 Linear interpolation (regula falsi) ... 13

3.4 Newton-Raphson... 14
3.4.1 Convergence .. 15

3.5 Secant (chord) ... 16
3.5.1 Convergence .. 18

3.6 Direct iteration .. 19
3.6.1 Convergence .. 20

3.7 Examples... 21
3.7.1 Bisection method.. 21
3.7.2 Linear interpolation... 22
3.7.3 Newton-Raphson.. 22
3.7.4 Secant method .. 23
3.7.5 Direct iteration .. 23

Numerical Methods for Natural Sciences IB Introduction

– 3 –

3.7.6 Comparison.. 25
3.7.7 Fortran program* .. 26

4 Linear equations .. 29
4.1 Gauss elimination ... 29

4.2 Pivoting... 32
4.2.1 Partial pivoting .. 33
4.2.2 Full pivoting... 33

4.3 LU factorisation .. 34

4.4 Banded matrices.. 36

4.5 Tridiagonal matrices ... 36

4.6 Other approaches to solving linear systems.. 37

4.7 Over determined systems*... 38

4.8 Under determined systems*... 40

5 Numerical integration.. 41
5.1 Manual method ... 41

5.2 Constant rule ... 41

5.3 Trapezium rule.. 42

5.4 Mid-point rule ... 44

5.5 Simpson’s rule .. 47

5.6 Quadratic triangulation* .. 48

5.7 Romberg integration ... 49

5.8 Gauss quadrature... 50

5.9 Example of numerical integration... 51
5.9.1 Program for numerical integration* .. 54

6 First order ordinary differential equations ... 57
6.1 Taylor series.. 57

6.2 Finite difference.. 57

6.3 Truncation error .. 58

6.4 Euler method... 59

6.5 Implicit methods ... 60
6.5.1 Backward Euler ... 60
6.5.2 Richardson extrapolation .. 61
6.5.3 Crank-Nicholson.. 62

6.6 Multistep methods... 63

6.7 Stability ... 63

6.8 Predictor-corrector methods..65
6.8.1 Improved Euler method.. 66
6.8.2 Runge-Kutta methods... 66

7 Higher order ordinary differential equations ... 68
7.1 Initial value problems ... 68

7.2 Boundary value problems ... 68
7.2.1 Shooting method .. 68

Numerical Methods for Natural Sciences IB Introduction

– 4 –

7.2.2 Linear equations .. 69

7.3 Other considerations* .. 70
7.3.1 Truncation error*... 71
7.3.2 Error and step control* .. 71

8 Partial differential equations .. 72
8.1 Laplace equation ... 72

8.1.1 Direct solution ... 73
8.1.2 Relaxation .. 75
8.1.3 Multigrid*... 79
8.1.4 The mathematics of relaxation* ... 80
8.1.5 FFT* ... 84
8.1.6 Boundary elements* ... 84
8.1.7 Finite elements*.. 84

8.2 Poisson equation ... 84

8.3 Diffusion equation .. 84
8.3.1 Semi-discretisation... 84
8.3.2 Euler method.. 85
8.3.3 Stability .. 85
8.3.4 Model for general initial conditions .. 86
8.3.5 Crank-Nicholson.. 86
8.3.6 ADI* ... 87

8.4 Advection*... 87
8.4.1 Upwind differencing* ... 87
8.4.2 Courant number*.. 87
8.4.3 Numerical dispersion*.. 88
8.4.4 Shocks* ... 88
8.4.5 Lax-Wendroff* .. 88
8.4.6 Conservative schemes*... 88

9. Number representation* ... 89
9.1. Integers* ... 89

9.2. Floating point*.. 90

9.3. Rounding and truncation error*.. 91

9.4. Endians* ... 91

10. Computer languages*.. 93
10.1. Procedural verses Object Oriented* ... 93

10.2. Fortran 90* ... 93
10.2.1. Procedural oriented*... 94
10.2.2. Fortran enhancements*... 94

10.3. C++* ... 95
10.3.1. C* .. 95
10.3.2. Object Oriented* ... 95
10.3.3. Weaknesses* .. 96

10.4. Others*.. 97
10.4.1. Ada*... 97
10.4.2. Algol* .. 97

Numerical Methods for Natural Sciences IB Introduction

– 5 –

10.4.3. Basic* .. 97
10.4.4. Cobol* ... 98
10.4.5. Delphi* .. 98
10.4.6. Forth* .. 98
10.4.7. Lisp* .. 98
10.4.8. Modula-2* ... 98
10.4.9. Pascal* .. 98
10.4.10. PL/1* ... 99
10.4.11. PostScript* .. 99
10.4.12. Prolog* .. 99
10.4.13. Smalltalk* .. 99
10.4.14. Visual Basic* ... 99

Numerical Methods for Natural Sciences IB Introduction

– 6 –

1 Introduction

These lecture notes are written for the Numerical Methods course as part of the Natural Sciences
Tripos, Part IB. The notes are intended to compliment the material presented in the lectures rather
than replace them.

1.1 Objective
• To give an overview of what can be done

• To give insight into how it can be done

• To give the confidence to tackle numerical solutions

An understanding of how a method works aids in choosing a method. It can also provide an
indication of what can and will go wrong, and of the accuracy which may be obtained.

• To gain insight into the underlying physics

• “The aim of this course is to introduce numerical techniques that can be used on
computers, rather than to provide a detailed treatment of accuracy or stability” –
Lecture Schedule.

Unfortunately the course is now examinable and therefore the material must be presented in a
manner consistent with this.

1.2 Books

General:
• Numerical Recipes - The Art of Scientific Computing, by Press, Flannery, Teukolsky

& Vetterling (CUP)

• Numerical Methods that Work, by Acton (Harper & Row)

• Numerical Analysis, by Burden & Faires (PWS-Kent)

• Applied Numerical Analysis, by Gerald & Wheatley (Addison-Wesley)

• A Simple Introduction to Numerical Analysis, by Harding & Quinney (Institute of
Physics Publishing)

• Elementary Numerical Analysis, 3rd Edition, by Conte & de Boor (McGraw-Hill)

More specialised:
• Numerical Methods for Ordinary Differential Systems, by Lambert (Wiley)

• Numerical Solution of Partial Differential Equations: Finite Difference Methods, by
Smith (Oxford University Press)

For many people, Numerical Recipes is the bible for simple numerical techniques. It contains not
only detailed discussion of the algorithms and their use, but also sample source code for each.

Numerical Methods for Natural Sciences IB Introduction

– 7 –

Numerical Recipes is available for three tastes: Fortran, C and Pascal, with the source code
examples being taylored for each.

1.3 Programming

While a number of programming examples are given during the course, the course and
examination do not require any knowledge of programming. Numerical results are given to
illustrate a point and the code used to compute them presented in these notes purely for
completeness.

1.4 Tools

Unfortunately this course is too short to be able to provide an introduction to the various tools
available to assist with the solution of a wide range of mathematical problems. These tools are
widely available on nearly all computer platforms and fall into two general classes:

1.4.1 Software libraries

These are intended to be linked into your own computer program and provide routines for
solving particular classes of problems.

• NAG

• IMFL

• Numerical Recipes

The first two are commercial packages providing object libraries, while the final of these libraries
mirrors the content of the Numerical Recipes book and is available as source code.

1.4.2 Maths systems

These provide a shrink-wrapped solution to a broad class of mathematical problems. Typically
they have easy-to-use interfaces and provide graphical as well as text or numeric output. Key
features include algebraic analytical solution. There is fierce competition between the various
products available and, as a result, development continues at a rapid rate.

• Derive

• Maple

• Mathcad

• Mathematica

• Matlab

• Reduce

Numerical Methods for Natural Sciences IB Introduction

– 8 –

1.5 Course Credit

Prior to the 1995-1996 academic year, this course was not examinable. Since then, however,
there have been two examination questions each year. Some indication of the type of exam
questions may be gained from earlier tripos papers and from the later examples sheets. Note that
there has, unfortunately, been a tendency to concentrate on the more analysis side of the course in
the examination questions.

Some of the topics covered in these notes are not examinable. This situation is indicated by an
asterisk at the end of the section heading.

1.6 Versions

These lecture notes are available in three forms: the lecture notes distributed during lectures, and
the set available in two formats on the web.

1.6.1 Notes disctributed during lectures

The version distributed during lectures includes blanks for you to fill in the missing details. These
details will be given during the lectures themselves.

1.6.2 Acrobat

The lecture notes are also available over the web. This year’s notes will be provided in Acrobat
format (pdf) and may be found at
http://www.damtp.cam.ac.uk/user/fdl/people/sd103/lectures/

These notes contain all the information, and any blanks have been filled in.

1.6.3 HTML

In previous years these have been provided through an html format, and these notes remain
available, although may not contain the latest revisions. The HTML version of the notes also has all
the blanks filled in.

The HTML is generated from a source Word document that contains graphics, display equations
and inline equations and symbols. All graphics and complex display equations (where the Microsoft
Equation Editor has been used) are converted to GIF files for the HTML version. However, many of
the simpler equations and most of the inline equations and symbols do not use the Equation Editor
as this is very inefficient. As a consequence, they appear as characters rather than GIF files in the
HTML document. This has major advantages in terms of document size, but can cause problems
with older World Wide Web browsers.

Due to limitations in HTML and many older World Wide Web browsers, Greek and Symbols
used within the text and single line equations may not be displayed correctly. Similarly, some
browsers do not handle superscript and subscript. To avoid confusion when using older browsers,
all Greek and Symbols are formatted in Green. Thus if you find a green Roman character, read it as
the Greek equivalent. Table 1of the correspondences is given below. Variables and normal symbols

Numerical Methods for Natural Sciences IB Introduction

– 9 –

are treated in a similar way but are coloured dark Blue to distinguish them from the Greek. The
context and colour should distinguish them from HTML hypertext links. Similarly, subscripts are
shown in dark Cyan and superscripts in dark Magenta. Greek subscripts and superscripts are the
same Green as the normal characters, the context providing the key to whether it is a subscript or
superscript. For a similar reason, the use of some mathematical symbols (such as less than or equal
to) has been avoided and their Basic computer equivalent used in stead.

Fortunately many newer browsers (Microsoft Internet Explorer 3.0 and Netscape 3.0 on the PC,
but on many Unix platforms the Greek and Symbol characters are unavailable) do not have the same
character set limitations. The colour is still displayed, but the characters appear as intended.

Greek/Symbol character Name

α alpha

β beta

δ delta

∆ Delta

ε epsilon

ϕ phi

Φ Phi

λ lambda

µ mu

π pi

θ theta

σ sigma

ψ psi

Ψ Psi

<= less than or equal to

>= greater than or equal to

<> not equal to

=~ approximately equal to

vector vectors are represented as bold
Table 1: Correspondence between colour and characters.

1.6.4 Copyright

These notes may be duplicated freely for the purposes of education or research. Any such
reproductions, in whole or in part, should contain details of the author and this copyright notice.

Numerical Methods for Natural Sciences IB Introduction

– 10 –

2 Key Idea

The central idea behind the majority of methods discussed in this course is the Taylor Series
expansion of a function about a point. For a function of a single variable, we may represent the
expansion as

() () () () ()f x x f x xf x
x

f x
x

f x+ = + ′ + ′′ + ′′′ +δ δ
δ δ2 3

2 6
K. (1)

In two dimensions we have

() ()f x x y y f x y x
f

x
y

f

y

x f

x

y f

y
x y

f

x y
+ + = + + + + + +δ δ δ

∂
∂

δ
∂
∂

δ ∂
∂

δ ∂
∂

δ δ
∂
∂ ∂

, ,
2 2

2

2 2

2

2

2 2
K. (2)

Similar expansions may be constructed for functions with more independent variables.

Numerical Methods for Natural Sciences IB Introduction

– 11 –

3 Root finding in one dimension

3.1 Why?

Solutions x = x0 to equations of the form f(x) = 0 are often required where it is impossible or
infeasible to find an analytical expression for the vector x. If the scalar function f depends on m
independent variables x1,x2,…,xm, then the solution x0 will describe a surface in m–1 dimensional
space. Alternatively we may consider the vector function f(x)=0, the solutions of which typically
collapse to particular values of x. For this course we restrict our attention to a single independent
variable x and seek solutions to f(x)=0.

3.2 Bisection

This is the simplest method for finding a root to an equation and is also known as binary
chopping. As we shall see, it is also the most robust. One of the main drawbacks is that we need two
initial guesses xa and xb which bracket the root: let fa = f(xa) and fb = f(xb) such that fa fb <= 0. An
example of this is shown graphically in figure 1. Clearly, if fa fb = 0 then one or both of xa and xb

must be a root of f(x) = 0.

xa

xb

 fa

 fb

xc

fc

Figure 1: Graphical representation of the bisection method showing two initial guesses (xa and xb bracketting
the root).

The basic algorithm for the bisection method relies on repeated application of

• Let xc = (xa+xb)/2,

Numerical Methods for Natural Sciences IB Introduction

– 12 –

• if fc = f(c) = 0 then x = xc is an exact solution,

• elseif fa fc < 0 then the root lies in the interval (xa,xc),

• else the root lies in the interval (xc,xb).

By replacing the interval (xa,xb) with either (xa,xc) or (xc,xb) (whichever brackets the root), the error
in our estimate of the solution to f(x) = 0 is, on average, halved. We repeat this interval halving
until either the exact root has been found or the interval is smaller than some specified tolerance.

3.2.1 Convergence

Since the interval (xa,xb) always bracets the root, we know that the error in using either xa or xb as
an estimate for root at the nth iteration, en, must be

en < |xa - xb|. (3)

Now since the interval (xa,xb) is halved for each iteration, then

en+1 ~ en/2. (4)

More generally, if xn is the estimate for the root x* at the nth iteration, then the error in this
estimate is

εn = xn - x
*. (5)

In many cases we may express the error at the n+1th time step in terms of the error at the nth time
step as

|εn+1| ~ C|εn|
p. (6)

Indeed this criteria applies to all techniques discussed in this course, but in many cases it applies
only asymptotically as our estimate xn converges on the exact solution. The exponent p in equation
(6) gives the order of the convergence. The larger the value of p, the faster the scheme converges on
the solution, at least provided εn+1 < εn. For first order schemes (i.e. p = 1), |C| < 1 for convergence.

For the bisection method we may estimate εn as en. The form of equation (4) then suggests p = 1
and C = 1/2, showing the scheme is first order and converges linearly. Indeed convergence is
guaranteed - a root to f(x) = 0 will always be found - provided f(x) is continuous over the initial
interval.

3.2.2 Criteria

In general, a numerical root finding procedure will not find the exact root being sought (ε = 0),
rather it will find some suitably accurate approximation to it. In order to prevent the algorithm
continuing to refine the solution for ever, it is necessary to place some conditions under which the
solution process is to be finished or aborted. Typically this will take the form of an error tolerance
on en = |an–bn|, the value of fc, or both.

For some methods it is also important to ensure the algorithm is converging on a solution (i.e.
|εn+1| < |εn| for suitably large n), and that this convergence is sufficiently rapid to attain the solution
in a reasonable span of time. The guaranteed convergence of the bisection method does not require

Numerical Methods for Natural Sciences IB Introduction

– 13 –

such safety checks which, combined with its extreme simplicity, is one of the reasons for its
widespread use despite being relatively slow to converge.

3.3 Linear interpolation (regula falsi)

This method is similar to the bisection method in that it requires two initial guesses to bracket the
root. However, instead of simply dividing the region in two, a linear interpolation is used to obtain a
new point which is (hopefully, but not necessarily) closer to the root than the equivalent estimate for
the bisection method. A graphical interpretation of this method is shown in figure 2.

xa

xb

 fa

 fb

x1 x2

Figure 2: Root finding by the linear interpolation (regula falsi) method. The two initial gueses xa and xb must
bracket the root.

The basic algorithm for the linear interpolation method is

• Let x x
x x

f f
f x

x x

f f
f

x f x f

f fc a
b a

b a
a b

b a

b a
b

a b b a

b a

= −
−
−

= −
−
−

=
−
−

, then

• if fc = f(xc) = 0 then x = xc is an exact solution,

• elseif fa fc < 0 then the root lies in the interval (xa,xc),

Numerical Methods for Natural Sciences IB Introduction

– 14 –

• else the root lies in the interval (xc,xb).

Because the solution remains bracketed at each step, convergence is guaranteed as was the case for
the bisection method. The method is first order and is exact for linear f.

3.4 Newton-Raphson

Consider the Taylor Series expansion of f(x) about some point x = x0:

f(x) = f(x0) + (x–x0)f'(x0) + ½(x–x0)
2f"(x0) + O(|x–x0|

3). (7)

Setting the quadratic and higher terms to zero and solving the linear approximation of f(x) = 0 for x
gives

()
()x x

f x

f x
1 0

0

0

= −
’

. (8)

Subsequent iterations are defined in a similar manner as

()
()x x

f x

f x
n n

n

n
+ = −1 ’

. (9)

Geometrically, xn+1 can be interpreted as the value of x at which a line, passing through the point
(xn,f(xn)) and tangent to the curve f(x) at that point, crosses the y axis. Figure 3 provides a graphical
interpretation of this.

x0

 f0

x1

x2

Figure 3: Graphical interpretation of the Newton Raphson algorithm.

Numerical Methods for Natural Sciences IB Introduction

– 15 –

When it works, Newton-Raphson converges much more rapidly than the bisection or linear
interpolation. However, if f’ vanishes at an iteration point, or indeed even between the current
estimate and the root, then the method will fail to converge. A graphical interpretation of this is
given in figure 4.

x0

x1 x2

Figure 4: Divergence of the Newton Raphson algorithm due to the presence of a turning point close to the
root.

3.4.1 Convergence

To study how the Newton-Raphson scheme converges, expand f(x) around the root x = x*,

f(x) = f(x*) + (x– x*)f'(x*) + 1/2(x– x*)2f"(x*) + O(|x– x*|3) (10)

and substitute into the iteration formula. This then shows

Numerical Methods for Natural Sciences IB Introduction

– 16 –

()
()

() ()
() ()

() ()[] ()
()
()

()
()

()

ε

ε
ε ε

ε

ε ε ε ε

ε ε ε ε

n n

n
n

n

n
n n

n

n n n n

n n n n

x x

x x
f x

f x

f x f x

f x f x

f x f x
f x

f x

f x

f x

f x

f x

f x

+ += −

= − −
′

= −
′ + ′′ +
′ + ′′ +

= − ′ + ′′ +
′

−
′′
′

+










= − +
′′
′

−
′′
′

1 1

1
2

2

1
2

2

2 1
2

2

1
1

*

*

* * ...

* * ...

* * ...
*

*

*
...

*

*

*
() ()

()
() ()

*

*

*

+

=
′′
′

+

O

f x

f x
O

n

n n

ε

ε ε

3

1
2

2 3

(11)

since f(x*)=0. Thus, by comparison with (5), there is second order (quadratic) convergence. The
presence of the f’ term in the denominator shows that the scheme will not converge if f’ vanishes in
the neighbourhood of the root.

3.5 Secant (chord)

This method is essentially the same as Newton-Raphson except that the derivative f’ (x) is
approximated by a finite difference based on the current and the preceding estimate for the root, i.e.

() () ()
f x

f x f x

x xn
n n

n n

’ ≈
−
−

−

−

1

1

, (12)

and this is substituted into the Newton-Raphson algorithm (9) to give

()
() () ()x x

x x

f x f x
f xn n

n n

n n
n+

−

−

= −
−
−1

1

1

. (13)

This formula is identical to that for the Linear Interpolation method discussed in section 3.3. The
difference is that rather than replacing one of the two estimates so that the root is always bracketed,
the oldest point is always discarded in favour of the new. This means it is not necessary to have two
initial guesses bracketing the root, but on the other hand, convergence is not guaranteed. A graphical
representation of the method working is shown in figure 5 and failure to converge in figure 6. In
some cases, swapping the two initial guesses x0 and x1 will change the behaviour of the method
from convergent to divergent.

Numerical Methods for Natural Sciences IB Introduction

– 17 –

x1

x0

x2

x3

x4

Figure 5: Convergence on the root using the secant method.

x0 x1

x2x3

Figure 6: Divergence using the secant method.

