Numerical Methods for Natural Sciences |B Introduction

Numerical M ethods
Natural Sciences Tripos 1B
L ecture Notes
Lent Term 1999

© Stuart Dalziel

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

Phone: (01223) 337911
E-mail: s.dalziel @damtp.cam.ac.uk
WWW: ht t p: / / www. dant p. cam ac. uk/ user/ fdl / peopl e/ sd103/
Lecture Notes. ht t p: / / www. dant p. cam ac. uk/ user/ f dl / peopl e/ sd103/ | ect ur es/

Formatting and visibility in thisversion:

Subsections
Sub-subsections

Fourth order subsections

All versions
Full text

Common equations — complete equation given in handouts
Hidden equations — these were left incomplete in handouts

Full figures
Tables



Numerical Methods for Natural Sciences |B Introduction

CONTENTS |
]
» Page numbers are correct only for the hand-out with which they are given
Formatting and visibility in thiSVErSION: .......ooveii i 1
S U] 01T o3 1 1
SUD-SUDSECHIONS......cciveiee et e ettt e e e et e e s et e e e e b e e s e saba e e e s saabaeessasbesesssabeseessasbaeeesasbenesssnrenes 1
I g0 o [Tt o o 6
I @ ] 1= 1= 6
2 Yo 6
LCT= 0SS R 6
MOFE SPECIAIISEA: ...ttt b et b e b bt e et e e e e ne e 6
1.3 ProgrammMing........ceuuuuuuuieieieeeeeeeeeeeeeeeeeessasss s s e s e e e eeeeeaeeeessasssssnnnnaasseeeeeeeesss mmmmmmnnns ias
1 1o o | 7
O RS ) 1011z L= L] o= T = 7
1.4.2 MALNS SYSTEITIS ...ttt bttt bbbt e e e b e ne e 7
YO0 U] =TT O 1= To || A 8.
ST VA=Y £ o 8
1.6.1 Notes disctributed during |€CTUIES.........cveeeriiirerieeeee e 8
ST Y o] o = 8
T3 1LY/ R 8
1.6.4 COPYITGNL ...ttt e e e nn e ne e 9
2 (=Y o = E TSRS SO PPN 10
3 ROOt fiNAING 1IN ONE AIMENSION .....viiieieeieeeeeeee et te e e sreeeeeneenseeneas 11
G 00 VL Y PSSO S 11
G T2 = 1YY 1 1 o 11
2.1 CONVENGEICE ...ttt ettt ettt b e e s s e s b e e e e e s e e e b e e resaeenb e e nesaneabe e neennenre e 12
I O 1 (= - VR 12
3.3 Linear interpolation (regula falSi) .........ccccoiiiiiiiii i C T 1
3.4 NeWLON-RAPNSON......uuiiiiiii e e e e eeneas 14.....
I O]\ < (oSS 15
RIS = Tor= T A (] [0 (o | ISR 16.
GBS0 A O0 01V 0 oo OSSR 18
I I B (T A (=] =11 0 I, 19
3.6.1 CONVENGEICE ...ttt ettt b e e bt et e s b e e n e saeesb e e s e eaeeane e nennnenre e 20
A e T 1] ][ U 21
I N =TT = ox 1o T 1 0= 1 0o [ 21
3.7.2 Linear iNterPOIALiON.....cc.ccuiiiecie ettt e r e e esr e e n e e eeere s 22
3.7.3 NEWLON-RAPNSON......cceeeiiicieciece et e sre e n e e s reenneeneeere s 22
T A S < o= g 1= 1 0o O 23
RS Y DT g= o L (= =1 1o o O 23