Numerical Methods for Natural Sciences IB Introduction

– 18 –

3.5.1 Convergence

The order of convergence may be obtained in a similar way to the earlier methods. Expanding
around the root x = x* for xn and xn+1 gives

f(xn) = f(x*) + εnf'(x*) + 1/2εn
2f''(x*) + O(|εn|

3), (14a)

f(xn-1) = f(x*) + εn–1f’ (x*) + 1/2εn–1
2f’’ (x*) + O(|εn–1|

3), (14b)

and substituting into the iteration formula

()
() () ()

() ()
() () () ()[] ()

() ()

() ()

ε

ε
ε ε

ε ε ε ε
ε ε

ε
ε ε

ε ε

n n

n
n

n n
n n

n
n n

n n n n
n n

n
n n

n n

x x

x x
f x

f x f x
x x

f x f x

f x f x f x f x

f x f x

f x

+ +

−
−

− −
−

−

= −

= − −
−

−

= −
′ + ′′ +

′ + ′′ + − ′ + ′′ +
−

= −
′ + ′′ +

− ′

1 1

1
1

1
2

2

1
2

2
1

1
2 1

2 1

1
2

2

1

*

*

* * ...

* * ... * * ...

* * ...

* () ()
()

()

()
() () ()

()

() ()
()

()
() ()

()

1

1

1
2 1

1

1
2

2 1
2 1

1
2 1

1
2

2 3

1
2

+ +
′′

+










−

= − +
′′
′

+








 − +

′′
′

+










= − + +
′′
′

−
′′
′

+

=
′′

−

−

−

−

ε ε
ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

n n

n n

n n n n n

n n n n n n n

f x

f x

f x

f x

f x

f x

f x

f x

f x

f x
O

f x

*
’ *

...

*

*
...

*

*
...

*

*

*

*

*
() ()
′

+− −f x
On n n*

ε ε ε1 1
3 . (15)

Note that this expression for εn+1 includes both εn and εn–1. In general we would like it in terms of εn

only. The form of this expression suggests a power law relationship. By writing

()
()ε ε

β
α

n n

f x

f x+ =
′′
′







1 2

*

*
, (16)

and substituting into the error evolution equation (15) gives

()
()

()
()

()
()

()
()

ε ε ε

ε ε

ε

β α
α

β α α
α

n n n

n n

n

f x

f x

f x

f x

f x

f x

f x

f x

+ −

−

− +

=
′′
′









=
′′
′









′′
′









=
′′
′









1 1

1

1 1

2

2 2

2

*

*

*

*

*

*

*

*

(17)

which we equate with our assumed relationship to show

Numerical Methods for Natural Sciences IB Introduction

– 19 –

α
α

α

β
α

α α

=
+

=
+

=
+

= =
+

1 1 5

2

1

1 2

1 5

,

.

(18)

Thus the method is of non-integer order 1.61803… (the golden ratio). As with Newton-Raphson,
the method may diverge if f’ vanishes in the neighbourhood of the root.

3.6 Direct iteration

A simple and often useful method involves rearranging and possibly transforming the function
f(x) by T(f(x),x) to obtain g(x) = T(f(x),x). The only restriction on T(f(x),x) is that solutions to f(x) = 0
have a one to one relationship with solutions to g(x) = x for the roots being sort. Indeed, one reason
for choosing such a transformation for an equation with multiple roots is to eliminate known roots
and thus simplify the location of the remaining roots. The efficiency and convergence of this
method depends on the final form of g(x).

The iteration formula for this method is then just

xn+1 = g(xn). (19)

A graphical interpretion of this formula is given in figure 7.

x0x1

Figure 7: Convergence on a root using the Direct Iteration method.

Numerical Methods for Natural Sciences IB Introduction

– 20 –

3.6.1 Convergence

The convergence of this method may be determined in a similar manner to the other methods by
expanding about x*. Here we need to expand g(x) rather than f(x). This gives

g(xn) = g(x*) + εng’(x*) + 1/2εn
2g"(x*) + O(|εn|

3), (20)

so that the evolution of the error follows

()
() () ()

() () ()

ε

ε ε ε

ε ε ε

n n

n

n n n

n n n

x x

g x x

g x g x g x O x

g x g x O

+ += −

= −

= + ′ + ′′ + −

= ′ + ′′ +

1 1

1
2

2 3

1
2

2 2

*

*

(*) * * *

* *

. (21)

The method is clearly first order and will converge only if |g’| < 1. The sign of g’ determines whether
the convergence (or divergence) is monotonic (positive g') or oscillatory (negative g'). Figure 8
shows how the method will diverge if this restriction on g' is not satisfied. Here g’ < −1 so the
divergence is oscilatory.

Obviously our choice of T(f(x),x) should try to minimise g’(x) in the neighbourhood of the root to
maximise the rate of convergence. In addition, we should choose T(f(x),x) so that the curvature
|g"(x)| does not become too large.

If g’(x) < 0, then we get oscillatory convergence/divergence.

Numerical Methods for Natural Sciences IB Introduction

– 21 –

x0

Figure 8: The divergence of a Direct Iteration when g’ < −1.

3.7 Examples

Consider the equation

f(x) = cos x − 1/2. (22)

3.7.1 Bisection method
• Initial guesses x = 0 and x = π/2.
• Expect linear convergence: |εn+1| ~ |εn|/2.

Iteration Error en+1/en
0 -0.261799 -0.500001909862
1 0.130900 -0.4999984721161
2 -0.0654498 -0.5000015278886

Numerical Methods for Natural Sciences IB Introduction

– 22 –

3 0.0327250 -0.4999969442322
4 -0.0163624 -0.5000036669437
5 0.00818126 -0.4999951107776
6 -0.00409059 -0.5000110008581
7 0.00204534 -0.4999755541866
8 -0.00102262 -0.5000449824959
9 0.000511356 -0.4999139542706
10 -0.000255634 -0.5001721210794
11 0.000127861 -0.4996574405018
12 -0.0000638867 -0.5006848060707
13 0.0000319871 -0.4986322611303
14 -0.0000159498 -0.5027411002019
15 0.00000801862

3.7.2 Linear interpolation
• Initial guesses x = 0 and x = π/2.
• Expect linear convergence: |εn+1| ~ c|εn|.

Iteration Error en+1/en
0 -0.261799 0.1213205550823

1 -0.0317616 0.0963178807113
2 -0.00305921 0.09340810209172
3 -0.000285755 0.09312907910623
4 -0.0000266121 0.09310313729469
5 -0.00000247767 0.09310037252741
6 -0.000000230672 0.09310059304987
7 -0.0000000214757 0.09310010849472
8 -0.00000000199939 0.09310039562066
9 -0.000000000186144 0.09310104005501
10 -0.0000000000173302 0.09310567679542
11 -0.00000000000161354 0.09316100003719
12 -0.000000000000150319 0.09374663216227
13 -0.0000000000000140919 0.10000070962752
14 -0.0000000000000014092 0.1620777746239
15 -0.0000000000000002284

3.7.3 Newton-Raphson
• Initial guess: x = π/2.

• Note that can not use x = 0 as derivative vanishes here.

• Expect quadratic convergence: εn+1 ~ cεn
2.

Iteration Error en+1/en en+1/en
2

0 0.0235988 0.00653855280777 0.2770714107399
1 0.000154302 0.0000445311143083 0.2885971297087
2 0.00000000687124 0.000000014553 -
3 1.0E-15
4 Machine accuracy

Numerical Methods for Natural Sciences IB Introduction

– 23 –

3.7.4 Secant method
• Initial guesses x = 0 and x = π/2.

• Expect convergence: εn+1 ~ cεn
1.618.

Iteration Error en+1/en |en+1|/|en|1.618

0 -0.261799 0.1213205550823 0.2777
1 -0.0317616 -0.09730712558561 0.8203
2 0.00309063 -0.009399086917554 0.3344
3 -0.0000290491 0.0008898244696049 0.5664
4 -0.0000000258486 -0.000008384051747483 0.4098
5 0.000000000000216716
6 Machine accuracy

• Convergence substantially faster than linear interpolation.

3.7.5 Direct iteration

There are a variety of ways in which equation (22) may be rearranged into the form required for
direct iteration.

3.7.5.1 Addition of x

Use

xn+1 = g(x) = xn + cos x – 1/2 (23)

• Initial guess: x = 0 (also works with x = π/2)

• Expect convergence: εn+1 ~ g’(x*) εn ~ 0.13 εn.

Iteration Error en+1/en
0 -0.547198 0.30997006568
1 -0.169615 0.1804233116175
2 -0.0306025 0.1417596601585
3 -0.00433820 0.1350620072841
4 -0.000585926 0.1341210323488
5 -0.0000785850 0.1339937647134
6 -0.0000105299 0.1339775306508
7 -0.00000141077 0.1339750632633
8 -0.000000189008 0.1339747523914
9 -0.0000000253223 0.1339747969181
10 -0.00000000339255 0.1339744440023
11 -0.000000000454515 0.1339748963181
12 -0.0000000000608936 0.1339759843399
13 -0.00000000000815828 0.1339878013503
14 -0.00000000000109311 0.1340617138257
15 -0.0000000000001465442

Numerical Methods for Natural Sciences IB Introduction

– 24 –

3.7.5.2 Multiplcation by x

Use

xn+1 = g(x) = 2x cos x (24)

• Initial guess: x = π/2 (fails with x = 0 as this is a new solution to g(x)=x)

• Expect convergence: εn+1 ~ g’(x*) εn ~ 0.81 εn.

Iteration Error en+1/en
0 0.0635232 -0.9577980958138
1 -0.0608424 -0.6773664418235
2 0.0412126 -0.9070721090152
3 -0.0373828 -0.7297714456916
4 0.0272809 -0.8754733164962
5 -0.0238837 -0.7600455540808
6 0.0181527 -0.854809477378
7 -0.0155171 -0.778843985023
8 0.0120854 -0.8410892481838
9 -0.0101649 -0.7908921878228
10 0.00803934 -0.8319464035605
11 -0.00668830 -0.7987216482514
12 0.00534209 -0.8258546748557
13 -0.00441179 -0.8038528579103
14 0.00354643 -0.8218010788314
15 -0.00291446

3.7.5.3 Approximating f’(x)

The Direct Iteration method is closely related to the Newton Raphson method when a particular
choice of transformation T(f(x)) is made. Consider

f(x) = f(x) + (x–x)h(x) = 0. (25)

Rearranging equation (25) for one of the x variables and labelling the different variables for
different steps in the interation gives

xn+1 = g(xn) = xn – f(xn)/h(xn). (26)

Now if we choose h(x) such that g’(x)=0 everywhere (which requires h(x) = f'(x)), then we recover
the Newton-Raphson method with its quadratic convergence.

In some situations calculation of f'(x) may not be feasible. In such cases it may be necessary to
rely on the first order and secant methods which do not require a knowledge of f'(x). However, the
convergence of such methods is very slow. The Direct Iteration method, on the otherhand, provides
us with a framework for a faster method. To do this we select h(x) as an approximation to f’ (x). For
the present f(x) = cos x - 1/2 we may approximate f'(x) as

h(x) = 4x(x – π)/π2 (27)

• Initial guess: x = 0 (fails with x = π/2 as h(x) vanishes).

• Expect convergence: εn+1 ~ g’(x*) εn ~ 0.026 εn.

Numerical Methods for Natural Sciences IB Introduction

– 25 –

Iteration Error en+1/en
0 0.0235988 0.02985973863078
1 0.000704654 0.02585084310882
2 0.0000182159 0.02572477890195
3 0.000000468600 0.02572151088348
4 0.0000000120531 0.02572134969427
5 0.000000000310022 0.02572107785899
6 0.00000000000797410 0.02570835580191
7 0.000000000000205001 0.02521207213623
8 0.00000000000000516850
9 Machine accuracy

The convergence, while still formally linear, is significantly more rapid than with the other first
order methods. For a more complex example, the computational cost of having more iterations than
Newton Raphson may be significantly less than the cost of evaluating the derivative.

A further potential use of this approach is to avoid the divergence problems associated with f’(x)
vanishing in the Newton Raphson scheme. Since h(x) only approximates f’(x), and the accuracy of
this approximation is more important close to the root, it may be possible to choose h(x) in such a
way as to avoid a divergent scheme.

3.7.6 Comparison

Figure 9 shows graphicall a comparison between the different approaches to finding the roots of
equation (22). The clear winner is the Newton-Raphson scheme, with the approximated derivative
for the Direct Iteration proving a very good alternative.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0
1.0e-14

1.0e-13

1.0e-12

1.0e-11

1.0e-10

1.0e-9

1.0e-8

1.0e-7

1.0e-6

1.0e-5

1.0e-4

0.001

0.01

0.1

1.0

Interation (n)

R
el

at
iv

e
er

ro
r

(ε
n/

ε 0)

 Convergence for cos(x) = 1/2

 Scheme
 Bisection
 Linear interpolation
 Newton-Raphson
 Secant
 General iteration: xn+1 = xn + cosxn - 1/2
 General iteration: xn+1 = 2xncosxn
 General iteration: Approximating f’(x) with quadratic

Figure 9: Comparison of the convergence of the error in the estimate of the root to cos x = 1/2 for a range of
different root finding algorithms.

Numerical Methods for Natural Sciences IB Introduction

– 26 –

3.7.7 Fortran program*

The following program was used to generate the data presented for the above examples. Note
that this is included as an illustrative example. No knowledge of Fortran or any other programming
language is required in this course.

 PROGRAM Roots
 INTEGER*4 i,j
 REAL*8 x,xa,xb,xc,fa,fb,fc,pi,xStar,f,df
 REAL*8 Error(0:15,0:15)
 f(x)=cos(x)-0.5
 df(x) = -SIN(x)
 pi = 3.141592653
 xStar = ACOS(0.5)
 WRITE(6,*)’# ’,xStar,f(xStar)
C=====Bisection
 xa = 0
 fa = f(xa)
 xb = pi/2.0
 fb = f(xb)
 DO i=0,15
 xc = (xa + xb)/2.0
 fc = f(xc)
 IF (fa*fc .LT. 0.0) THEN
 xb = xc
 fb = fc
 ELSE
 xa = xc
 fa = fc
 ENDIF
 Error(0,i) = xc - xStar
 ENDDO
C=====Linear interpolation
 xa = 0
 fa = f(xa)
 xb = pi/2.0
 fb = f(xb)
 DO i=0,15
 xc = xa - (xb-xa)/(fb-fa)*fa
 fc = f(xc)
 IF (fa*fc .LT. 0.0) THEN
 xb = xc
 fb = fc
 ELSE
 xa = xc
 fa = fc
 ENDIF
 Error(1,i) = xc - xStar
 ENDDO
C=====Newton-Raphson

* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 27 –

 xa = pi/2.0
 DO i=0,15
 xa = xa - f(xa)/df(xa)
 Error(2,i) = xa - xStar
 ENDDO
C=====Secant
 xa = 0
 fa = f(xa)
 xb = pi/2.0
 fb = f(xb)
 DO i=0,15
 IF (fa .NE. fb) THEN
C If fa = fb then either method has converged (xa=xb)
C or will diverge from this point
 xc = xa - (xb-xa)/(fb-fa)*fa
 xa = xb
 fa = fb
 xb = xc
 fb = f(xb)
 ENDIF
 Error(3,i) = xc - xStar
 ENDDO
C=====Direct iteration using x + f(x) = x
 xa = 0.0
 DO i=0,15
 xa = xa + f(xa)
 Error(4,i) = xa - xStar
 ENDDO
C=====Direct iteration using xf(x)=0 rearranged for x
C-----Starting point prevents convergence
 xa = pi/2.0
 DO i=0,15
 xa = 2.0*xa*(f(x)-0.5)
 Error(5,i) = xa - xStar
 ENDDO
C=====Direct iteration using xf(x)=0 rearranged for x
 xa = pi/4.0
 DO i=0,15
 xa = 2.0*xa*COS(xa)
 Error(6,i) = xa - xStar
 ENDDO
C=====Direct iteration using 4x(x-pi)/pi/pi to approximate f’
 xa = pi/2.0
 DO i=0,15
 xa = xa - f(xa)*pi*pi/(4.0*xa*(xa-pi))
 Error(7,i) = xa - xStar
 ENDDO
C=====Output results
 DO i=0,15
 WRITE(6,100)i,(Error(j,i),j=0,7)
 ENDDO
100 FORMAT(1x,i4,8(1x,g12.6))
 END

Numerical Methods for Natural Sciences IB Introduction

– 28 –

Numerical Methods for Natural Sciences IB Introduction

– 29 –

4 Linear equations

Solving equation of the form Ax = r is central to many numerical algorithms. There are a number
of methods which may be used, some algebraically correct, while others iterative in nature and
providing only approximate solutions. Which is best will depend on the structure of A, the context
in which it is to be solved and the size compared with the available computer resources.

4.1 Gauss elimination

This is what you would probably do if you were computing the solution of a non-trivial system
by hand. For example, if

x y z

x y z

x y z

+ + =
+ + =
+ + =

2 3 6

2 2 3 7

4 4 9

, (28)

we might then subtract 2 times the first equation from the second equation, and subtract the first
equation from the third equation to get

x y z

x y z

x y z

+ + =
+ − + − = −
+ + =

2 3 6

0 2 3 5

0 2 3

. (29)

In the second step we might add the second equation to the third to obtain

x y z

x y z

x y z

+ + =
+ − + − = −
+ + − = −

2 3 6

0 2 3 5

0 0 2 2

. (30)

The third equation now involves only z giving z = 1. Substituting this back into the second equation
gives an equation for y and so-on. In particular we have

() ()
() ()

z

y z

x y z

= − − =
= − + − = − + − = − − =

= − − = − − = =

2 2 1

5 3 2 5 3 2 2 2 1

6 2 3 1 6 2 3 1 1 1 1

/

/ / /

/ / /

. (31)

We may write this system in terms of a matrix A, an unknown vector x and the known right-hand
side b as

Ax = b, (32)

and do exactly the same manipulations on the rows of the matrix A and right-hand side b. From the
system

Numerical Methods for Natural Sciences IB Introduction

– 30 –

1 2 3

2 2 3

1 4 4

6

7

9

































=
















x

y

z

, (33)

we subract 2 times the first row from the second row, and subtract the first row from the third row
to obtain

1 2 3

0 2 3

0 2 1

6

5

3

− −
































= −
















x

y

z

. (34)

Before adding the second and third rows, this time we will divide the second row through by −2, the
element on the diagonal, getting

1 2 3

0 1 3 2

0 2 1

6

5 2

3

/ /

































=
















x

y

z

. (35)

This may seem pointless in this example, but in general it simplifies the next step where we subtract
a32 times the second row from the third row. Here a32 = 2 and represents the value in the second
column of the third row of the matrix. Thus the next step is

() ()

1 2 3

0 1 3 2

0 2 2 1 2 3 2

6

5 2

3 2 5 2

/

/

/

/− −

































=
−

















x

y

z

, (36)

⇒
1 2 3

0 1 3 2

0 0 2

6

5 2

2

/ /

−

































=
−

















x

y

z

. (37)

We again divide the resulting row (now the third row) by the element on the diagonal (a33 = −2) to
obtain

1 2 3

0 1 3 2

0 0 1

6

5 2

1

/ /

































=
















x

y

z

, (38)

and retrieve immediately the value z = 1 from the last row of the equation. Substituting back we get

()
1 2 3

0 1 0

0 0 1

6

5 2 3 2

1

6

1

1

































= −
















=
















x

y

z

z/ / , (39)

and finally we recover the answer

Numerical Methods for Natural Sciences IB Introduction

– 31 –

1 0 0

0 1 0

0 0 1

6 2 3

1

1

1

1

1

































=
















=
− −















=
















x

y

z

x

y

z

y z

. (40)

In general, for the system

a x a x a x a x r

a x a x a x a x r

a x a x a x a x r

a x a x a x a x r

n n

n n

n n

n n n nn n n

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

1 1 2 2 3 3

+ + + + =
+ + + + =
+ + + + =

+ + + + =

K

K

K

M

K

, (41)

we first divide the first row by a11 and then subtract a21 times the new first row from the second
row, a31 times the new first row from the third row … and an1 times the new first row from the nth
row. This gives

() () ()
() () ()

() () ()

1

0

0

0

12 11 13 11 1 11

22 21 11 12 23 21 11 13 2 21 11 1

32 31 11 12 33 31 11 13 3 31 11 1

2 1 11 12 3 1 11 13 1 11 1

1

2

3

a a a a a a

a a a a a a a a a a a a

a a a a a a a a a a a a

a a a a a a a a a a a a

x

x

x

x

n

n n

n n

n n n n nn n n n

K

M M

− − −
− − −

− − −













































()
()

()

=

−
−

−























r a

r a a r

r a a r

r a a rn n

1 11

2 21 11 1

3 31 11 1

1 11 1

M

. (42)

By repeating this process for rows 3 to n, this time using the new contents of element 2,2, we
gradually replace the region below the leading diagonal with zeros. Once we have

1

0 1

0 1

0 0 0 1

12 13 1

23 2

3

1

2

3

1

2

3

$ $ $

$ $

$

$

$

$

$

a a a

a a

a

x

x

x

x

r

r

r

r

n

n

n

n n

K

M

K

M M













































=























(43)

the final solution may be obtained by back substitution.

x r

x r a x

x r a x a x

x r a x a x a x

n n

n n n n n

n n n n n n n n

n n

=
= −
= − −

= − − − −

− − −

− − − − − −

$,

$ $,

$ $ $,

$ $ $ $.

,

, ,

, , ,

1 1 1

2 2 2 1 1 2

1 1 1 2 2 1 3 3 1

M

L

(44)

If the arithmetic is exact, and the matrix A is not singular, then the answer computed in this
manner will be exact (provided no zeros appear on the diagonal - see below). However, as computer
arithmetic is not exact, there will be some truncation and rounding error in the answer. The
cumulative effect of this error may be very significant if the loss of precision is at an early stage in
the computation. In particular, if a numerically small number appears on the diagonal of the row,
then its use in the elimination of subsequent rows may lead to differences being computed between

Numerical Methods for Natural Sciences IB Introduction

– 32 –

very large and very small values with a consequential loss of precision. For example, if a22–
(a21/a11)a12 were very small, 10–6, say, and both a23–(a21/a11)a13 and a33–(a31/a11)a13 were 1, say,
then at the next stage of the computation the 3,3 element would involve calculating the difference
between 1/10–6=106 and 1. If single precision arithmetic (representing real values using
approximately six significant digits) were being used, the result would be simply 1.0 and subsequent
calculations would be unaware of the contribution of a23 to the solution. A more extreme case which
may often occur is if, for example, a22–(a21/a11)a12 is zero – unless something is done it will not be
possible to proceed with the computation!

A zero value occuring on the leading diagonal does not mean the matrix is singular. Consider, for
example, the system

0 3 0

2 0 0

0 0 1

3

2

1

1

2

3

































=
















x

x

x

, (45)

the solution of which is obviously x1 = x2 = x3 = 1. However, if we were to apply the Gauss
Elimination outlined above, we would need to divide through by a11 = 0. Clearly this leads to
difficulties!

4.2 Pivoting

One of the ways around this problem is to ensure that small values (especially zeros) do not
appear on the diagonal and, if they do, to remove them by rearranging the matrix and vectors. In the
example given in (45) we could simply interchange rows one and two to produce

2 0 0

0 3 0

0 0 1

2

3

1

1

2

3

































=
















x

x

x

, (46)

or columns one and two to give

3 0 0

0 2 0

0 0 1

3

2

1

2

1

3

































=
















x

x

x

, (47)

either of which may then be solved using standard Guass Elimination.

More generally, suppose at some stage during a calculation we have

Numerical Methods for Natural Sciences IB Introduction

– 33 –

1 4 1 8 3 2 5

0 10 1 10 201 13 4

0 9 4 6 8 2 18

0 3 2 3 4 6003 15

0 15 1 9 33 2 1

0 155 23 4 25 73 2

0 8 56 4 4 4 88

6
1

2

3

4

5

6

1

2

3

4

5

6

K

M

K

M M

−

−
−

−
−

−































































=






x

x

x

x

x

x

x

r

r

r

r

r

r

rn n

$

$

$

$

$

$

$


























(48)

where the element 2,5 (201) is numerically the largest value in the second row and the element 6,2
(155) the numerically largest value in the second column. As discussed above, the very small 10–6

value for element 2,2 is likely to cause problems. (In an extreme case we might even have the value
0 appearing on the diagonal – clearly something must be done to avoid a divide by zero error
occurring!) To remove this problem we may again rearrange the rows and/or columns to bring a
larger value into the 2,2 element.

4.2.1 Partial pivoting

In partial or column pivoting, we rearrange the rows of the matrix and the right-hand side to
bring the numerically largest value in the column onto the diagonal. For our example matrix the
largest value is in element 6,2 and so we simply swap rows 2 and 6 to give

1 4 1 8 3 2 5

0 155 23 4 25 73 2

0 9 4 6 8 2 18

0 3 2 3 4 6003 15

0 15 1 9 33 2 1

0 10 1 10 201 13 4

0 8 56 4 4 4 88

6

1

2

3

4

5

6

1

6

3

4

5

2

K

M

K

M M

−
−

−
−

−































































=







−

x

x

x

x

x

x

x

r

r

r

r

r

r

rn n

$

$

$

$

$

$

$


























. (49)

Note that our variables remain in the same order which simplifies the implementation of this
procedure. The right-hand side vector, however, has been rearranged. Partial pivoting may be
implemented for every step of the solution process, or only when the diagonal values are sufficiently
small as to potentially cause a problem. Pivoting for every step will lead to smaller errors being
introduced through numerical inaccuracies, but the continual reordering will slow down the
calculation.

4.2.2 Full pivoting

The philosophy behind full pivoting is much the same as that behind partial pivoting. The main
difference is that the numerically largest value in the column or row containing the value to be
replaced. In our example above element the magnitude of element 2,5 (201) is the greatest in either

Numerical Methods for Natural Sciences IB Introduction

– 34 –

row 2 or column 2 so we shall rearrange the columns to bring this element onto the diagonal. This
will also entail a rearrangement of the solution vector x. The rearranged system becomes

1 3 1 8 3 2 5

0 201 1 10 10 13 4

0 8 4 6 9 2 18

0 4 2 3 3 6003 15

0 33 1 9 15 2 1

0 25 23 4 155 73 2

0 4 56 4 8 4 88

6
1

5

3

4

2

6

1

2

3

4

5

6

K

M

K

M M

−

−
−

−
−

−































































=






x

x

x

x

x

x

x

b

b

b

b

b

b

bn n

$

$

$

$

$

$

$


























. (50)

The ultimate degree of accuracy can be provided by rearranging both rows and columns so that
the numerically largest value in the submatrix not yet processed is brought onto the diagonal. In our
example above, the largest value is 6003 occurring at position 4,6 in the matrix. We may bring this
onto the diagonal for the next step by interchanging columns one and six and rows two and four.
The order in which we do this is unimportant. The final result is

1 4 1 8 3 2 5

0 6003 2 3 4 3 4

0 2 4 6 8 9 18

0 13 1 10 201 10 15

0 2 1 9 33 15 1

0 73 23 4 25 155 2

0 4 56 4 4 8 88

6

1

6

3

4

5

2

1

4

3

2

5

6

K

M

K

M M

−
−

−
−

−































































=







−

x

x

x

x

x

x

x

r

r

r

r

r

r

rn n

$

$

$

$

$

$

$


























. (51)

Again this process may be undertaken for every step, or only when the value on the diagonal is
considered too small relative to the other values in the matrix.

If it is not possible to rearrange the columns or rows to remove a zero from the diagonal, then the
matrix A is singular and no solution exists.

4.3 LU factorisation

A frequently used form of Gauss Elimination is LU Factorisation also known as LU
Decomposition or Crout Factorisation. The basic idea is to find two matrices L and U such that

LU = A, (52)

Numerical Methods for Natural Sciences IB Introduction

– 35 –

where L is a lower triangular matrix (zero above the leading diagonal) and U is an upper triangular
matrix (zero below the diagonal). Note that this decomposition is underspecified in that we may
choose the relative scale of the two matrices arbitrarily. By convention, the L matrix is scaled to
have a leading diagonal of unit values. Once we have computed L and U we need solve only

Ly = b, (53)

then

Ux = y, (54)

a procedure requiring O(n2) operations compared with O(n3) operations for the full Gauss
elimination. While the factorisation process requires O(n3) operations, this need be done only once
whereas we may wish to solve Ax=b for with whole range of b.

Since we have decided the diagonal elements lii in the lower triangular matrix will always be
unity, it is not necessary for us to store these elements and so the matrices L and U can be stored
together in an array the same size as that used for A. Indeed, in most implementations the
factorisation will simply overwrite A.

The basic decomposition algorithm for overwriting A with L and U may be expressed as
Factorisation
FOR i=1 TO n
 FOR p=i TO n

 a a a api pi pk ki
k

i

= −
=

−

∑
1

1

 NEXT p
 FOR q=i+1 TO n

 a
a a a

aiq

iq ik kq
k

i

ii

=
−

=

−

∑
1

1

 NEXT q
NEXT i
Forward Substitution
FOR i=1 TO n
 FOR q=n+1 TO n+m

 a
a a a

aiq

iq ik kq
k

i

ii

=
−

=

−

∑
1

1

 NEXT q
NEXT i
Back Substitution
FOR i=n– 1 TO 1
 FOR q=n+1 TO n+m

 a a a aiq iq ik kq
k i

n

= −
= +
∑

1

 NEXT q
NEXT i

This algorithm assumes the right-hand side(s) are initially stored in the same array structure as the
matrix and are positioned in the column(s) n+1 (to n+m for m right-hand sides). To improve the

Numerical Methods for Natural Sciences IB Introduction

– 36 –

efficiency of the computation for right-hand sides known in advance, the forward substitution loop
may be incorporated into the factorisation loop.

Figure 10 indicates how the LU Factorisation process works. We want to find vectors li
T and uj

such that aij = li
Tuj. When we are at the stage of calculating the ith element of uj, we will already

have the i nonzero elements of li
T and the first i−1 elements of uj. The ith element of uj may

therefore be chosen simply as uj(i) = aij− li
Tujwhere the dot-product is calculated assuming uj(i) is

zero.

 li
T

 uj
 aij

Figure 10: Diagramatic representation of how LU factorisation works for calculating uij to replace aij where
i < j. The white areas represent zeros in the L and U matrices.

As with normal Gauss Elimination, the potential occurrence of small or zero values on the
diagonal can cause computational difficulties. The solution is again pivoting – partial pivoting is
normally all that is required. However, if the matrix is to be used in its factorised form, it will be
essential to record the pivoting which has taken place. This may be achieved by simply recording
the row interchanges for each i in the above algorithm and using the same row interchanges on the
right-hand side when using L in subsequent forward substitutions.

4.4 Banded matrices

The LU Factorisation may readily be modified to account for banded structure such that the only
non-zero elements fall within some distance of the leading diagonal. For example, if elements
outside the range ai,i–b to ai,i+b are all zero, then the summations in the LU Factorisation algorithm
need be performed only from k=i or k=i+1 to k=i+b. Moreover, the factorisation loop FOR q=i+1
TO n can terminate at i+b instead of n.

One problem with such banded structures can occur if a (near) zero turns up on the diagonal
during the factorisation. Care must then be taken in any pivoting to try to maintain the banded
structure. This may require, for example, pivoting on both the rows and columns as described in
section 4.2.2.

Making use of the banded structure of a matrix can save substantially on the execution time and,
if the matrix is stored intelligently, on the storage requirements. Software libraries such as NAG and
IMSL provide a range of routines for solving such banded linear systems in a computationally and
storage efficient manner.

4.5 Tridiagonal matrices

A tridiagonal matrix is a special form of banded matrix where all the elements are zero except for
those on and immediately above and below the leading diagonal (b=1). It is sometimes possible to

Numerical Methods for Natural Sciences IB Introduction

– 37 –

rearrange the rows and columns of a matrix which does not initially have this structure in order to
gain this structure and hence greatly simplify the solution process. As we shall see later in sections 6
to 8, tridiagonal matrices frequently occur in numerical solution of differential equations.

A tridiagonal system may be written as

b c

a b c

a b c

a b c

a b

b c

a b c

a b c

a b

n n

n n n

n n n

n n

1 1

2 2 2

3 3 3

4 4 4

5 5

3 3

2 2 2

1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

L

L

L

L

L

M M M M M O M M M M

L

L

L

L

− −

− − −

− − −











































































=





































−

−

−

−

−

−

x

x

x

x

x

x

x

x

x

r

r

r

r

r

r

r

r

r

n

n

n

n

n

n

n

n

1

2

3

4

5

3

2

1

1

2

3

4

5

3

2

1

M M
(55)

or

aixi–1 + bixi + cixi+ 1 = ri (56)

for i=1,…,n. Clearly x–1 and xn+1 are not required and we set a1=cn=0 to reflect this.

If solved by standard Gauss elimination, then we start by dividing the first equation by b0 before
subtracting a2 times this from the second equation to eliminate a2. We then divide the new second
equation by the new value in place of b2, before subtracting a3 times this equation from the third,
and so on.

Solution, by analogy with the LU Factorisation, may be expressed as
Factorisation
FOR i=1 TO n
 bi = bi – a ic i– 1

 ci = ci /bi

NEXT i
Forward Substitution
FOR i=1 TO n
 ri = (ri – a ir i– 1)/bi

NEXT i
Back Substitution
FOR i=n– 1 TO 1
 r i = r i – c ir i+1

NEXT i

4.6 Other approaches to solving linear systems

There are a number of other methods for solving general linear systems of equations including
approximate iterative techniques. Many large matrices which need to be solved in practical
situations have very special structures which allow solution - either exact or approximate - much
faster than the general O(n3) solvers presented here. We shall return to this topic in section 8.1

Numerical Methods for Natural Sciences IB Introduction

– 38 –

where we shall discuss a system with a special structure resulting from the numerical solution of the
Laplace equation.

4.7 Over determined systems*

If the matrix A contains m rows and n columns, with m > n, the system is probably over-
determined (unless there are m–n redundant rows). Such a system may be the result from fitting a
model with unknown coefficients to experimental data or observations. For example, fitting data
points si,r i (i = 0,n−1) with the model a + bs + cs2 + des = r leads to the linear system

1

1

1

1

1

1

1

0 0
2

1 1
2

2 2
2

3 3
2

4 4
2

5 5
2

1 1
2

0

1

2

3

4

5

1

0

1

2

3

4

5

1

s s e

s s e

s s e

s s e

s s e

s s e

s s e

a

b

c

d

r

r

r

r

r

r

r

s

s

s

s

s

s

n n
s

n
n

M M M M M

− − −
−



















































=































. (57)

which is of the form Ax = r, where xT = (a,b,c,d) While the solution to Ax = r will not exist in an

algebraic sense, it can be valuable to determine the solution in an approximate sense. The error in

this approximate solution is then

e = Ax – r. (58)

The approximate solution is chosen by optimising this error in some manner. Most useful among
the classes of solution is the Least Squares solution. In this solution we minimise the residual sum
of squares, which is simply

rss = eTe. (59)

Substituting for e we obtain

rss = [xTAT − rT][Ax − r]

= xTATAx − 2xTATr + rTr, (60)

and setting ∂ ∂rss x to zero gives

∂
∂
rss

x
x r= − =2 2 0A A AT T . (61)

Thus, if we solve the n by n problem ATAx = ATr, the solution vector x will give us the solution in a
least squares sense.

* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 39 –

Warning: The matrix ATA is often poorly conditioned (nearly singular) and can lead to
significant errors in the resulting Least Squares solution due to rounding error. While these errors
may be reduced using pivoting in combination with Gauss Elimination, it is generally better to solve
the Least Squares problem using the Householder transformation, as this produces less rounding
error, or better still by Singular Value Decomposition which will highlight any redundant or nearly
redundant variables in x.

The Householder transformation avoids the poorly conditioned nature of ATA by solving the
problem directly without evaluating this matrix. Suppose Q is an orthogonal matrix such that

QTQ = I, (62)

where I is the identity matrix and Q is chosen to transform A into

QA
R

0
=









 , (63)

where R is a square matrix of a size n and 0 is a zero matrix of size m-n by n. The right-hand side of
the system QAx = Qr becomes

Qr =
b

c






 , (64)

where b is a vector of size n and c is a vector of size m-n.

Now the turning point (global minimum) in the residual sum of squares, (61), this occurs when

[]
[]
[] [][]

[] []
[]

∂
∂
rss

x
x r

x r

x r

x r

x b

= −

= −

= −

= −

= −

2

2

2

2

2

A A A

A Q QA A Q Q

QA QA QA Q

QA QA Q

R R

T T

T T T T

T T

T

T

(65)

vanishes. For a non-trivial solution, that occurs when

Rx = b. (66)

This system may be solved to obtain the least squares solution x using any of the normal linear
solvers discussed above.

Further discussion of these methods is beyond the scope of this course.

Numerical Methods for Natural Sciences IB Introduction

– 40 –

4.8 Under determined systems*

If the matrix A contains m rows and n columns, with m < n, the system is under determined. The
solution maps out a n–m dimensional subregion in n dimensional space. Solution of such systems
typically requires some form of optimisation in order to further constrain the solution vector.

Linear programming represents one method for solving such systems. In Linear Programming,
the solution is optimised such that the objective function z=cTx is minimised. The “Linear” indicates
that the underdetermined system of equations is linear and the objective function is linear in the
solution variable x. The “Programming” arose to enhance the chances of obtaining funding for
research into this area when it was developing in the 1960s.

* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 41 –

5 Numerical integration

There are two main reasons for you to need to do numerical integration: analytical integration
may be impossible or infeasible, or you may wish to integrate tabulated data rather than known
functions. In this section we outline the main approaches to numerical integration. Which is
preferable depends in part on the results required, and in part on the function or data to be
integrated.

5.1 Manual method

If you were to perform the integration by hand, one approach is to superimpose a grid on a graph
of the function to be integrated, and simply count the squares, counting only those covered by 50%
or more of the function. Provided the grid is sufficiently fine, a reasonably accurate estimate may be
obtained. Figure 11 demonstrates how this may be achieved.

x1x0

Figure 11: Manual method for determining integral by superimposing a grid on a graph of the integrand. The
boxes indicated in grey are counted.

5.2 Constant rule

Perhaps the simplest form of numerical integration is to assume the function f(x) is constant over the
interval being integrated. Such a scheme is illustrated in figure 12. Clearly this is not going to be a
very accurate method of integrating, and indeed leads to an ambiguous result, depending on whether
the constant is selected from the lower or the upper limit of the integral.

Numerical Methods for Natural Sciences IB Introduction

– 42 –

x1=x0+∆xx0

Figure 12: Integration by constant rule whereby the value of f(x) is assumed constant over the interval.

Integration of a Taylor Series expansion of f(x) shows the error in this approximation to be

() () ()() ()()

() () ()
() ()

f x x f x f x x x f x x x x

f x x f x x f x x

f x x O x

x

x x

x

x x

d d
0 0

0 0 0
1
2 0 0

2

0
1
2 0

2 1
6 0

3

0
2

+ +

∫ ∫= + ′ − + ′′ − +

= + ′ + ′′ +

= +

∆ ∆

∆ ∆ ∆

∆ ∆

K

K

,

(67)

if the constant is taken from the lower limit, or f(x0+∆x)∆x if taken from the upper limit. In both
cases the error is O(∆x2), with the coefficient being derived from f’(x).

Clearly we can do much better than this, and as a result this rule is not used in practice, although
a knowledge of it helps with understanding the solution of ordinary differential equations (see §6).

5.3 Trapezium rule

Consider the Taylor Series expansion integrated from x0 to x0+∆x:

() () ()() ()()

() () ()
() () () ()() ()[]
() ()() ()

f x x f x f x x x f x x x x

f x x f x x f x x

f x f x f x x f x x f x x x

f x f x x x O x

x

x x

x

x x

d d
0 0

0 0 0
1
2 0 0

2

0
1
2 0

2 1
6 0

3

1
2 0

1
2 0 0

1
2 0

2 1
12 0

2

1
2 0 0

3

+ +

∫ ∫= + ′ − + ′′ − +

= + ′ + ′′ +

= + + ′ + ′′ + − ′′ +

= + + +

∆ ∆

∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆

K

K

K K

. (68)

Numerical Methods for Natural Sciences IB Introduction

– 43 –

The approximation represented by 1/2[f(x0) + f(x0+∆x)]∆x is called the Trapezium Rule based on its
geometric interpretation as shown in figure 13.

x1=x0+∆xx0

Figure 13: Graphical interpretation of the trapezium rule.