Numerical Methods for Natural Sciences |B Introduction

3.7.6 Comparison........ s 25
7.7 FOItran PrOgraM ....cc.cooeeeeieesreeee et sse s s re e e sreesnesanesneennesnnesne s 26
A LINEAI EQUALIONS ....uvitiiteeiieieeeetest et sttt e e s e b et b e sb e he e st e se e s e e e b e nbeebenbeeaeese e e e e e s e nbeneeenis 29
4.1 GaUSS EIMINALION ....uiiiiiiiiiiiiiiiii e e e e et e e e e e e e e e e e e e s s s e s an s mnnens 29....
A Y ] 1] o SRS 32
4.2.1 Partial PIVOLING .....ccveiveieirieeiieieee ettt e e e b e nne e 33
A.2.2 FUIl PIVOLING. ...ttt st b et et e et benneene e 33
G I U I - T (0] £ 57= 11 [ I PP PPUUPPUPPP 34.
S T VgL =T N 0 = L1 o =S PPPUPPRR 36....
4.5 Tridiagonal MALFICES .....coei i it e et s e e e e e e e e e e eeeeeeeees s 36.....
4.6 Other approaches to solving linear SYStEMS..........ccciiiiiiiiiiiiieee e K
4.7 OVEr determMiNEd SYSLEMIS. ......cveoveeeeeeeeeeeeeeeeeee e eee et e et e et e et e e et e e e e e e e e eee et eae s eeeeneeeea, 38
4.8 Under deterMiNed SYSIEMIS. ........voviviveeeeeeeeieeeeeesteeseteees s s sesteeseseseeses s eesssesteseeeesenenanaes 40
S5 NUMENTCAl INTEYNBLION. ...ttt nn e e e snennenneas 41
5.1 Manual MEeTNOQ .........uviviiiiiiiiiiie e s s 41....
5.2 CONSTANT TUIE ...t e e ettt s s s e e e e e e e e e e e e eeesmmmnnnnns 41
5.3 TrapeZiUM FUIE .....coeeeieiieiecee e s e e e e e e e e e e e e eeeeennnnnne s e e e e e e e e e 2
5.4 Mid-POINT TUIE ...t e et e e e e e e e e e e e e e e s s s emmmnnnne s 44
5.5 SIMPSON'S TUIE ..ot e e e e e e e e e e e eeeeeanannnnnn e e s cnnn S
5.6 QUAAIAtiC tHANGUIALION............evveveeeeeeeeeecece et es ettt en st e et eeeen s s eeaes 48
5.7 ROMDErg iNtEGration ...........oeuuiiiiiiiiiiiii e e e e e e e e e e e e e e e e e e mnes 49......
5.8 GAUSS QUAAIATUIE.......uuuiiiiiiiiieie e e e e e e e ettt ettt e e e e e e e e e e e e e e e s e s nbbreeeees 50....
5.9 Example of numerical integration....; .................................................................................. 5!
5.9.1 Program for numerical integration ..........ccocevereririeeieeniesie e e 54
6 First order ordinary differential @qUations...........ccccevieeiieie e 57
L A = Y (o] ST 1o PP P PP 57
6.2 FINIte IffErENCE ... .o e e e e e e e e e e e 57
LG I U L= AT o I =T 1 (o] PP PPPPRRR 58.
6.4 BUIEr METNOM. ... e e e e e e e e e e e e e s s 59.
6.5 IMPIICIt METNOAS ... oo eeeeeas 60..
I = =T Y= o U SR 60
6.5.2 Richardson extrapolation ............cocereeiriieneeie e nae s 61
6.5.3 Crank-NiChOISON........coiiriiiieseeceee sttt esre et e e e nreeneas 62
6.6 MUILISTEP METNOUS.... ..o e e e e e e e e e e e e e e aee e 63....
B.7 STADIILY ..eeeeiiieieee e e e e e e e e e e e s — 63
6.8 Predictor-correCtor MEtNOUS. ........uuviiiiiiiee e 65..........
6.8.1 Improved Buler MEthOd............ccoiriiiiees e s 66
6.8.2 Runge-Kutta MELNOAS............ccciiiiecice e 66
7 Higher order ordinary differential @quations..........ccccocceevieieiieesecce e 68
7.1 Initial value ProbIEmMS ..........ueii 68....
7.2 Boundary value problIemS ... Fo R 6
7.2.1 SN0O0tING MELNOM ... e bbbt be e nnas 68