As we can see from equation (68), the error in the Trapezium Rule is proportional to ∆x3. Thus, if
we were to halve ∆x, the error would be decreased by a factor of eight. However, the size of the
domain would be halved, thus requiring the Trapezium Rule to be evaluated twice and the
contributions summed. The net result is the error decreasing by a factor of four rather than eight.
The Trapezium Rule used in this manner is sometimes termed the Compound Trapezium Rule, but
more often simply the Trapezium Rule. In general it consists of the sum of integrations over a
smaller distance ∆x to obtain a smaller error.

Suppose we need to integrate from x0 to x1. We shall subdivide this interval into n steps of size
∆x=(x1–x0)/n as shown in figure 14.

Numerical Methods for Natural Sciences IB Introduction

– 44 –

x1=x0+n∆xx0

Figure 14: Compound Trapezium Rule.

The Compound Trapezium Rule approximation to the integral is therefore

() ()
()

() ()()

() () () ()() ()[]

f x x f x x

x
f x i x f x i x

x
f x f x x f x x f x n x f x

x

x

x i x

x i x

i

n

i

n

d d
0

1

0

0 1

0

1

0 0
0

1

0 0 0 0 1

2
1

2
2 2 2 2 1

∫ ∫∑

∑

=

≈ + + + +

= + + + + + + + − +

+

+ +

=

−

=

−

∆

∆

∆
∆ ∆

∆
∆ ∆ ∆K

. (69)

While the error for each step is O(∆x3), the cumulative error is n times this or O(∆x2) ~ O(n-2).

The above analysis assumes ∆x is constant over the interval being integrated. This is not
necessary and an extension to this procedure to utilise a smaller step size ∆xi in regions of high
curvature would reduce the total error in the calculation, although it would remain O(∆x2). We
would choose to reduce ∆x in the regions of high curvature as we can see from equation (68) that
the leading order truncation error is scaled by f".

5.4 Mid-point rule

A variant on the Trapezium Rule is obtained by integrating the Taylor Series from x0−∆x/2 to
x0+∆x/2:

Numerical Methods for Natural Sciences IB Introduction

– 45 –

() () ()() ()()

() ()

f x x f x f x x x f x x x x

f x x f x x

x x

x x

x x

x x

d d
0

1
2

0
1

2

0
1

2

0
1

2

0 0 0
1
2 0 0

2

0
1

24 0
3

−

+

−

+

∫ ∫= + ′ − + ′′ − +

= + ′′ +

∆

∆

∆

∆

∆ ∆

K

K

. (70)

By evaluating the function f(x) at the midpoint of each interval the error may be slightly reduced
relative to the Trapezium rule (the coefficient in front of the curvature term is 1/24 for the Mid-
point Rule compared with 1/12 for the Trapezium Rule) but the method remains of the same order.
Figure 15 provides a graphical interpretation of this approach.

x0 + ½∆xx0 − ½∆x

Figure 15: Graphical interpretation of the midpoint rule. The grey region defines the midpoint rule as a
rectangular approximation with the dashed lines showing alternative trapeziodal aproximations containing
the same area.

Again we may reduce the error when integrating the interval x0 to x1 by subdividing it into n
smaller steps. This Compound Mid-point Rule is then

() ()()f x x x f x i x
x

x

i

n

d
0

1

0
1

2
0

1

∫ ∑≈ + +
=

−

∆ ∆ , (71)

with the graphical interpretation shown in figure 16. The difference between the Trapezium Rule
and Mid-point Rule is greatly diminished in their compound forms. Comparison of equations (69)
and (71) show the only difference is in the phase relationship between the points used and the
domain, plus how the first and last intervals are calculated.

Numerical Methods for Natural Sciences IB Introduction

– 46 –

x1=x0+n∆xx0

Figure 16: Compound Mid-point Rule.

There are two further advantages of the Mid-point Rule over the Trapezium Rule. The first is that
is requires one fewer function evaluations for a given number of subintervals, and the second that it
can be used more effectively for determining the integral near an integrable singularity. The reasons
for this are clear from figure 17.

Numerical Methods for Natural Sciences IB Introduction

– 47 –

Figure 17: Applying the Midpoint Rule where the singular integrand would cause the Trapezium Rule to
fail.

5.5 Simpson’s rule

An alternative approach to decreasing the step size ∆x for the integration is to increase the
accuracy of the functions used to approximate the integrand. Figure 18 sketches one possibility,
using a quadratic approximation to f(x).

Figure 18: Quadratic approximation to integrand is the basis of Simpson’s Rule.

Integrating the Taylor series over an interval 2∆x shows

Numerical Methods for Natural Sciences IB Introduction

– 48 –

() () () () () ()f x x f x x f x x f x x f x x f x x
x

x x
ivd

0

2

0 0
2 4

3 0
3 2

3 0
4 4

15 0
52 2

+

∫ = + ′ + ′′ + ′′′ +
∆

∆ ∆ ∆ ∆ ∆ K (72)

()[
() () () () ()()

() () () () ()()
()]

() () ()() ()

=

+ + ′ + ′′ + ′′′ + +

+ + ′ + ′′ + ′′′ + +

−

= + + + + +

∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆

∆
∆ ∆ ∆

x
f x

f x f x x f x x f x x f x x

f x f x x f x x f x x f x x

f x x

x
f x f x x f x x O x

iv

iv

iv

3

4

2 2

3
4 2

0

0 0
1
2 0

2 1
6 0

3 1
24 0

4

0 0 0
2 4

3 0
3 2

3 0
4

17
30 0

4

0 0 0
5

K

K

K

Whereas the error in the Trapezium rule was O(∆x3), Simpson’s rule is two orders more accurate at
O(∆x5), giving exact integration of cubics.

To improve the accuracy when integrating over larger intervals, the interval x0 to x1 may again be
subdivided into n steps. The three-point evaluation for each subinterval requires that there are an
even number of subintervals. Hence we must be able to express the number of intervals as n=2m.
The Compound Simpson’s rule is then

() () ()() ()()

() () () ()() ()[]

f x x
x

f x i x f x i x f x i x

x
f x f x x f x x f x n x f x

x

x

i

m

d
0

1

3
2 4 2 1 2 2

3
4 2 2 4 1

0 0 0
0

1

0 0 0 0 1

∫ ∑≈ + + + + + + +

= + + + + + + + − +

=

−∆
∆ ∆ ∆

∆
∆ ∆ ∆K

, (73)

and the corresponding error O(n∆x5) or O(∆x4).

5.6 Quadratic triangulation*

Simpson’s Rule may be employed in a manual way to determine the integral with nothing more
than a ruler. The approach is to cover the domain to be integrated with a triangle or trapezium
(whichever is geometrically more appropriate) as is shown in figure 19. The integrand may cross the
side of the trapezium (triangle) connecting the end points. For each arc-like region so created (there
are two in figure 19) the maximum deviation (indicated by arrows in figure 19) from the line should
be measured, as should the length of the chord joining the points of crossing. From Simpson’s rule
we may approximate the area between each of these arcs and the chord as

area = 2/3 × chord× maxDeviation, (74)

remembering that some increase the area while others decrease it relative to the initial trapezoidal
(triangular) estimate. The overall estimate (ignoring linear measurement errors) will be O(l5), where
l is the length of the (longest) chord.

* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 49 –

x1=x0+n∆xx0

Figure 19: Quadratic triangulation to determine the area using a manual combination of the Trapezium and
Simpson’s Rules.

5.7 Romberg integration

With the Compound Trapezium Rule we know from section 5.3 the error in some estimate T(∆x)
of the integral I using a step size ∆x goes like c∆x2 as ∆x→0, for some constant c. Likewise the error
in T(∆x/2) will be c∆x2/4. From this we may construct a revised estimate T(1)(∆x/2) for I as a
weighted mean of T(∆x) and T(∆x/2):

T(1)(∆x/2) = αT(∆x/2) + (1–α)T(∆x)

= α[I + c∆x2/4 + O(∆x4)] + (1–α)[I + c∆x2 + O(∆x4)]. (75)

By choosing the weighting factor α = 4/3 we elimate the leading order (O(∆x2)) error terms,
relegating the error to O(∆x4). Thus we have

T(1)(∆x/2) = [4T(∆x/2) – T(∆x)]/3. (76)

Comparison with equation (73) shows that this formula is precisely that for Simpson’s Rule.

This same process may be carried out to higher orders using ∆x/4, ∆x/8, … to eliminate the
higher order error terms. For the Trapezium Rule the errors are all even powers of ∆x and as a result
it can be shown that

T(m)(∆x/2) = [22mT(m–1)(∆x/2) – T(m–1)(∆x)]/(22m–1). (77)

A similar process may also be applied to the Compound Simpson’s Rule.

Numerical Methods for Natural Sciences IB Introduction

– 50 –

5.8 Gauss quadrature

By careful selection of the points at which the function is evaluated it is possible to increase the
precision for a given number of function evaluations. The Mid-point rule is an example of this: with
just a single function evaluation it obtains the same order of accuracy as the Trapezium Rule (which
requires two points).

One widely used example of this is Gauss quadrature which enables exact integration of cubics
with only two function evaluations (in contrast Simpson’s Rule, which is also exact for cubics,
requires three function evaluations). Gauss quadrature has the formula

() ()f x x
x

f x x f x x O x
x

x x x

d
0

1 0

2

1

2

3

6

1

2

3

60 0
4

= +

∫ ≈ + −


















 + + +

































+
∆ ∆

∆ ∆ ∆ . (78)

In general it is possible to choose M function evaluations per interval to obtain a formula exact for
all polynomials of degree 2M−1 and less.

The Gauss Quadrature accurate to order 2M−1 may be determined using the same approach
required for the two-point scheme. This may be derived by comparing the Taylor Series expansion
for the integral with that for the points x0+α∆x and x0+β∆x:

() () () () () ()

() () () () () ()

() () () () () ()

() () ()

f x x xf x
x

f x
x

f x
x

f x O x

x
f x xf x

x
f x

x
f x

f x xf x
x

f x
x

f x

xf x
x

f x

x

x x x

d
0

1 0

0

2

0

3

0

4

0
5

0 0

2

0

3

0

0 0

2

0

3

0

0

2

0
2

2 6 24

2 2 6

2 6

2

= +

∫ = + ′ + ′′ + ′′′ +

= + ′ + ′′ + ′′′ +





+ + ′ + ′′ + ′′′ +






= + + ′ +

∆

∆
∆ ∆ ∆

∆

∆

∆
∆

α∆
α∆ α∆

β∆
β∆ β∆

α β α

K

K

() ()+ + + +β α β2
3

3 3
4

4 12

∆ ∆x x
K

. (79)

Equating the various terms reveals

α + β = 1

(α2 + β2)/4 = 1/6, (80)

the solution of which gives the positions stated in equation (78).

Using three function evaluations: symmetry suggests for the interval x0−∆x to x0+∆x the points
should be evaluated at x0 and x0±α with weightings 2∆xA and 2∆xB. The Taylor Series expansion of
the integral gives

() () () () () ()f x x x f x
x

f x
x

f x
x

f x O x
x x

x x

iv vid
0

0

2
6 120 50400

2

0

4

0

6

0
8

−

+

∫ = + ′′ + + +










∆

∆

∆
∆ ∆ ∆

∆ , (81)

while the expansion of the function for the three points gives

Numerical Methods for Natural Sciences IB Introduction

– 51 –

() () () ()[]
[

()()
()()]

f x x x Af x Bf x Bf x

x Af

B f f f f f f f f O

B f f f f f f f f O

x x

x x

iv v vi vii

iv v vi vii

d
0

0

2

2

0 0 0

1
2

2 1
6

3 1
24

4 1
120

5 1
720

6 1
5040

7 8

1
2

2 1
6

3 1
24

4 1
120

5 1
720

6 1
5040

7 8

−

+

∫ = + − + +

=

+ − ′ + ′′ − ′′′ + − + − +

+ + ′ + ′′ + ′′′ + + + + +

∆

∆

∆

∆

α α

α α α α α α α α

α α α α α α α α

() ()[]= + + ′′ + + +2 2 2 1
12

4 1
360

6 8∆x A B f B f B f f Oiv viα α α α . (82)

Comparing the terms between (81) and (82) gives

A + 2B = 1

Bα2 = ∆x2/6

Bα4/12 = ∆x4/120 (83)

which may be solved to obtain the position of the evaluations and the weightings

(Bα4/12)/Bα2 = (∆x4/120) / (∆x2/6)

⇒ α2 = (6/10)∆x2

⇒ α = (3/5)1/2∆x

B = 5/18

A = 4/9, (84)

thus

() ()f x x x f x f x x f x x
x x

x x

d
0

0 1

9
8 5

3

5
5

3

50 0

1 2

0

1 2

−

+

∫ = + − 













 + + 

























∆

∆

∆ ∆ ∆
/ /

. (85)

5.9 Example of numerical integration

Consider the integral

sin x x d
0

2
π

∫ = , (86)

which may be integrated numerically using any of the methods described in the previous sections.
Tables 2 to 6 summarise the error in the numerical estimates for the Trapezium Rule, Midpoint
Rule, Simpson’s Rule, Gauss Quadrature and a three point Gauss Quadrature (formula derived in
lectures). Table 7 compares these errors. The results are presented in terms of the number of
function evaluations required. The calculations were performed in double precision.

Numerical Methods for Natural Sciences IB Introduction

– 52 –

No.
intervals

No. f(x) Trapezium Rule Error Ratio:
e2n/en

1 2 -2.00000000 0.2146
2 3 -0.429203673 0.24203
4 5 -0.103881102 0.24806
8 9 -0.0257683980 0.24952
16 17 -0.00642965622 0.24988
32 33 -0.00160663902 0.24997
64 65 -0.000401611359 0.24999
128 129 -0.000100399815 0.25
256 257 -0.0000250997649 0.25
512 513 -0.00000627492942 0.25
1024 1025 -0.00000156873161 0.25
2048 2049 -0.000000392182860 0.25
4096 4097 -0.0000000980457133 0.25
8192 8193 -0.0000000245114248 0.25
16384 16385 -0.00000000612785222 0.25
32768 32769 -0.00000000153194190 0.24999
65536 65537 -0.000000000382977427 0.24994
131072 131073 -0.0000000000957223189 0.25014
262144 262145 -0.0000000000239435138 0.24898
524288 524289 -0.00000000000596145355

Table 2: Error in Trapezium Rule. Note error ratio → 2−2 (∆x2)

No.
intervals

No. f(x) Midpoint Rule Error Ratio:
e2n/en

1 1 1.14189790 0.19392
2 2 0.221441469 0.23638
4 4 0.0523443059 0.24662
8 8 0.0129090855 0.24916
16 16 0.00321637816 0.24979
32 32 0.000803416309 0.24995
64 64 0.000200811728 0.24999
128 128 0.0000502002859 0.25
256 256 0.0000125499060 0.25
512 512 0.00000313746618 0.25
1024 1024 0.000000784365898 0.25
2048 2048 0.000000196091438 0.25
4096 4096 0.0000000490228564 0.25
8192 8192 0.0000000122557182 0.25
16384 16384 0.00000000306393221 0.25
32768 32768 0.000000000765979280 0.25
65536 65536 0.000000000191497040 0.24979
131072 131072 0.0000000000478341810 0.25081
262144 262144 0.0000000000119970700 0.25286
524288 524288 0.00000000000303357339

Table 3: Error in Mid-point Rule. Note error ratio → 2−2 (∆x2)

No.
intervals

No. f(x) Simpson’s Rule Error Ratio:
e2n/en

1 3 0.0943951023 0.0483
2 5 0.00455975498 0.05903
4 9 0.000269169948 0.06164
8 17 0.0000165910479 0.06228
16 33 0.00000103336941 0.06245
32 65 0.0000000645300022 0.06249
64 129 0.00000000403225719 0.0625

Numerical Methods for Natural Sciences IB Introduction

– 53 –

128 257 0.000000000252001974 0.0625
256 513 0.0000000000157500679 0.0624
512 1025 0.000000000000982769421

Table 4: Error in Simpson’s Rule. Note error ratio → 2−4 (∆x4)

No.
intervals

No. f(x) Gauss Quadrature Error Ratio:
e2n/en

1 2 -0.0641804253 0.0476
2 4 -0.00305477319 0.05881
4 8 -0.000179666460 0.06158
8 16 -0.0000110640837 0.06227
16 32 -0.000000688965642 0.06244
32 64 -0.0000000430208237 0.06249
64 128 -0.00000000268818500 0.0625
128 256 -0.000000000168002278 0.06249
256 512 -0.0000000000104984909 0.06248
512 1024 -0.000000000000655919762

Table 5: Error in Gauss Quadrature. Note error ratio → 2−4 (∆x4)

No.
intervals

No.
f(x)

Gauss Quadrature - three point Error Ratio:
e2n/en

1 3 0.001388913607743625 0.01169
2 6 0.00001624311099668319 0.01464
4 12 0.0000002378219958742989 0.01538
8 24 0.000000003657474767493341 0.01556
16 48 0.00000000005692291082937118 0.0156
32 96 0.0000000000008881784197001252 0.016
64 192 0.00000000000001421085471520200 -0.01563
128 384 -0.0000000000000002220446049250313 1
256 768 -0.0000000000000002220446049250313

Table 6: Error in Three point Gauss Quadrature. Note error ratio → 2−6 (∆x6)

No.
Intervals

Trapezium
Rule

Midpoint
Rule

Simpson’s
Rule

Gauss
Quadrature

3 Pnt Gauss
Quadrature

1 -2.0000E+00 1.1418E+00 9.4395E-02 -6.4180E-02 1.3889E-03
2 -4.2920E-01 2.2144E-01 4.5597E-03 -3.0547E-03 1.6243E-05
4 -1.0388E-01 5.2344E-02 2.6916E-04 -1.7966E-04 2.3782E-07
8 -2.5768E-02 1.2909E-02 1.6591E-05 -1.1064E-05 3.6574E-09

16 -6.4296E-03 3.2163E-03 1.0333E-06 -6.8896E-07 5.6922E-11
32 -1.6066E-03 8.0341E-04 6.4530E-08 -4.3020E-08 8.8817E-13
64 -4.0161E-04 2.0081E-04 4.0322E-09 -2.6881E-09 1.4210E-14
128 -1.0039E-04 5.0200E-05 2.5200E-10 -1.6800E-10 -2.2204E-16
256 -2.5099E-05 1.2549E-05 1.5750E-11 -1.0498E-11 -2.2204E-16
512 -6.2749E-06 3.1374E-06 9.8276E-13 -6.5591E-13
1024 -1.5687E-06 7.8436E-07
2048 -3.9218E-07 1.9609E-07
4096 -9.8045E-08 4.9022E-08
8192 -2.4511E-08 1.2255E-08
16384 -6.1278E-09 3.0639E-09
32768 -1.5319E-09 7.6597E-10
65536 -3.8297E-10 1.9149E-10
131072 -9.5722E-11 4.7834E-11
262144 -2.3943E-11 1.1997E-11
524288 -5.9614E-12 3.0335E-12
1048576

Table 7: Error in numerical integration of (86) as a function of the number of subintervals.

Numerical Methods for Natural Sciences IB Introduction

– 54 –

5.9.1 Program for numerical integration*

Note that this program is written for clarity rather than speed. The number of function
evaluations actually computed may be approximately halved for the Trapezium rule and reduced by
one third for Simpson’s rule if the compound formulations are used. Note also that this example is
included for illustrative purposes only. No knowledge of Fortran or any other programming
language is required in this course.

 PROGRAM Integrat
 REAL*8 x0,x1,Value,Exact,pi
 INTEGER*4 i,j,nx
C=====Functions
 REAL*8 TrapeziumRule
 REAL*8 MidpointRule
 REAL*8 SimpsonsRule
 REAL*8 GaussQuad
C=====Constants
 pi = 2.0*ASIN(1.0D0)
 Exact = 2.0
C=====Limits
 x0 = 0.0
 x1 = pi
C===
C= Trapezium rule =
C===
 WRITE(6,*)
 WRITE(6,*)’Trapezium rule’
 nx = 1
 DO i=1,20
 Value = TrapeziumRule(x0,x1,nx)
 WRITE(6,*)nx,Value,Value - Exact
 nx = 2*nx
 ENDDO
C===
C= Midpoint rule =
C===
 WRITE(6,*)
 WRITE(6,*)’Midpoint rule’
 nx = 1
 DO i=1,20
 Value = MidpointRule(x0,x1,nx)
 WRITE(6,*)nx,Value,Value - Exact
 nx = 2*nx
 ENDDO
C===
C= Simpson’s rule =
C===
 WRITE(6,*)
 WRITE(6,*)’Simpson’’s rule’
 WRITE(6,*)
 nx = 2
 DO i=1,10
 Value = SimpsonsRule(x0,x1,nx)
 WRITE(6,*)nx,Value,Value - Exact
 nx = 2*nx
 ENDDO
C===
C= Gauss Quadrature =
C===

* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 55 –

 WRITE(6,*)
 WRITE(6,*)’Gauss quadrature’
 nx = 1
 DO i=1,10
 Value = GaussQuad(x0,x1,nx)
 WRITE(6,*)nx,Value,Value - Exact
 nx = 2*nx
 ENDDO
 END

 FUNCTION f(x)
C=====parameters
 REAL*8 x,f

 f = SIN(x)

 RETURN
 END

 REAL*8 FUNCTION TrapeziumRule(x0,x1,nx)
C=====parameters
 INTEGER*4 nx
 REAL*8 x0,x1
C=====functions
 REAL*8 f
C=====local variables
 INTEGER*4 i
 REAL*8 dx,xa,xb,fa,fb,Sum
 dx = (x1 - x0)/DFLOAT(nx)
 Sum = 0.0
 DO i=0,nx-1
 xa = x0 + DFLOAT(i)*dx
 xb = x0 + DFLOAT(i+1)*dx
 fa = f(xa)
 fb = f(xb)
 Sum = Sum + fa + fb
 ENDDO
 Sum = Sum * dx / 2.0
 TrapeziumRule = Sum
 RETURN
 END

 REAL*8 FUNCTION MidpointRule(x0,x1,nx)
C=====parameters
 INTEGER*4 nx
 REAL*8 x0,x1
C=====functions
 REAL*8 f
C=====local variables
 INTEGER*4 i
 REAL*8 dx,xa,fa,Sum
 dx = (x1 - x0)/Dfloat(nx)
 Sum = 0.0
 DO i=0,nx-1
 xa = x0 + (DFLOAT(i)+0.5)*dx
 fa = f(xa)
 Sum = Sum + fa
 ENDDO
 Sum = Sum * dx
 MidpointRule = Sum
 RETURN
 END

 REAL*8 FUNCTION SimpsonsRule(x0,x1,nx)
C=====parameters
 INTEGER*4 nx
 REAL*8 x0,x1

Numerical Methods for Natural Sciences IB Introduction

– 56 –

C=====functions
 REAL*8 f
C=====local variables
 INTEGER*4 i
 REAL*8 dx,xa,xb,xc,fa,fb,fc,Sum
 dx = (x1 - x0)/DFLOAT(nx)
 Sum = 0.0
 DO i=0,nx-1,2
 xa = x0 + DFLOAT(i)*dx
 xb = x0 + DFLOAT(i+1)*dx
 xc = x0 + DFLOAT(i+2)*dx
 fa = f(xa)
 fb = f(xb)

 fc = f(xc)

 Sum = Sum + fa + 4.0*fb + fc
 ENDDO
 Sum = Sum * dx / 3.0
 SimpsonsRule = Sum
 RETURN
 END

 REAL*8 FUNCTION GaussQuad(x0,x1,nx)
C=====parameters
 INTEGER*4 nx
 REAL*8 x0,x1
C=====functions
 REAL*8 f
C=====local variables
 INTEGER*4 i
 REAL*8 dx,xa,xb,fa,fb,Sum,dxl,dxr
 dx = (x1 - x0)/DFLOAT(nx)
 dxl = dx*(0.5D0 - SQRT(3.0D0)/6.0D0)
 dxr = dx*(0.5D0 + SQRT(3.0D0)/6.0D0)
 Sum = 0.0
 DO i=0,nx-1
 xa = x0 + DFLOAT(i)*dx + dxl
 xb = x0 + DFLOAT(i)*dx + dxr
 fa = f(xa)
 fb = f(xb)
 Sum = Sum + fa + fb
 ENDDO
 Sum = Sum * dx / 2.0
 GaussQuad = Sum
 RETURN
 END

Numerical Methods for Natural Sciences IB Introduction

– 57 –

6 First order ordinary differential equations

Ths section of the course introduces some commonly used methods for determining the
numerical solutions of ordinary differential equations. These methods will then be used in §8 as the
basis for solving some types of partial differential equations.

6.1 Taylor series

The key idea behind numerical solution of odes is the combination of function values at different
points or times to approximate the derivatives in the required equation. The manner in which the
function values are combined is determined by the Taylor Series expansion for the point at which
the derivative is required. This gives us a finite difference approximation to the derivative.

6.2 Finite difference

Consider a first order ode of the form

()d

d

y

t
f t y= , , (87)

subject to some boundary/initial condition y(t=t0) = c. The finite difference solution of this equation
proceeds by discretising the independent variable t to t0, t0+∆t, t0+2∆t, t0+3∆t, … We shall denote
the exact solution at some t = tn = t0+n∆t by yn = y(t=tn) and our approximate solution by Yn. We
then look to solve

Y’n = f(tn,Yn) (88)

at each of the points in the domain, where Y’n is an approximation to dy/dt based on the discrete set
of Yn.

If we take the Taylor Series expansion for the grid points in the neighbourhood of some point
t = tn,

()

()

()

L

Y Y tY t Y t Y O t

Y Y tY t Y t Y O t

Y Y

Y Y tY t Y t Y O t

Y Y tY t Y t

n n n n n

n n n n n

n n

n n n n n

n n n n

−

−

+

+

= − ′+ ′′− ′′′+

= − ′+ ′′− ′′′+

=

= + ′+ ′′+ ′′′+

= + ′ + ′′+ ′

2
2 3 4

1
2 3 4

1
2 3 4

2
2 3

2 2
4

3
1

2

1

6

1

2

1

6

2 2
4

3

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ()′′+Y O tn ∆ 4

L

, (89)

Numerical Methods for Natural Sciences IB Introduction

– 58 –

we may then take linear combinations of these expansions to obtain an approximation for the
derivative Y’n at t = tn, viz.

′ ≈ +
=
∑Y Yn i n i
i a

b

α . (90)

The linear combination is chosen so as to eliminate the term in Yn, requiring

αi
i a

b

=
∑ = 0 (91)

and, depending on the method, possibly some of the terms of higher order. We shall look at various
strategies for choosing αi in the following sections. As an example, we may select the Yn and Yn-1

values as the basis of an approximation to approximate Y’n. Adding the appropriate equations,
noting that the weightings sum to zero so may be expressed as α1 = α and α2 = − α, and setting
equal to Y’n, gives

Y’n ≈ αYn − αYn-1

= αYn − α(Yn − ∆tY’n + ½∆t2Y"n − 1/6∆t3Y’"n + ...). (92)

Equating left- and right-hand sides reveals α = 1/∆t, so

()Y Y

t
Y tY O tn n

n n

−
= ′ + ′′+−1 21

2∆
∆ ∆ . (93)

Before looking at this in any further detail, we need to consider the error associated with
approximating yn by Yn.

6.3 Truncation error

The global truncation error at the nth step is the cumulative total of the truncation error at the
previous steps and is

En = Yn – yn. (94)

In contrast, the local truncation error for the nth step is

en = Yn – yn*, (95)

where yn* the exact solution of our differential equation but with the initial condition yn–1*=Yn–1.
Note that En is not simply

en
i

n

=
∑

1

, (96)

which would give En = O(nen). It also depends on the stability of the method (see section 6.7 for
details) and we aim for En = O(en).

Numerical Methods for Natural Sciences IB Introduction

– 59 –

6.4 Euler method

The Euler method is the simplest finite difference scheme to understand and implement.
Following on from (93) we approximate the derivative in (88) as

Y’n ≈ (Yn+1 – Yn)/∆t, (97)

in our differential equation for Yn to obtain

Yn+1 = Yn + ∆tf(tn,Yn). (98)

Given the initial/boundary condition Y0 = c, we may obtain Y1 from Y0 + ∆tf(t0,Y0), Y2 from
Y1 + ∆tf(t1,Y1) and so on, marching forwards through time. This process is shown graphically in
figure 20.

t0

Figure 20: Sketch of the function y(t) (dark line) and the Euler method solution (arrows). Each arrow is
tangental to to the solution of (87) passing through the point located at the start of the arrow. Note that this
point need not be on the desired y(t) curve.

The Euler method is termed an explicit method because we are able to write down an explicit
solution for Yn+1 in terms of “known” values at tn.

Comparing the Euler method equation for Yn in (98) with the the Taylor Series expansion for Yn-1

in (89), shows that the O(∆t) error in the finite difference approximation (93) becomes an O(∆t2)
error in (98). Thus the Euler method is first order accurate and is often referred to as a first order
method. Moreover, it can be shown that if Yn=yn+O(∆t2), then Yn+1=yn+1+O(∆t2) provided the
scheme is stable (see section 6.7).

Numerical Methods for Natural Sciences IB Introduction

– 60 –

6.5 Implicit methods

The Euler method outlined in the previous section may be summarised by the update formula
Yn+1 = g(Yn,tn,∆t). In contrast implicit methods have have Yn+1 on both sides: Yn+1 = h(Yn,Yn+1,tn,∆t),
for example. Such implicit methods are computationally more expensive for a single step than
explicit methods, but offer advantages in terms of stability and/or accuracy in many circumstances.
Often the computational expense per step is more than compensated for by it being possible to take
larger steps (see section 6.7).

6.5.1 Backward Euler

The backward Euler method is almost identical to its explicit relative, the only difference being
that the derivative Y’n is approximated by

Y'n ≈ (Yn – Yn–1)/∆t, (99)

to give the evolution equation

Yn+1 = Yn + ∆tf(tn+1,Yn+1). (100)

This is shown graphically in figure 21.

t0

Figure 21: Sketch of the function y(t) (dark line) and the Euler method solution (arrows). Each arrow is
tangental to to the solution of (87) passing through the point located at the end of the arrow. Note that this
point need not be on the desired y(t) curve.

Numerical Methods for Natural Sciences IB Introduction

– 61 –

The dependence of the right-hand side on the variables at tn+1 rather than tn means that it is not, in
general possible to give an explicit formula for Yn+1 only in terms of Yn and tn+1. (It may, however,
be possible to recover an explicit formula for some functions f.)

As the derivative Y’n is approximated only to the first order, the Backward Euler method has
errors of O(∆t2), exactly as for the Euler method. The solution process will, however, tend to be
more stable and hence accurate, especially for stiff problems (problems where f’ is large). An
example of this is shown in figure 22.

t0

Backward Euler

(Forward) Euler

Crank-Nicholson

Figure 22: Comparison of ordinary differential equation solvers for a stiff problem.

6.5.2 Richardson extrapolation

The Romberg integration approach (presented in section 5.7) of using two approximations of
different step size to construct a more accurate estimate may also be used for numerical solution of
ordinary differential equations. Again, if we have the estimate for some time t calculated using a
time step ∆t, then for both the Euler and Backward Euler methods the approximate solution is
related to the true solution by Y(t,∆t) = y(t) + c∆t2. Similarly an estimate using a step size ∆t/2 will
follow Y(t,∆t/2) = y(t) + 1/4c∆t2 as ∆t→0. Combining these two estimates to try and cancel the
O(∆t2) errors gives the improved estimate as

Y(1)(t,∆t/2) = [4Y(t,∆t/2) – Y(t,∆t)]/3. (101)

The same approach may be applied to higher order methods such as those presented in the
following sections. It is generally preferable, however, to utilise a higher order method to start with,
the exception being that calculating both Y(t,∆t) and Y(t,∆t/2) allows the two solutions to be
compared and thus the trunctation error estimated.

Numerical Methods for Natural Sciences IB Introduction

– 62 –

6.5.3 Crank-Nicholson

If we use central differences rather than the forward difference of the Euler method or the
backward difference of the backward Euler, we may obtain a second order method due to
cancellation of the terms of O(∆t2). Using the same discretisation of t we obtain

Y’n+1/2 ≈ (Yn+1 – Yn)/∆t. (102)

Substitution into our differential equation for Yn gives

(Yn+1 – Yn)/∆t ≈ f(tn+1/2,Yn+1/2). (103)

The requirement for f(tn+1/2,Yn+1/2) is then satisfied by a linear interpolation for f between tn–1/2 and
tn+1/2 to obtain

Yn+1 – Yn = 1/2[f(tn+1,Yn+1) + f(tn,Yn)]∆t. (104)

As with the Backward Euler, the method is implicit and it is not, in general, possible to write an
explicit expression for Yn+1 in terms of Yn.

Formal proof that the Crank-Nicholson method is second order accurate is slightly more
complicated than for the Euler and Backward Euler methods due to the linear interpolation to
approximate f(tn+1/2,Yn+1/2). The overall approach is much the same, however, with a requirement for
Taylor Series expansions about tn::

()

()

y y
dy

dt
t

d y

dt
t O t

y f t
f

t
f

f

y
t O t

n n

n n

+ = + + +

= + + +






 +

1

2

2
2 3

2 3

1

2

1

2

∆ ∆ ∆

∆ ∆ ∆
∂
∂

∂
∂

(105a)

() () () ()

()

()

f t y f t y
f

t
t

f

y
y O t O y

f
f

t
t

f

y

dy

dt
t O t

f
f

t
f

f

y
t O t

n n n n

n

n

+ + = + + + +

= + + +

= + +






 +

1 1
2 2

2

2

, ,
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∆ ∆ ∆ ∆

∆ ∆ ∆

∆ ∆

(105b)

Substitution of these into the left- and right-hand sides of equation (104) reveals

()y y f t
f

t
f

f

y
t O tn n n+ − = + +







 +1

2 31

2
∆ ∆ ∆

∂
∂

∂
∂

(106a)

and

() ()() ()

()

1

2

1

2

1

2

1 1
2

2 3

f t y f t y t f f
f

t
f

f

y
t O t t

f t
f

t
f

f

y
t O t

n n n n n n

n

, ,+ = + + +






 +









= + +






 +

+ + ∆ ∆ ∆ ∆

∆ ∆ ∆

∂
∂

∂
∂

∂
∂

∂
∂

(106b)

Numerical Methods for Natural Sciences IB Introduction

– 63 –

which are equal up to O(∆t3).

6.6 Multistep methods

As an alternative, the accuracy of the approximation to the derivative may be improved by using
a linear combination of additional points. By utilising only Yn–s+1,Yn–s+2,…,Yn we may construct an
approximation to the derivatives of orders 1 to s at tn. For example, if s = 2 then

Y’n = fn,

Y"n =~ (fn – fn–1)/∆t (107)

and so we may construct a second order method from the Taylor series expansion as

Yn+1 = Yn + ∆tY’n + ½∆t2Y"n

= Yn + 1/2∆t(3fn – fn–1). (108)

For s=3 we also have Y’"n and so can make use of a second-order one-sided finite difference to
approximate Y"n = f’n = (3fn -4 fn-1 + fn-2)/2∆t and include the third order Y’"n = f"n = (fn-
2fn-1+fn-2)/∆t2 to obtain

Yn+1 = Yn + ∆tY’n + 1/2∆t2Y"n + 1/6∆t3Y"n

= Yn + 1/12∆t(23fn – 16fn–1 + 5fn–2). (109)

These methods are called Adams-Bashforth methods. Note that s = 1 recovers the Euler method.

Implicit Adams-Bashforth methods are also possible if we use information about fn+1 in addition
to earlier time steps. The corresponding s = 2 method then uses

Y’n = fn,

Y"n ≈ (fn+1 – fn–1)/2∆t

Y’"n ≈ (fn+1 – 2fn + fn–1)/∆t2, (110)

to give

Yn+1 = Yn + ∆tY’n + 1/2∆t2Y"n + 1/6∆t3Y’"n

= Yn + (1/12)∆t(5fn+1 + 8fn – fn–1). (111)

This family of implicit methods is known as Adams-Moulton methods.

6.7 Stability

The stability of a method can be even more important than its accuracy as measured by the order
of the truncation error. Suppose we are solving

y’ = λy, (112)

for some complex λ. The exact solution is bounded (i.e. does not increase without limit) provided
Reλ ≤ 0. Substituting this into the Euler method shows

Numerical Methods for Natural Sciences IB Introduction

– 64 –

Yn+1 = (1 + λ∆t)Yn = (1 + λ∆t)2Yn–1 = … = (1 + λ∆t)n+1Y0. (113)

If Yn is to remain bounded for increasing n and given Reλ < 0 we require

|1 + λ∆t| ≤ 1. (114)

If we choose a time step ∆t which does not satisfy (114) then Yn will increase without limit. This
condition (114) on ∆t is very restrictive if λ<<0 as it demonstrates the Euler method must use very
small time steps ∆t < 2|λ|–1 if the solution is to converge on y = 0.

The reason why we consider the behaviour of equation (112) is that it is a model for the
behaviour of small errors. Suppose that at some stage during the solution process our approximate
solution is

y$ = y + ε, (115)

where ε is the (small) error. Substituting this into our differential equation of the form y’ = f(t,y) and
using a Taylor Series expansion gives

()
()

() ()

dy

dt

dy

dt

d

dt

f t y

f t y

f t y
f

y
O

$

$,

,

,

= +

=

= +

= + +

ε

ε

ε
∂
∂

ε2

. (116)

Thus, to the leading order, the error obeys an equation of the form given by (112), with λ = ∂f/∂y.
As it is desirable for errors to decrease (and thus the solution remain stable) rather than increase
(and the solution be unstable), the limit on the time step suggested by (114) applies for the
application of the Euler method to any ordinary differential equation. A consequence of the decay of
errors present at one time step as the solution process proceeds is that memory of a particular time
step’s contribution to the global truncation error decays as the solution advances through time. Thus
the global truncation error is dominated by the local trunction error(s) of the most recent step(s) and
O(En) = O(en).

In comparison, solution of (112) by the Backward Euler method

Yn+1 = Yn + ∆tλYn+1, (117)

can be rearranged for Yn+1 and

Yn+1 = Yn/(1 – λ∆t) = Yn–1/(1 – λ∆t)2 = … = Y0/(1 – λ∆t)n+1, (118)

which will be stable provided

|1 – λ∆t| > 1. (119)

For Reλ ≤ 0 this is always satisfied and so the Backward Euler method is unconditionally stable.

The Crank-Nicholson method may be analysed in a similar fashion with

(1-λ∆t/2)Yn+1 = (1+λ∆t/2)Yn, (120)

Numerical Methods for Natural Sciences IB Introduction

– 65 –

to arrive at

Yn+1 = [(1+λ∆t/2)/(1 – λ∆t/2)]n+1 Y0, (121)

with the magnitude of the term in square brackets always less than unity for Reλ < 0. Thus, like
Backward Euler, Crank-Nicholson is unconditionally stable.

In general, explicit methods require less computation per step, but are only conditionally stable
and so may require far smaller step sizes than an implicit method of nominally the same order.

6.8 Predictor-corrector methods

One approach to using an implicit method is to use a direct iteration to solve the implicit
equation. For example, the Backward Euler method has the form

Yn+1 = Yn + ∆t f(tn+1,Yn+1). (122)

Applying the theory for direct iteration outlined in §3.6, we may write

Yn+1,i = Yn + ∆t f(tn+1,Yn+1,i), (123)

setting Yn+1,0 = Yn, and iterate over i until the solution has converged. From (21) we know it will
converge if

()()∂
∂

∂
∂Y

Y t f t Y t
f

Yn i
n n i

+
++ = <

1
1 1

,
,,∆ ∆ , (124)

and the solution will gradually approach the Backward Euler solution. Note that this convergence
criterion is more stringent than the stability criterion established in §6.7!