Numerical Methods for Natural Sciences |B Introduction

7.2.2 LiNEAI @UALTONS......cueeiteeieeieerieeiesiee e eeesseesteetesseesseetesseesseenseeseesseensesseesseensesseessennens 69
7.3 OtNEI CONSIABIALIONS. ... .eeeveeeeee oo ee e e e e e e e e e e e e e e e e e e e e e e e e e e e 70
7.3 L TIUNCALION EITOT oo e e e e e e e e e e e e e et e e et e e e e e s et et e e e e e s et eeeeeseseseseseeananns 71
7.3 2 Error @and SEP CONIIOL ...ttt en e ees e 71
8 Partial differential @qUAatIoNS...........c.coeeiiiieciee ettt 72
8.1 Laplace EQUALION .......uuuiiiiiiiiiiiei e e ettt e e e e e e e e e e e e e e 72...
o T N R B 1T = o R o [0 ) o NP 73
TV = - Yz ([0 FUUTOUT OO TR 75
3 I3V 101 T 4 o OO 79
8.1.4 The mathematics Of FElAXAtION . ......veeeeeeeeeeeeeeeeeeeeeee e, 80
T s = = O 84
8.1.6 BOUNGAIY ElEIMENES ......oovvoeereoeeeeeeissssseesseessssssssssesssssssssssessssssssssssssssssssesssnssessnsens 84
8.1, 7 FINILE EIEIMENS oo e e, 84
8.2 POISSON EQUALION .......ccoiiiiiieiiiiiit e e e e e e e e e e e e e e e et e et s s e e e e e e e e aaeeeeeeeeessssssss s s 84....
8.3 DiIffuSION EQUALION ...ttt e e e e e e e e e e e e e e e e e e e eeens 84...
e RCTIS < 01 Be 1S e A= 1o L0 o RTTTTT T 84
oG IV 0 (1= g 011 1 010 [0 FUTTTRR TR 85
8.3.3 SHADIIILY ... ee e ee e ee e s e e s ee e 85
8.3.4 Model for general initial CONAITIONS.........ccoiiiiririeeeee s 86
o RS Y O =101 G N\ [T g0 <0 P 86
SN o3 | O 87
B2 AXAVECHION. ..ottt e e e et et e e e et et et et e e e eee e et et et e e e et et et e e e e eaeeeaeas 87
8.4.1 UPWING GiffErENCING .....cveeeeeeeeeeeeeee ettt es s s sne s s een e 87
8.4.2 COUANE NUMDET ... e e e e e e e e et e e e e e e e ee et et et e e e e s et e e eseseseseseeananns 87
8.4.3 NUMENICAl GISPEISION ...ttt en e sn s ees s 88
B2 SNOCKS .o eee e eee e e et e et e e e e e e e et e e ee et e e et ee e et ee et et ee et et ene et et et e eeneeeeeeneneeens 88
B.4.5 LAX-WENANOM ..ottt s et s eeeeeeeeee e e eeseeseseeneeeeeeeseeneseseanesenens 88
8.4.6 CONSEIVALIVE SCNEIMES ... e e e e e e e e e et ee et e e e, 88
0. NUMDES FEPFESENTALION ..ot ee s eee e es e en e eneenese e nessese e sneeeon 89
0.0 INEEOETS. ...t ee et ettt et ettt e et et e et et ettt n et en e e 8¢
9.2, FIOALNG POINL. ..ottt e et et ee et et et et e e et et e et ee e et e e eee e ee et eae e eee e et et eeeeeeeeeneens 90
9.3. RouNding @and trUNCALION ©TOK............c.cueveererreseeeeeeseeeeseseseseessseseeseseess s s esseseseeseseenenans 91
0.2 ENTIANS. ..ottt ettt ettt et ettt ettt et e ettt e e et et e e 91
10. COMPULET TANGUAGES ......veveeeeeseeseeeeeeeeseeseee e esese e ese e e s st ssesees s ess s se s eesessesssseeneenes 93
10.1. Procedural verses OBbJeCt OMENIEM..........ccccvvvevevieeeeeeeeeee e en s eeeees 93
10.2. FOMIAN G0.....cvviiisceeieisies ettt bbbt bbb 93
10.2.1. ProCEAUrAl OFIENEEA ... e e e e e e et e e, o4
10.2.2. FOrtran €NNANCEMENES ........oveveeeeeeeeeeeeeeeeeeeeeeeeereeeeesesesesesesesesesesesesesesesesesesesesesesesanns o4
O TR T O S R 95......
0 < 5 T 95
10.3.2. OBJECE OFIENEA .....eooveeeeveeeeeeeeee e sesss s esss s ssss s sesssesssnss s s ssnsasnees 95
10.3.3. WEBKNESSES ..o, 96
104, O OIS ettt ettt ettt e et e et et et e e e ettt et ettt e e e e e enens Lo 9
204 L. AGQ ettt ettt ettt ee et ee e e e e et et et e e e e et e et en e e et enereenaneees 97
10.4.2. ALGOL oottt ettt en et ee e 97