What we are effectively doing here is making a prediction with the Euler method (our equation
for Yn+1,1 is just the Euler method), then multiple corrections to this to get the solution to converge
on the Backward Euler method. A similar strategy may be applied to the Crank-Nicholson method
to obtain

Yn+1,i = Yn + ½ ∆t [f(tn+1,Yn+1,i) + f(tn,Yn,i)], (125)

requiring ½ ∆t ∂f/∂Y < 1 for convergence. Once convergence is achieved, we are left with a second-
order implicit scheme. However, it may not be necessary or desirable to carry on iterating until
convergence is achieved. Moreover, the condition for convergence using (125) imposes the same
restrictions upon ∆t as stability of the Euler method. There are other reasons, however, for taking
this approach.

The above examples, if iterated only a finite number of times rather than until convergence is
achieved, belong to a class of methods known as predictor-corrector methods. Predictor-corrector
methods try to combine the advantages of the simplicity of explicit methods with the improved
accuracy of implicit methods. They achieve this by using an explicit method to predict the solution
Yn+1

(p) at tn+1 and then utilise f(tn+1,Yn+1
(p)) as an approximation to f(tn+1,Yn+1) to correct this

prediction using something similar to an implicit step.

Numerical Methods for Natural Sciences IB Introduction

– 66 –

6.8.1 Improved Euler method

The simplest of these methods combines the Euler method as the predictor

Yn+1
(1) = Yn + ∆tf(tn,Yn), (126)

and then the Backward Euler to give the corrector

Yn+1
(2) = Yn + ∆tf(tn,Yn+1

(1)). (127)

The final solution is the mean of these:

Yn+1 = (Yn+1
(1) + Yn+1

(2))/2. (128)

To understand the stability of this method we again use the y’ = λy so that the three steps
described by equations (126) to (128) become

Yn+1
(1) = Yn + λ∆tYn, (129a)

Yn+1
(2) = Yn + λ∆tYn+1

(1)

= Yn + λ∆t (Yn + λ∆tYn)

= (1 + λ∆t + λ2∆t2)Yn, (129b)

Yn+1 = (Yn+1
(1) + Yn+1

(2))/2

= [(1 + λ∆t)Yn + (1 + λ∆t + λ2∆t2) Yn]/2

= (1 + λ∆t + 1/2λ2∆t2) Yn

= (1 + λ∆t + 1/2λ2∆t2)n+1 Y0. (129c)

Stability requires |1 + λ∆t + 1/2λ2∆t2| < 1 (for Reλ < 0) which in turn restricts ∆t < 2|λ|–1. Thus the
stability of this method, commonly known as the Improved Euler method, is identical to the Euler
method. It is also the same as the criterion for the iterative Crank-Nicholson method given in (125)
to converge. This is not surprising as it is limited by the stability of the initial predictive step. The
accuracy of the method is, however, second order as may be seen by comparison of (129c) with the
Taylor Series expansion.

6.8.2 Runge-Kutta methods

The Improved Euler method is the simplest of a family of similar predictor corrector methods
following the form of a single predictor step and one or more corrector steps. The corrector step
may be repeated a fixed number of times, or until the estimate for Yn+1 converges to some tolerance.

One subgroup of this family are the Runge-Kutta methods which use a fixed number of corrector
steps. The Improved Euler method is the simplest of this subgroup. Perhaps the most widely used of
these is the fourth order method:

k(1) = ∆tf(tn,Yn) , (130a)

k(2) = ∆tf(tn+
1/2∆t ,Yn+½k(1)) , (130b)

Numerical Methods for Natural Sciences IB Introduction

– 67 –

k(3) = ∆tf(tn+
1/2∆t ,Yn+½k(2)) , (130c)

k(4) = ∆tf(tn+∆t ,Yn+k(3)) , (130d)

Yn+1 = Yn + (k(1) + 2k(2) + 2k(3) + k(4))/6. (130e)

In order to analyse this we need to construct Taylor-Series expansions for
k(2) = ∆tf(tn+

1/2∆t,Yn+
1/2k

(1)) = ∆t[f(tn,Yn)+(∆t/2)(∂f/∂t+f∂f/∂y)], and similarly for k(3) and k(4). This is
then compared with a full Taylor-Series expansion for Yn+1 up to fourth order. To achieve this we
require

Y" = df/dt = ∂f/∂t + ∂y/∂t ∂f/∂y = ∂f/∂t + f ∂f/∂y, (131)

Y’" = d2f/dt2

= ∂2f/∂t2 + 2f ∂2f/∂t∂y + ∂f/∂t ∂f/∂y + f2 ∂2f/∂y2 + f (∂f/∂y)2, (132)

and similarly for Y"". All terms up to order ∆t4 can be shown to match, with the error coming in at
∆t5.

Numerical Methods for Natural Sciences IB Introduction

– 68 –

7 Higher order ordinary differential equations

In this section we look at how to solve higher order ordinary differential equations. Some of the
techniques discussed here are based on the techniques introduced in §6, and some rely on a
combination of this material and the linear algebra of §4.

7.1 Initial value problems

The discussion so far has been for first order ordinary differential equations. All the methods
given may be applied to higher ordinary differential equations, provided it is possible to write an
explicit expression for the highest order derivative and the system has a complete set of initial
conditions. Consider some equation

d

d

d

d

d

d

d

d

2

2

n

n

n

n

y

t
f t y

y

t

y

t

y

t
=









−

−, , , ,K
1

1 , (133)

where at t = t0 we know the values of y, dy/dt, d2y/dt2, …, dn-1y/dtn-1. By writing x0=y, x1=dy/dt,
x2=d2y/dt2, …, xn–1=dn–1y/dtn–1, we may express this as the system of equations

x0’ = x1

x1’ = x2

x2’ = x3

. . . .

xn–2’ = xn–1

xn–1’ = f(t,x0,x1,…,xn–2), (134)

and use the standard methods for updating each xi for some tn+1 before proceeding to the next time
step. A decision needs to be made as to whether the values of xi for tn or tn+1 are to be used on the
right hand side of the equation for xn–1’ . This decision may affect the order and convergence of the
method. Detailed analysis may be undertaken in a manner similar to that for the first order ordinary
differential equations.

7.2 Boundary value problems

For second (and higher) order odes, two (or more) initial/boundary conditions are required. If
these two conditions do not correspond to the same point in time/space, then the simple extension of
the first order methods outlined in section 7.1 can not be applied without modification. There are
two relatively simple approaches to solve such equations.

7.2.1 Shooting method

Suppose we are solving a second order equation of the form y" = f(t,y,y’) subject to y(0) = c0 and
y(1) = c1. With the shooting method we apply the y(0)=c0 boundary condition and make some guess

Numerical Methods for Natural Sciences IB Introduction

– 69 –

that y’(0) = α0. This gives us two initial conditions so that we may apply the simple time-stepping
methods already discussed in section 7.1. The calculation proceeds until we have a value for y(1). If
this does not satisfy y(1) = c1 to some acceptable tolerance, we revise our guess for y’(0) to some
value α1, say, and repeat the time integration to obtain an new value for y(1). This process continues
until we hit y(1)=c1 to the acceptable tolerance. The number of iterations which will need to be
made in order to achieve an acceptable tolerance will depend on how good the refinement algorithm
for α is. We may use the root finding methods discussed in section 3 to undertake this refinement.

The same approach can be applied to higher order ordinary differential equations. For a system of
order n with m boundary conditions at t = t0 and n–m boundary conditions at t = t1, we will require
guesses for n–m initial conditions. The computational cost of refining these n–m guesses will
rapidly become large as the dimensions of the space increase.

7.2.2 Linear equations

The alternative is to rewrite the equations using a finite difference approximation with step size
∆t = (t1–t0)/N to produce a system of N+1 simultaneous equations. Consider the second order linear
system

y" + ay’ + by = c, (135)

with boundary conditions y(t0) = α and y(t1) + y’(t1) = β. If we use the central difference
approximations

y'i ≈ (Yi+1 – Yi–1)/2∆t, (136a)

y"i ≈ (Yi+1 – 2Yi + Yi–1)/∆t2. (136b)

Substitution into (135) gives

Y Y Y

t
a

Y Y

t
bY ci i i i i

i
+ − + −− +

+
−

+ =1 1
2

1 12

2∆ ∆
, (137)

and we may write the boundary condition at t = t0 as

Y0 = α. (138)

For t = t1 we must express the derivative in the boundary condition in finite difference form using
points that exist in our mesh. The obvious thing to do is to take the backward difference so that the
boundary condition becomes

Y
Y Y

tn
n n+

−
=−1

∆
β , (139)

but as we shall see, this choice is not ideal.

The above strategy leads to the system of equations

Y0 = α,

(1+1/2a∆t)Y0 + (b∆t2–2)Y1 + (1–1/2a∆t)Y2 = c∆t2,

(1+1/2a∆t)Y1 + (b∆t2–2)Y2 + (1–1/2a∆t)Y3 = c∆t2,

Numerical Methods for Natural Sciences IB Introduction

– 70 –

…

(1+1/2a∆t)Yn–2 + (b∆t2–2)Yn–1 + (1–1/2a∆t)Yn = c∆t2,

−Yn-1 + (∆t + 1) Yn = β∆t (140)

This tridiagonal system may be readily solved using the method discussed in section 4.5.

There is one problem with the scheme outlined above: while the Y" and Y’ derivatives within the
domain are second order accurate, the boundary condition at t = t1 is imposed only as a first-order
approximation to the derivative. We have two ways in which we may improve the accuracy of this
boundary condition.

The first way is the most obvious: make use of the Yn-2 value to construct a second-order
approximation to Y" so that we have

()′ =
− +

+− −Y
Y Y Y

t
O tn

n n n3 4

2
1 2 2

∆
∆ , (141)

so that the last equation in our system becomes

Yn-2 − 4Yn-1 + (2∆t + 3) Yn = 2β∆t. (142)

The problem with this is that we then loose our simple tridiagonal system.

The second approach is to artificially increase the size of the domain by one mesh point and
impose the boundary condition inside the domain. The additional mesh point is often referred to as a
dummy mesh point or dummy cell. This leads to the last three equations being

(1+1/2a∆t)Yn–2 + (b∆t2–2)Yn–1 + (1–1/2a∆t)Yn = c∆t2,

(1+1/2a∆t)Yn-1 + (b∆t2–2)Yn + (1–1/2a∆t)Yn+1 = c∆t2,

−Yn-1 + 2∆tYn + Yn+1 = 2β∆t (143)

The attraction of this approach is that we maintain our simple tri-diagonal system.

Clearly the same tricks can be applied if we have a boundary condition on the derivative at t0.

Higher order linear equations may be catered for in a similar manner and the matrix representing
the system of equations will remain banded, but not as sparse as tridiagonal. The solution may be
undertaken using the modified LU decomposition introduced in section 4.4.

Nonlinear equations may also be solved using this approach, but will require an iterative solution
of the resulting matrix system Ax = b as the matrix A will be a function of x. In most circumstances
this is most efficiently achieved through a Newton-Raphson algorithm, similar in principle to that
introduced in section 3.4 but where a system of linear equations requires solution for each iteration.

7.3 Other considerations*

Not examinable

* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 71 –

7.3.1 Truncation error*

Not examinable

7.3.2 Error and step control*

Not examinable

* Not examinable
* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 72 –

8 Partial differential equations

In this section we shall concentrate on the numerical solution of second order linear partial
differential equations.

8.1 Laplace equation

Consider the Laplace equation in two dimensions

∇ = + =2
2

2

2

2 0ϕ
∂ ϕ
∂

∂ ϕ
∂x y

, (144)

in some rectangular domain described by x in [x0,x1], y in [y0,y1]. Suppose we discretise the solution
ϕ onto a m+1 by n+1 rectangular grid (or mesh) given by

xi = x0 + i∆x (145a)

yj = y0 + j∆y (145b)

where i=0,m, j=0,n. The mesh spacing is ∆x = (x1–x0)/m and ∆y = (y1–y0)/n. Let

ϕij = ϕ(xi,yj) (146)

be the exact solution at the mesh point i,j , and Φij ≈ ϕij be the approximate solution at that mesh
point.

By considering the Taylor Series expansion for ϕ about some mesh point i,j,

()ϕ ϕ
∂ϕ
∂

∂ ϕ
∂

∂ ϕ
∂i j i j

i j i j i j
x

x

x

x

x

x
O x+ = + + + +1

2 2

2

3 3

3
4

2 6, ,

, , ,∆
∆ ∆

∆ , (147a)

()ϕ ϕ
∂ϕ
∂

∂ ϕ
∂

∂ ϕ
∂i j i j

i j i j i j
x

x

x

x

x

x
O x− = − + − +1

2 2

2

3 3

3
4

2 6, ,

, , ,∆
∆ ∆

∆ , (147b)

()ϕ ϕ
∂ϕ
∂

∂ ϕ
∂

∂ ϕ
∂i j i j

i j i j i j
y

y

y

y

y

y
O y, ,

, , ,

+ = + + + +1

2 2

2

3 3

3
4

2 6
∆

∆ ∆
∆ , (147b)

()ϕ ϕ
∂ϕ
∂

∂ ϕ
∂

∂ ϕ
∂i j i j

i j i j i j
y

y

y

y

y

y
O y, ,

, , ,

− = − + − +1

2 2

2

3 3

3
4

2 6
∆

∆ ∆
∆ , (147b)

it is clear that we may approximate ∂2ϕ/∂x2 and ∂2ϕ/∂y2to the second order using the four adjacent
mesh points to obtain the finite difference approximation

Φ Φ Φ
∆

Φ Φ Φ
∆

i j i j i j i j i j i j

x y
+ − + −− +

+
− +

=1 1

2

1 1

2

2 2
0

, , , , , ,
(148)

Numerical Methods for Natural Sciences IB Introduction

– 73 –

for the internal points 0<i<m, 0<j<n. In addition to this we will have either Dirichlet, von Neumann
or mixed boundary conditions to specify the boundary values of ϕij. The system of linear equations
described by (148) in combination with the boundary conditions may be solved in a variety of ways.

8.1.1 Direct solution

Provided the boundary conditions are linear in ϕ, our finite difference approximation is itself
linear and the resulting system of equations may be written as

Aϕ = b, (149)

with (m+1)(n+1) equations. This system may be solved directly using Gauss Elimination as
discussed in section 4.1. However, this approach may be feasible if the total number of mesh points
(m+1)(n+1) required is relatively small, but as the matrix A used to represent the complete system
will have [(m+1)(n+1)]2 elements, the storage and computational cost of such a solution will
become prohibitive even for relatively modest m and n.

i=0, j=0 i=3, j=0

i=0, j=3 i=3, j=3

ϕ(x,0) = 0

∂ϕ/∂y = 1

ϕ(0,y) = y ϕ(3,0) = y

Figure 23: Sketch of domain for Laplace equation. The linear system for this domain is given in (150).

The structure of the system ensures A is relatively sparse, consisting of a tridiagonal core with
one nonzero diagonal above and another below this. These nonzero diagonals are offset by either m
or n from the leading diagonal. For example, in the domain shown in figure 23, the linear system is

Numerical Methods for Natural Sciences IB Introduction

– 74 –

1

1

1

1

1

1 1 4 1 1

1 1 4 1 1

1

1

1 1 4 1 1

1 1 4 1 1

1

1 1

1 1

1 1

1 1

00

10

20

30

01

11

21

31

02

12

22

32

03

13

23

33

−
−

−
−

−
−

−
−





















































































ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ 

























=

























































0

0

0

0

1

0

0

1

2

0

0

2

1

1

1

1
(150)

Provided pivoting (if required) is conducted in such a way that it does not place any nonzero
elements outside this band then solution by Gauss Elimination or LU Decomposition will only
produce nonzero elements inside this band, substantially reducing the storage and computational
requirements (see section 4.4). Careful choice of the order of the matrix elements (i.e. by x or by y)
may help reduce the size of this matrix so that it need contain only O(m3) elements for a square
domain.

Because of the wide spread need to solve Laplace’s and related equations, specialised solvers
have been developed for this problem. One of the best of these is Hockney’s method for solving
Aϕ = b which may be used to reduce a block tridiagonal matrix (and the corresponding right-hand
side) of the form

A

A I

I A I

I A I

I A I

I A I

I A

I

I A

=

































$

$

$

$

$

$

$

O

O O

, (151)

into a block diagonal matrix of the form

Numerical Methods for Natural Sciences IB Introduction

– 75 –

$

$

$

$

$

$

$

B

B

B

B

B

B

B

O

O O

































, (152)

where $A and $B are themselves block tridiagonal matrices and I is an identiy matrix.. This process
may be performed iteratively to reduce an n dimensional finite difference approximation to
Laplace’s equation to a tridiagonal system of equations with n–1 applications. The computational
cost is O(p log p), where p is the total number of mesh points. The main drawback of this method is
that the boundary conditions must be able to be cast into the block tridiagonal format.

8.1.2 Relaxation

An alternative to direct solution of the finite difference equations is an iterative numerical
solution. These iterative methods are often referred to as relaxation methods as an initial guess at
the solution is allowed to slowly relax towards the true solution, reducing the errors as it does so.
There are a variety of approaches with differing complexity and speed. We shall introduce these
methods before looking at the basic mathematics behind them.

8.1.2.1 Jacobi

The Jacobi Iteration is the simplest approach. For clarity we consider the special case when
∆x = ∆y. To find the solution for a two-dimensional Laplace equation simply:

1. Initialise Φij to some initial guess.

2. Apply the boundary conditions.

3. For each internal mesh point set

Φ*ij = (Φi+1,j + Φi–1,j + Φi,j+ 1 + Φi,j–1)/4. (153)

4. Replace old solution Φ with new estimate Φ*.

5. If solution does not satisfy tolerance, repeat from step 2.

An example of this algorithm is given in the table below where ϕ = 0 on the boundaries and the
initial guess is ϕ = 1 in the interior (clearly the answer is ϕ = 0 everywhere). The first four iterations
are labelled a, b, c and d.

a) 0

b) 0

c) 0

a) 0

b) 0

c) 0

a) 0

b) 0

c) 0

a) 0

b) 0

c) 0

a) 0

b) 0

c) 0

Numerical Methods for Natural Sciences IB Introduction

– 76 –

a) 0

b) 0

c) 0

a) 1

b) 1/2

c) 3/8

a) 1

b) 3/4

c) 1/2

a) 1

b) 1/2

c) 3/8

a) 0

b) 0

c) 0

a) 0

b) 0

c) 0

a) 1

b) 3/4

c) 1/2

a) 1

b) 1

c) 3/4

a) 1

b) 3/4

c) 1/2

a) 0

b) 0

c) 0

a) 0

b) 0

c) 0

a) 1

b) 1/2

c) 3/8

a) 1

b) 3/4

c) 1/2

a) 1

b) 1/2

c) 3/8

a) 0

b) 0

c) 0

a) 0

b) 0

c) 0

a) 0

b) 0

c) 0

a) 0

b) 0

c) 0

a) 0

b) 0

c) 0

a) 0

b) 0

c) 0

The coefficients in (153) (here all 1/4) used to calculate the refined estimate is often referred to
as the stencil or template. Higher order approximations may be obtained by simply employing a
stencil which utilises more points. Other equations (e.g. the bi-harmonic equation, ∇4Ψ = 0) may be
solved by introducing a stencil appropriate to that equation.

While very simple and cheap per iteration, the Jacobi Iteration is very slow to converge,
especially for larger grids. Corrections to errors in the estimate Φij diffuse only slowly from the
boundaries taking O(max(m,n)) iterations to diffuse across the entire mesh.

8.1.2.2 Gauss-Seidel

The Gauss-Seidel Iteration is very similar to the Jacobi Iteration, the only difference being that
the new estimate Φ* ij is returned to the solution Φij as soon as it is completed, allowing it to be used
immediately rather than deferring its use to the next iteration. The advantages of this are:

• Less memory required (there is no need to store Φ*).

• Faster convergence (although still relatively slow).

On the other hand, the method is less amenable to vectorisation as, for a given iteration, the new
estimate of one mesh point is dependent on the new estimates for those already scanned.

An example of the first iteration of the Gauss-Seidel approach using the same initial guess as our
Jacobi iteration in §8.1.2.1 is given below, with the iteration starting at the bottom left and moving
across then up.

Numerical Methods for Natural Sciences IB Introduction

– 77 –

a) 0

b) 0

c) 0

d) 0

a) 0

b) 0

c) 0

d) 0

a) 0

b) 0

c) 0

d) 0

a) 0

b) 0

c) 0

d) 0

a) 0

b) 0

c) 0

d) 0

a) 0

b) 0

c) 0

d) 0

a) 1

b) 13/32

c)

d)

a) 1

b) 29/64

c)

d)

a) 1

b) 29/128

c)

d)

a) 0

b) 0

c) 0

d) 0

a) 0

b) 0

c) 0

d) 0

a) 1

b) 5/8

c)

d)

a) 1

b) 13/32

c)

d)

a) 1

b) 29/64

c)

d)

a) 0

b) 0

c) 0

d) 0

a) 0

b) 0

c) 0

d) 0

a) 1

b) 1/2

c)

d)

a) 1

b) 5/8

c)

d)

a) 1

b) 13/32

c)

d)

a) 0

b) 0

c) 0

d) 0

a) 0

b) 0

c) 0

d) 0

a) 0

b) 0

c) 0

d) 0

a) 0

b) 0

c) 0

d) 0

a) 0

b) 0

c) 0

d) 0

a) 0

b) 0

c) 0

d) 0

Clearly in this example the solution is converging on zero more rapidly, but the symmetry that
existed in the initial guess has been lost.

8.1.2.3 Red-Black ordering

A variant on the Gauss-Seidel Iteration is obtained by updating the solution Φij in two passes
rather than one. If we consider the mesh points as a chess board, then the white squares would be
updated on the first pass and the black squares on the second pass. The advantages

• No interdependence of the solution updates within a single pass aids vectorisation.

Numerical Methods for Natural Sciences IB Introduction

– 78 –

• Faster convergence at low wave numbers.

An example, based on those in the previous two sections, is given below. Note that the cells
labelled “Red” are updated on the first pass and those labelled “Black” on the second pass. Unlike
the Gauss-Seidel, the order in which the cells are updated within one pass does not matter.

Black

a) 0

b) 0

Red

a) 0

b) 0

Black

a) 0

b) 0

Red

a) 0

b) 0

Black

a) 0

b) 0

Red

a) 0

b) 0

Black

a) 1

b) 3/8

Red

a) 1

b) 3/4

Black

a) 1

b) 3/8

Red

a) 0

b) 0

Black

a) 0

b) 0

Red

a) 1

b) 3/4

Black

a) 1

b) 3/4

Red

a) 1

b) 3/4

Black

a) 0

b) 0

Red

a) 0

b) 0

Black

a) 1

b) 3/8

Red

a) 1

b) 3/4

Black

a) 1

b) 3/8

Red

a) 0

b) 0

Black

a) 0

b) 0

Red

a) 0

b) 0

Black

a) 0

b) 0

Red

a) 0

b) 0

Black

a) 0

b) 0

In this example the solution is converging faster than the Jacobi iteration and at a comparable
rate to Gauss-Seidel, yet is maintaining the symmetries which existed in the initial guess. For many
problems, particularly those looking at instabilities, the maintenance of symmetries is important.

8.1.2.4 Successive Over Relaxation (SOR)

It has been found that the errors in the solution obtained by any of the three preceding methods
decrease only slowly and often decrease in a monotonic manner. Hence, rather than setting

Φ* ij = (Φi+1,j + Φi–1,j + Φi,j+1 + Φi,j–1)/4,

for each internal mesh point, we use

Φ*ij = (1–σ)Φij + σ(Φi+1,j + Φi–1,j + Φi,j+1 + Φi,j–1)/4, (154)

Numerical Methods for Natural Sciences IB Introduction

– 79 –

for some value σ. The optimal value of σ will depend on the problem being solved and may vary as
the iteration process converges. Typically, however, a value of around 1.2 to 1.4 produces good
results. In some special cases it is possible to determine an optimal value analytically.

8.1.3 Multigrid*

The big problem with relaxation methods is their slow convergence. If σ = 1 then application of
the stencil removes all the error in the solution at the wave length of the mesh for that point, but has
little impact on larger wave lengths. This may be seen if we consider the one-dimensional equation
d2ϕ/dx2 = 0 subject to ϕ(x=0) = 0 and ϕ(x=1) = 1. Suppose our initial guess for the iterative
solution is that Φi = 0 for all internal mesh points. With the Jacobi Iteration the correction to the
internal points diffuses only slowly along from x = 1.

,WHUDWLRQV

Multigrid methods try to improve the rate of convergence by considering the problem of a
hierarchy of grids. The larger wave length errors in the solution are dissipated on a coarser grid
while the shorter wave length errors are dissipated on a finer grid. for the example considered
above, the solution would converge in one complete Jacobi multigrid iteration, compared with the
slow asymptotic convergence above.

For linear problems, the basic multigrid algorithm for one complete iteration may be described as

1. Select the initial finest grid resolution p=P0 and set b(p) = 0 and make some initial
guess at the solution Φ(p)

2. If at coarsest resolution (p=0) then solve A(p)Φ(p)=b(p) exactly and jump to step 7

3. Relax the solution at the current grid resolution, applying boundary conditions

* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 80 –

4. Calculate the error r = AΦ(p)–b(p)

5. Coarsen the error b(p–1)←r to the next coarser grid and decrement p

6. Repeat from step 2

7. Refine the correction to the next finest grid Φ(p+1) = Φ(p+1)+αΦ(p) and increment p

8. Relax the solution at the current grid resolution, applying boundary conditions

9. If not at current finest grid (P0), repeat from step 7

10. If not at final desired grid, increment P0 and repeat from step 7

11. If not converged, repeat from step 2.

Typically the relaxation steps will be performed using Successive Over Relaxtion with Red-Black
ordering and some relaxation coefficient σ. The hierarchy of grids is normally chosen to differ in
dimensions by a factor of 2 in each direction. The factor α is typically less than unity and effectively
damps possible instabilities in the convergence. The refining of the correction to a finer grid will be
achieved by (bi-)linear or higher order interpolation, and the coarsening may simply be by sub-
sampling or averaging the error vector r.

It has been found that the number of iterations required to reach a given level of convergence is
more or less independent of the number of mesh points. As the number of operations per complete
iteration for n mesh points is O(n)+O(n/2d)+ +O(n/22d)+…, where d is the number of dimensions in
the problem, then it can be seen that the Multigrid method may often be faster than a direction
solution (which will require O(n3), O(n2) or O(n log n) operations, depending on the method used).
This is particularly true if n is large or there are a large number of dimensions in the problem. For
small problems, the coefficient in front of the n for the Multigrid solution may be relatively large so
that direct solution may be faster.

A further advantage of Multigrid and other iterative methods when compared with direct
solution, is that irregular shaped domains or complex boundary conditions are implemented more
easily. The difficulty with this for the Multigrid method is that care must be taken in order to ensure
consistent boundary conditions in the embedded problems.

8.1.4 The mathematics of relaxation*

In principle, relaxation methods which are the basis of the Jacobi, Gauss-Seidel, Successive Over
Relaxation and Multigrid methods may be applied to any system of linear equations to interatively
improve an approximation to the exact solution. The basis for this is identical to the Direct Iteration
method described in section 3.6. We start by writing the vector function

f(x) = Ax − b, (155)

and search for the vector of roots to f(x) = 0 by writing

xn+1 = g(xn), (156)

where

g(x) = D−1{[A+D]x − b} , (157)

* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 81 –

with D a diagonal matrix (zero for all off-diagonal elements) which may be chosen arbitrarily. We
may analyse this system by following our earlier analysis for the Direct Iteration method (section
3.6). Let us assume the exact solution is x* = g(x*), then

εn+1 = xn+1 − x*

= D-1{[A+D]xn − b} − D-1{[A+D]x* − b}

= D−1[A+D](xn − x*)

= D−1[A+D]εn

= { D−1[A+D]} n+1 ε0. (158)

From this it is clear that convergence will be linear and requires

||εn+1|| = ||Bεn|| < ||εn||, (159)

where B = D−1[A+D] for some suitable norm. As any error vector εn may be written as a linear
combination of the eigen vectors of our matrix B, it is sufficient for us to consider the eigen value
problem

Bεn = λεn, (160)

and require max(|λ|) to be less than unity. In the asymptotic limit, the smaller the magnitude of this
maximum eigen value the more rapid the convergence. The convergence remains, however, linear.

Since we have the ability to choose the diagonal matrix D, and since it is the eigen values of
B = D−1[A+D] rather than A itself which are important, careful choice of D can aid the speed at
which the method converges. Typically this means selecting D so that the diagonal of B is small.

8.1.4.1 Jacobi and Gauss-Seidel for Laplace equation*

The structure of the finite difference approximation to Laplace’s equation lends itself to these
relaxation methods. In one dimension,

A =

−
−

−
−

−

−





























2 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2

O O O

(161)

and both Jacobi and Gauss-Seidel iterations take D as 2I (I is the identity matrix) on the diagonal to
give B = D−1[A+D] as

* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 82 –

B =





























0 1 2

1 2 0 1 2

1 2 0 1 2

1 2 0 1 2

1 2 0 1 2

1 2 0

O O O

(162)

The eigen values λ of this matrix are given by the roots of

det(B-λI) = 0. (163)

In this case the determinant may be obtained using the recurrence relation

det(B-λ)(n) = -λ det(B-λ)(n-1) -
1/4 det(B-λ)(n-2) , (164)

where the subscript gives the size of the matrix B. From this we may see

det(B-λ)(1) = -λ ,

det(B-λ)(2) = λ2 - ¼ ,

det(B-λ)(3) = -λ3 + ½λ ,

det(B-λ)(4) = λ4 - ¾ λ2 + (1/16) ,

det(B-λ)(5) = -λ5 + λ3 - (3/16)λ ,

det(B-λ)(6) = λ6 - (5/4)λ4 + (3/8)λ2 - (1/64) ,

… (165)

which may be solved to give the eigen values

λ(1) = 0 ,

λ2
(2) = 1/4 ,

λ2
(3) = 0, 1/2 ,

λ2
(4) = (3 ± √5)/8 ,

λ2
(5) = 0, 1/4, 3/4 ,

… (166)

It can be shown that for a system of any size following this general form, all the eigen values satisfy
|λ| < 1, thus proving the relaxation method will always converge. As we increase the number of
mesh points, the number of eigen values increases and gradually fills up the range |λ| < 1, with the

Numerical Methods for Natural Sciences IB Introduction

– 83 –

numerically largest eigen values becoming closer to unity. As a result of λ→1, the convergence of
the relaxation method slows considerably for large problems. A similar analysis may be applied to
Laplace’s equation in two or more dimensions, although the expressions for the determinant and
eigen values is correspondingly more complex.

The large eigen values are responsible for decreasing the error over large distances (many mesh
points). The multigrid approach enables the solution to converge using a much smaller system of
equations and hence smaller eigen values for the larger distances, bypassing the slow convergence
of the basic relaxation method.

8.1.4.2 Successive Over Relaxation for Laplace equation*

The analysis of the Jacobi and Gauss-Seidel iterations may be applied equally well to Successive
Over Relaxation. The main difference is that D = (2/σ)I so that

BSOR =

−
−

−
−

−

−





























1 2

2 1 2

2 1 2

2 1 2

2 1 2

2 1

σ σ
σ σ σ

σ σ σ
σ σ σ

σ σ σ

σ σ
O O O

(167)

and thus

B I B ISOR J− = −
+ −





λ σ
λ σ

σ
1

(168)

and the corresponding eigen values λSOR are related to the eigen values λJ for the Jacobi and Gauss-
Seidel methods by

λSOR = 1 + σ(λJ − 1) (169)

Thus if σ is chosen inappropriately, the eigen values of B will exceed unity and the relaxation
method will diverge. On the otherhand, careful choice of σ will allow the eigen values of B to be
less than those for Jacobi and Gauss-Seidel, thus increasing the rate of convergence.

8.1.4.3 Other equations*

Relaxation methods may be applied to other differential equations or more general systems of linear
equations in a similar manner. As a rule of thumb, the solution will converge if the A matrix is
diagonally dominant, i.e. the numerically largest values occur on the diagonal. If this is not the case,

* Not examinable
* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 84 –

SOR can still be used, but it may be necessary to choose σ < 1 whereas for Laplace’s equation σ ≥ 1
produces a better rate of convergence.

8.1.5 FFT*

One of the most common ways of solving Laplace’s equation is to take the Fourier transform of
the equation to convert it into wave number space and there solve the resulting algebraic equations.
This conversion process can be very efficient if the Fast Fourier Transform algorithm is used,
allowing a solution to be evaluated with O(n log n) operations.

In its simplest form the FFT algorithm requires there to be n = 2p mesh points in the direction(s)
to be transformed. The efficiency of the algorithm is achieved by first calculating the transform of
pairs of points, then of pairs of transforms, then of pairs of pairs and so on up to the full resolution.
The idea is to divide and conquer! Details of the FFT algorithm may be found in any standard text.

8.1.6 Boundary elements*

8.1.7 Finite elements*

8.2 Poisson equation

The Poisson equation ∇2ϕ = f(x) may be treated using the same techniques as Laplace’s equation.
It is simply necessary to set the right-hand side to f, scaled suitably to reflect any scaling in A.

8.3 Diffusion equation

Consider the two-dimensional diffusion equation,

∂
∂

∂
∂

∂
∂

u

t
D

u

x

u

y
= +









2

2

2

2 , (170)

subject to u(x,y,t) = 0 on the boundaries x=0,1 and y=0,1. Suppose the initial conditions are
u(x,y,t=0) = u0(x,y) and we wish to evaluate the solution for t > 0. We shall explore some of the
options for achieving this in the following sections.

8.3.1 Semi-discretisation

One of the simplest and most useful approaches is to discretise the equation in space and then
solve a system of (coupled) ordinary differential equations in time in order to calculate the solution.
Using a square mesh of step size ∆x = ∆y = 1/m, and taking the diffusivity D = 1, we may utilise our
earlier approximation for the Laplacian operator (equation (148)) to obtain

* Not examinable
* Not examinable
* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 85 –

∂
∂
u

t

u u u u u

x
i j i j i j i j i j i j, , , , , ,≈

+ + + −+ − + −1 1 1 1

2

4

∆
(171)

for the internal points i=1,m–1 and j=1,m–1. On the boundaries (i=0,j), (i=m,j), (i,j=0) and (i,j=m)
we simply have uij=0. If Uij represents our approximation of u at the mesh points xij, then we must
simply solve the (m–1)2 coupled ordinary differential equations

() ()′ = + + + −+ − + −U t U U U U U xi j i j i j i j i j i j, , , , , , /1 1 1 1
24 ∆ . (172)

In principle we may utilise any of the time stepping algorithms discussed in earlier lectures to
solve this system. As we shall see, however, care needs to be taken to ensure the method chosen
produces a stable solution.

8.3.2 Euler method

Applying the Euler method Yn+1 = Yn+∆tf(Yn,tn) to our spatially discretised diffusion equation
gives

() () () () () () ()()U U U U U U Ui j
n

i j
n

i j
n

i j
n

i j
n

i j
n

i j
n

, , , , , , ,
+

+ − + −= + + + + + −1
1 1 1 1 4µ , (173)

where the Courant number

µ = ∆t/∆x2, (174)

describes the size of the time step relative to the spatial discretisation. As we shall see, stability of
the solution depends on µ in contrast to an ordinary differential equation where it is a function of the
time step ∆t only.

8.3.3 Stability

Stability of the Euler method solving the diffusion equation may be analysed in a similar way to
that for ordinary differential equations. We start by asking the question “does the Euler method
converge as t–>infinity?” The exact solution will have u –> 0 and the numerical solution must also
do this if it is to be stable.

We choose

U(0)
i,j=sin(αi) sin(βj), (175)

for some α and β chosen as multiples of π/m to satisfy u = 0 on the boundaries. Substituting this
into (173) gives

U(1)
i,j = sin(αi)sin(βj) + µ{sin[α(i+1)]sin(βj) + sin[α(i−1)]sin(βj)

+ sin(αi)sin[β(j+1)] + sin(αi)sin[β(j-1)] − 4 sin(αi)sin(βj)}

= sin(αi)sin(βj) + µ{[sin(αi)cos(α) + cos(αi)sin(α)]sin(βj) + [sin(αi)cos(α) − cos(αi)sin(α)]sin(βj)

+ sin(αi)[sin(βj)cos(β) + cos(βj)sin(β)] + sin(αi)[sin(βj)cos(β) − cos(βj)sin(β)] − 4 sin(αi)sin(βj)}

Numerical Methods for Natural Sciences IB Introduction

– 86 –

= sin(αi)sin(βj) + 2µ{sin(αi)cos(α) sin(βj) + sin(αi)sin(βj)cos(β) − 2 sin(αi)sin(βj)}

= sin(αi)sin(βj){1 + 2µ[cos(α) + cos(β) − 2]}

= sin(αi)sin(βj){1 − 4µ[sin2(α/2) + sin2(β/2)]} . (176)

Applying this at consecutive times shows the solution at time tn is

U(n)
i,j = sin(αi)sin(βj) {1 − 4µ[sin2(α/2) + sin2(β/2)]} n, (177)

which then requires |1 − 4µ[sin2(α/2) + sin2(β/2)]| < 1 for this to converge as n->infinity. For this to
be satisfied for arbitrary α and β we require µ < 1/4. Thus we must ensure

∆t < ∆x2/4. (178)

A doubling of the spatial resolution therefore requires a factor of four more time steps so overall the
expense of the computation increases sixteen-fold.

The analysis for the diffusion equation in one or three dimensions may be computed in a similar
manner.

8.3.4 Model for general initial conditions

Our analysis of the Euler method for solving the diffusion equation in section 8.3.3 assumed
initial conditions of the form sin(kπx/Lx) sin(lπy/Ly) where k,l are integers and Lx, Ly are the
dimensions of the domain. In addition to satisfying the boundary conditions, these initial conditions
represent a set of orthogonal functions which may be used to construct any arbitrary initial
conditions as a Fourier series. Now, since the diffusion equation is linear, and as our stability
analysis of the previous section shows the conditions under which the solution for each Fourier
mode is stable, we can see that the equation (178) applies equally for arbitrary initial conditions.

8.3.5 Crank-Nicholson

The implicit Crank-Nicholson method is significantly better in terms of stability than the Euler
method for ordinary differential equations. For partial differential equations such as the diffusion
equation we may analyse this in the same manner as the Euler method of section 8.3.3.

For simplicity, consider the one dimensional diffusion equation

∂
∂

∂
∂

u

t

u

x
=

2

2 (179)

with u(x=0,t) = u(x=1,t) = 0 and apply the standard spatial discretisation for the curvature term to
obtain

() () () (){ } () () () (){ }U U U U U U U Ui
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n+

+
+ +

−
+

+ −− − + = + − +1
1

1 1
1

1
1 12

2
2

2
µ µ

(180)

for the i=1,m−1 internal points. Solution of this expression will involve the solution of a tridiagonal
system for this one-dimensional problem at each time step:

Numerical Methods for Natural Sciences IB Introduction

– 87 –

()

()

()

()

()

()

()

()

1

1

1

1

1

1

1

1

1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0
1

1
1

2
1

3
1

4
1

5
1

6
1

1
1

− + −
− + −

− + −
− + −

− + −
− + −

− + −







































+

+

+

+

+

+

+

−
+

µ µ µ
µ µ µ

µ µ µ
µ µ µ

µ µ µ
µ µ µ

µ µ µ

U

U

U

U

U

U

U

U

n

n

n

n

n

n

n

m
n

()

() () ()()
() () ()()

() () ()()
U

U U U U

U U U U

U U U U

m
n

n n n n

n n n n

m
n

m
n

m
n

m
n

+
− − −







































=

+ − +
+ − +

+ − +



































1

1
1
2 2 1 0

2
1
2 3 2 1

1
1
2 1 2

0

2

2

2

0

µ
µ

µ

(181)

To test the stability we again choose a Fourier mode. Here we have only one spatial dimension so
we use U(0)

i = sin(θi) which satisfies the boundary condition if θ is a multiple of π. Substituting this
into (182) we find

U U Ui
n

i
n

i

n

=
−
+







 =

−
+







−1

2
2

2
2

0
2

2
2

2

1 2

1 2

1 2

1 2

µ
µ

µ
µ

θ

θ

θ

θ

sin

sin

sin

sin
. (182)

Since the term [1–2µsin2(θ/2)]/[1+2µsin2(θ/2)] < 1 for all µ > 0, the Crank-Nicholson method is
unconditionally stable. The step size ∆t may be chosen on the grounds of truncation error
independently of ∆x.

8.3.6 ADI*

Not examinable

8.4 Advection*

Not examinable

8.4.1 Upwind differencing*

Not examinable

8.4.2 Courant number*

Not examinable

* Not examinable
* Not examinable
* Not examinable
* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 88 –

8.4.3 Numerical dispersion*

Not examinable

8.4.4 Shocks*

Not examinable

8.4.5 Lax-Wendroff*

Not examinable

8.4.6 Conservative schemes*

Not examinable

* Not examinable
* Not examinable
* Not examinable
* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 89 –

9. Number representation*

This section outlines some of the fundamentals as to how numbers are represented in computers.
None of the material in this section is examinable.

9.1. Integers*

Normally represented as 2’s compliment. Positive integers are presented as their binary
equivalents:

Decimal Binary Two’s compliment (16 bit)
1 1 0000000000000001
5 101 0000000000000101
183 10110111 0000000010110111
255 11111111 0000000011111111
32767 111111111111111 0111111111111111

Negative numbers are obtained by taking the one’s compliment (i.e. inverting all bits) and adding
one: –A = (A xor 11111111111112) + 1. Any carry bit generated is discarded. This operation is its
self-inverse

Decimal Two’s compliment (16 bit)
A 5 0000000000000101

xor 1111111111111 1111111111111010
+ 1 –5 1111111111111011

Decimal Two’s compliment (16 bit)

–A –5 1111111111111011

xor 1111111111111 0000000000000100

+ 1 5 0000000000000101

Examples
Decimal Binary Two’s compliment (16 bit)
–1 –1 1111111111111111
–5 –101 1111111111111011
–183 –10110111 1111111101001001
–255 –11111111 1111111100000001
–32767 –111111111111111 1000000000000001
–32768 –1111111111111110 1000000000000000

• The number must be represented by a known number of bits, n (say)

• The highest order bit indicates the sign of the number

• If n bits are used to represent the integer, values in the range –2n–1 to 2n–1–1 may be
represented. For n=16, values from –32768 to 32767 are represented

* Not examinable
* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 90 –

• Normal binary addition of two two’s compliment numbers produces a correct result
if any carry bit is discarded

Decimal Two’s compliment (16 bit)

–5 1111111111111011
+ + 183 0000000010110111

binary sum ??? 10000000010110010

discard carry bit 178 0000000010110010

9.2. Floating point*

Represented as a binary mantissa and a binary exponent. There are a number of strategies for
encoding the two parts. The most common of these is the IEEE floating point format which we
describe here.

Figure 24 shows the IEE format for four byte floating point values, and figure 25 the same for
eight byte values. In both cases the number is stored as a sign bit followed by the expondent and the
mantissa. The number of bits used to represent the exponent and mantissa varies depending on the
total number of bits.

Sign bit. The sign bit gives the overall sign for the number. A value of 0 indicates positive
values, while 1 indicates negative values.

Exponent. This occupies eight bits for four byte values and eleven bits for eight byte values. The
value stored in the exponent field is offset such that for four byte reals exponents of n = -1 ,0 and +1
are stored as 126 (=011111102), 127 (=011111112) and 128 (=100000002) respectively. The
corresponding stored values for eight byte numbers are 1022 (=011111111102), 1023
(=011111111112) and 1024 (=100000000002). Each of these exponents represents a power of two
scaling on the mantissa.

Mantissa. The mantissa is stored as unsigned binary in the remaining 23 (four byte values) or 52
(eight byte values) bits. The use of a mantissa plus an exponent means that the binary representation
of all floating point values apart from zero will start with a one. It is thus unnecessary to store the
first binary digit, and so improve the accuracy of the number representation. There is an assumed
binary point (equivalent of a decimal point) following the unstored part of the number.

Zero. The value zero (0) does not follow the pattern of a unit value for the first binary digit in the
mantissa. Given that, plus it being, in general, a special case, zero does not follow the above
pattern. Instead, it is stored with all three components set to zero.

In the example below we show the four byte IEE representations of a selection of values.Binary
values are indicated by a subscript 2.

Decimal Sign Exponent Mantissa Value Stored
seeeeeee emmmmmmm mmmmmmmm mmmmmmmm

0.0
02

0
00000000 2

0.0
0.00000 2

0.0
00000000 00000000 00000000 00000000 2

1.0 +
02

0
01111111 2

1.0
1.00000 2

1.0
00111111 10000000 00000000 00000000 2

8.0 +
02

3
10000100 2

1.0
1.00000 2

8.0
01000001 00000000 00000000 00000000 2

* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 91 –

3.0 +
02

1
100000002

1.5
1.100002

3.0
01000000 01000000 00000000 000000002

-3.0 -
12

1
100000002

1.5
1.100002

-3.0
11000000 01000000 00000000 000000002

0.25 +
02

-2
011111012

1.0
1.000002

0.25
00111110 10000000 00000000 000000002

0.2 +
02

-3
011111002

1.6
1.100112

0.2 + 0.0000000149..
00111110 01001100 11001100 11001101

The first six values in this table yield exact representations under the IEE format. The final value
(0.2), however, while an exact decimal, is represented as a recurring binary and thus suffers from
truncation error in the IEEE format. Here the final bit has been rounded up, whereas the recurring
sequence would carry on the 11001100 pattern. The error for a single value is small, but when
carried through the a number of stages of computation, may lead to substantial errors being
generated.

9.3. Rounding and truncation error*

The finite precision of floating point arithmetic in computers leads to rounding and truncation
error. Truncation error is the result of the computer not being able to represent most floating point
values exactly.

If two floating point values are combined, by addition, for example, then there may be a further
loss of precision through rounding error even if both starting values may be represented exactly.
Consider the sum of 0.00390625=0.000000012 and 16=100002, both of which have exact
representations in our binary floating point format. The sum of these, 10000.000000012 would
require a 13 bit mantissa. If we were to have a format where we have only 12 bits stored for the
mantissa, it would be necessary to reduce the number by either rounding the binary number up to
10000.00000012, or truncating it to give 10000.00000002. In either case there is a loss of precision.
The effect of this will accumulate of successive computations an may lead to a meaningless final
result if care is not taken to ensure adequate precision and a suitable order for calculations.

9.4. Endians*

While almost all modern computers use formats discussed in the previous sections to store
integer and floating point values, the same value may not be stored in the same way on two different
machines. The reason for this is in the architecture of the central processing unit (CPU). Some
machines store the least significant byte of a word at the lower memory address and the most
significant byte at the upper memory address occupied by the value. This is the case for machines
based on Intel and Digital processors (e.g. PCs and DEC alphas), amongst others. However, other
machines store the values the opposite way around in memory, storing the least significant byte at
the higher memory address. Many (but not all) Unix work stations use the latter strategy.

The result of this is that files containing binary data (e.g. in the raw IEEE format rather than as
ASCII text) will not be easily portable from a machine that uses one convention to one that uses the

* Not examinable
* Not examinable

Numerical Methods for Natural Sciences IB Introduction

– 92 –

other. A two byte integer value of 1 = 00000000 000000012 written by one machine would be read
as 256 = 00000001 000000002 when read by the other machine.

Numerical Methods for Natural Sciences IB Introduction

- 93

10. Computer languages*

A complete discussion of computer languages would require a whole course in
itself. These notes are simply intended to give the reader a feeling for the strengths
and uses of different languages. The notes are written from the perspective of
someone who was brought up on a wide range of languages with programs suitable for
both procedural and object oriented approaches. The discussion is necessarily brief
and may be unfairly critical on some languages.

Ideally you would use the language which is most appropriate for a given
application. For most projects, the language will be selected from the intersection of
the subset of languages you know and the set of languages supported on the specific
platform you require. Only for large projects is it worth investing the time and money
required to utilise the optimal language.

None of the material in this section is examinable.

10.1. Procedural verses Object Oriented*

For many applications, the current trend is towards object oriented languages such
as C++. Procedural languages are considered behind the times by many computer
scientists, yet they remain the language of choice for many scientific programs. The
main procedural contender is, and has always been Fortran. Both C++ and Fortran
have their advantages, depending on the task at hand. This section is intended to act as
an aid for choosing the appropriate language for a given task.

10.2. Fortran 90*

Fortran is one of the oldest languages still in wide spread use. It has long had a
standard, enabling programs written for one type of machine to be relatively easily
ported to run on a different type of machine, provided a Fortran compiler was
available. The standard has evolved to reflect changes in coding practices and
requirements. Unfortunately for many programmers, the standard lags many years
behind current thinking. For example, Fortran 77 is the standard to which the majority
of current compilers adhere. As the name suggests, the standard was released in 1977
and the demands of computing have changed significantly since then.

The latest standard, Fortran 90, was not finally released until about 1994. Like
earlier improvements to the standard, it maintains a high level of backward
compatibility. A Fortran 90 compiler should be able to compile all but a few of the
oldest of Fortran programs (assuming they adhere to the relevant standard). While
Fortran 90 answers the majority of criticisms about the earlier version, work has

* Not examinable
* Not examinable
* Not examinable

Numerical Methods for Natural Sciences IB Introduction

- 94

already started on the next generation, helping to ensure Fortran remains in wide
spread use.

10.2.1. Procedural oriented*

The origins of Fortran as a scientific computer language are reflected in the name
which stands for Formula Translation. The language is procedural oriented with the
algorithm (or “formula”) playing the central rôle controling the way the program is
written and structured. In contrast, the object oriented C++ (see below) focuses on the
data. For the majority of scientific programs using the types of algorithms introduced
in this course, the procedural oriented approach is more appropriate. The program
generates data from input parameters. The underlying numerical algorithms process
one type of data in a consistent manner.

As the most computationally intensive programs have traditionally followed the
procedural model, and have been written in Fortran, there has been a tremendous
effort put into developing optimisation strategies for Fortran compilers. As a result the
code produced by Fortran compilers is normally more efficient for a numerical
program than that produced by other language compilers. In contrast, if you were to
develop a word processor, for example, in Fortran, the end result would be less
efficient (in terms of speed and size) and more cumbersome than something with the
same functionality developed in C++.

10.2.2. Fortran enhancements*

For those familiar with Fortran 77, the Fortran 90 standard has introduced many of
the features sadly missing from the earlier version. Control structures such as DO
loops have done away with the need for a numeric label. WHILE, CASE and BREAK
statements have been added to simplify program logic, and the ability to call
subroutines recursively allows the program to operate more efficiently. From the data
side structures (records), unions an maps greatly simplify the passing of parameters
and the organisation of variables without resort to a multitude of COMMON blocks.

Perhaps the most significant changes accompany a move from all data structures
being static (i.e. the size of and space required by variables is determined at compile
time) to allowing dynamic allocation of memory. This greatly improves the flexibility
of a program and frequently allows you to achieve more with less memory as the same
memory can be reused for different purposes.

Many of these enhancements have been borrowed from languages such as C++,
and adapted to the Fortran environment. One of the most powerful (and, if abused,
most dangerous) is the ability to overload a function or operator. By overloading a
function or operator, the precise result will depend on the type (and number) of
parameters or operands used in executing the function/operator. For example, the
operator “+” could be defined such that, when it “adds” two strings, then it
concatenates them together, perhaps stripping any trailing spaces in the process.

* Not examinable
* Not examinable

Numerical Methods for Natural Sciences IB Introduction

- 95

Similarly it would be possible to define “number=string” such that the string “string”
was passed to an interpreter function and the contents of it evaluated. Clearly doing
something like defining “WRITE” as “READ” would lead to a great deal of
confusion!

10.3. C++*

Like Fortran, C++ has evolved from earlier languages. The original, BCPL, was
adopted and enhanced by Bell Laboratories to produce B and then C as part of their
project to develop Unix.

10.3.1. C*

The main features of C are its access to low-level features of the system and its
extremely compact (and often confusing) notation. C has often been described as a
write only language as it is relatively easy to write code which almost no one will be
able to decipher. The popularity of C stems from its close association with Unix rather
than from any inherent qualities. While there are probably still more programs written
in Fortran and COBOL than there are in C, it is almost certain that more people use
programs written in C (or C++) than in any other language. The vast majority of
shrink wrapped applications are now written in C or C++.

While C compilers are still widely available and in common use, there is little or
no justification for using C for any new project. C++ (which is more than just an
improved version of C) provides all the functionality of C and allows the code to be
written in a more flexible and readable manner.

Many programs were written in C during the late 1980s because it was the “in”
language rather than the best for a given application. As a result of this investment and
the relative simplicity of gradually moving over to C++, most mainstream applications
in C

10.3.2. Object Oriented*

As systems became bigger, it became desirable – often essential – to reuse
components as much as possible. Historically this was achieved through the use of
software libraries, but such libraries tend to be useful only for low-level routines. The
concept of Object Oriented Programming was introduced to C to provide a straight
forward way of handling many similar – but not identical – objects without having to
write specialised code for each object. An object is simply some data which describes
a coherent unit.

* Not examinable
* Not examinable
* Not examinable

Numerical Methods for Natural Sciences IB Introduction

- 96

Suppose we have an object my_cup which belongs to some class Ccup_of_drink
(say). The object my_cup will take the form of a description of the cup which might
include information about its colour, its texture, its use and its contents. Suppose we
also have an object my_plate and that this belongs to a class Cplate_of_food. Clearly
there is much in common between a cup and a plate. They are both crockery, although
my_cup will contain a drink while my_plate will contain food. To save us having to
define the crockery aspects separately for my_cup and my_plate, we shall allow them
to inherit these attributes from a class Ccrockery. Tableware will, in turn, inherit
attributes from other classes such as Ctableware, Ccolour and Ctexture. This
hierarchy may be expressed as

Ccup_of_drink: Ccrockery, Cdrink

Cplate_of_food: Ccrockery, Cfood

Ccrockery: Ctableware, Ccolour, Ctexture

Similarly we might have a teaspoon my_teaspoon belonging to Ccutlery which
follows

Ccutlery: Ctableware, Ccolour

The object-oriented approach comes in if we have an object my_dishwasher. The
dishwasher will accept all objects belonging to Ctableware. The classes Ccrockery
and Ccutlery are both derived from Ctableware and so any Ccrockery or Ccutlery
object is also a Ctableware object, and can thus be washed by the my_dishwasher.
Similarly as Ccup_of_drink and Cplate_of_food are derived (indirectly) from
Ctableware and so can be washed by my_dishwasher.

The object my_dishwasher would simply say “wash thyself” to any object it
contains. For a Ccrockery or Ccutlery object the process of washing would be
identical, and could thus be embodied at the Ctableware level. It is not quite so simple
for the Ccup_of_drink and Cplate_of_food objects as they contain food which would
be destroyed by the dishwasher. Thus when my_dishwasher tries to wash the
Ctableware derived object my_plate, it is necessary for the Cplate_of_food class to
override the Ctableware procedure for washing. In this example the Cplate_of_food
response to the dishwasher may be to declare the my_plate empty of food and then
pass the request for washing the plate down to its embedded Ccrockery class which
will in turn pass it down to Ctableware.

10.3.3. Weaknesses*

On the surface, the class structure would appear to allow C++ to be adapted to any
type of application. In practice there are some things that are difficult to achieve in a
seamless way and others which lead to relatively inefficient programming. This
inefficiency may not matter for a wordprocessor (although users of Microsoft Word
may not agree), but can be critical for a large scale numerical simulation.

For someone brought up on most other languages, the most obvious omission is
support for multidimensional arrays. While C++ is able to have an array of arrays, and

* Not examinable

Numerical Methods for Natural Sciences IB Introduction

- 97

so have some of the functionality of a multidimensional array, they can not be used in
the same way and the usual notation can not be employed. Further, it is easy to get
confused as to what you have an array of, especially with the cryptic notation shared
by C and C++.

C++ itself is a very small language with only a few built in functions and operators.
It gains its functionality through standard and specialised libraries. While this adds to
the flexibility, it has implications on the time taken to compile a program and, more
importantly, on the execution speed. Even with the most carefully constructed
libraries and the functions being inserted in-line (instead of being called), the fact the
compiler does not understand the functions within the library limits the degree of
optimisation which can be achieved.

10.4. Others*

10.4.1. Ada*

Touted as the language to replace all other languages, Ada was introduced in the
1980s with a substantial backing from the US military. Its acceptance was slow due to
its cumbersome nature and its unsuitability for many of the computers of the period.

10.4.2. Algol*

In the late 1960s and early 1970s Algol (Algorithmic Language) looked as though
it would become the scientific computer language. Algol forced the programmer to
adopt a much more structured approach than other languages at the time and offered a
vast array of built-in functionality such as matrix manipulation. Ultimately it was the
shear power that lead to the demise of Algol as it was unable to fit on the smaller mini
and microcomputers as they were developed.

10.4.3. Basic*

Basic has developed from a design exercise in Southampton to the language which
is known by more people than any other. The name Basic (Beginners Symbolic
Instruction Code) does not really represent a language, but rather a family of
languages which appear similar in concept but will differ in almost every important
detail. Most implementations of Basic are proprietary and some are much better than
others. Basic was designed as an interpreted language and most implementations
follow this heritage. The name Basic is often used for the interpreted macro language
in many modern applications, especially those from Microsoft.

* Not examinable
* Not examinable
* Not examinable
* Not examinable

Numerical Methods for Natural Sciences IB Introduction

- 98

10.4.4. Cobol*

Cobol (Common Business Oriented Language) and Fortran are the only two early
high-level languages remaining in widespread use. However, whereas Fortran has
evolved with time, Cobol is essentially the same as it was 30 years ago. It is an
extremely verbose, English-like language aimed at business applications. It remains in
widespread use not because of any inherent advantages, but because of the huge
investment which would be required to upgrade the software to a more modern
language.

10.4.5. Delphi*

Developed by Borland International as a competitor for Microsoft’s Visual Basic,
Delphi tries to combine the graphical development tools of Visual Basic with the
structure and consistency of Pascal and the Object Oriented approach of C++ and
Smalltalk. It is being predicted that Delphi will become increasingly popular on PCs.

10.4.6. Forth*

A threaded-interpreted language. Developed to control telescopes. Uses reverse-
polish notation. Extremely efficient for an interpreted language, but relatively hard to
read and program.

10.4.7. Lisp*

Good for Artificial Intellegence, provided you like recursion and counting brackets.

10.4.8. Modula-2*

An improved form of Pascal. Very good, but never widely accepted.

10.4.9. Pascal*

Developed as a teaching language. The standard lacks many of the features
essential for effective computing. Most implementations provide significant
enhancements to this standard, but are often not portable. Can be used for scientific
programming, but the compilers are often inferior to those of Fortran and C++.

* Not examinable
* Not examinable
* Not examinable
* Not examinable
* Not examinable
* Not examinable

Numerical Methods for Natural Sciences IB Introduction

- 99

10.4.10. PL/1*

Introduced by IBM in the 1970s as a replacement for both Cobol and Fortran, PL/1
has some of the advantages and some of the disadvantages of both languages.
However, it never gained much of a following due to a combination of its proprietary
nature and a requirement for very substantial mainframe resources.

10.4.11. PostScript*

Often thought of as a printer protocol, PostScript is in fact a full-fledged language
with all the normal capabilities plus built in graphics! Like Forth, PostScript is a
threaded-interpreted language which results in efficient but hard to read code. While
PostScript can be used for general-purpose computing, it is inadvisable as it would tie
up the printer for a long time! Unlike most languages in wide-spread use, PostScript is
a proprietary language belonging to Adobe. There are, however, many emulations of
PostScript with suitably disguised names: GhostScript, StarScript, …

10.4.12. Prolog*

10.4.13. Smalltalk*

One of the first object-oriented programming languages. It provides a more
consistent view than C++, but is less widely accepted.

10.4.14. Visual Basic*

This flavour of Basic was introduced by Microsoft as an easy method of writing
programs for the Windows GUI. It has been an extremely successful product, but
remains relatively inefficient for computational work when compared with C++ or
Fortran.

* Not examinable
* Not examinable
* Not examinable
* Not examinable
* Not examinable