Numerical Methods for Natural Sciences |B Introduction

O T =TT oS 97
L0 R e o o LN 98
01T 0 1= 3 OO 98
00T =10 | o SO o8
LOA.7. LISD ovoveeeeeeeseeseessessses s ssssesssss s sesessssssssssss s snss s s s snss s ssnssesssnssassenssnssnsssnnes 98
10.4.8. MOUUIA2" oo e st ee e eeeses e s eeen s s eeneeese s seenaseseesenesnenenes 98
O T = AT 08
0 07 T = O 99
10411 POSISCIIPE voovveverreeeeeeeseseessesssssesssssssssssssssessssssssssssssssssssssssssssssssesssnssassenssnssssssnees 99
10.4.12. PTOIOG ..vooveeeeeeereseeieeeseeessessees e sessssss s sssesss s s ssss s ss s sss s ssss s esssnssansnssssssnnsannes 99
10.4.13. SMNAIEAIK oo ee e ee e eeeseee e seeaseseeneeeseeseseeneeeseesesesneneees 99
10.4.14. VISUBI BASIC ..o eeee e eee e e e eeeeseseeneseenseseeneeeseeseseeeasessesesesnenenes 99



Numerical Methods for Natural Sciences |B Introduction

|1 | ntroduction
- ]

These lecture notes are written for the Numerical Methods course as part of the Natural Science
Tripos, Part IB. The notes are intended to compliment the material presented in the lectures ratht
than replace them.

|1.1 Objective |

» To give an overview oivhat can be done
» To give insight intdhow it can be done
» To give the confidence to tackle numerical solutions

An understanding of how a method works aids in choosing a method. It can also provide ar
indication of what can and will go wrong, and of the accuracy which may be obtained.
* To gain insight into the underlying physics

» “Theaim of this courseisto introduce numerical techniques that can be used on
computers, rather than to provide a detailed treatment of accuracy or stability” —
Lecture Schedule.

Unfortunately the course is now examinable and therefore the material must be presented in
manner consistent with this.

1.2 Books

General:

* Numerical Recipes - The Art of Scientific Computing, by Press, Flannery, Teukolsky
& Vetterling (CUP)

* Numerical Methods that Work, by Acton (Harper & Row)
* Numerical Analysis, by Burden & Faires (PWS-Kent)
» Applied Numerical Analysis, by Gerald & Wheatley (Addison-Wesley)

* A SmpleIntroduction to Numerical Analysis, by Harding & Quinney (Institute of
Physics Publishing)

» Elementary Numerical Analysis, 3rd Edition, by Conte & de Boor (McGraw-Hill)

Mor e specialised: ||

* Numerical Methods for Ordinary Differential Systems, by Lambert (Wiley)

* Numerical Solution of Partial Differential Equations: Finite Difference Methods, by
Smith (Oxford University Press)

For many people, Numerical Recipes is Itige for simple numerical techniques. It contains not
only detailed discussion of the algorithms and their use, but also sample source code for eac



Numerical Methods for Natural Sciences |B Introduction

Numerical Recipes is available for three tastes: Fortran, C and Pascal, with the source coo
examples being taylored for each.

While a number of programming examples are given during the course, the course anc
examination donot require any knowledge of programming. Numerical results are given to
illustrate a point and the code used to compute them presented in these notes purely fc
completeness.

I1.4 Tools

Unfortunately this course is too short to be able to provide an introduction to the various tools
available to assist with the solution of a wide range of mathematical problems. These tools ar
widely available on nearly all computer platforms and fall into two general classes:

_1.4.1 Software libraries

These are intended to be linked into your own computer program and provide routines for
solving particular classes of problems.

* NAG
 IMFL
* Numerical Recipes

The first two are commercial packages providing object libraries, while the final of these libraries
mirrors the content of the Numerical Recipes book and is available as source code.

1.4.2 Maths systems ||

These provide ahrink-wrapped solution to a broad class of mathematical problems. Typically
they have easy-to-use interfaces and provide graphical as well as text or numeric output. Ke
features include algebraic analytical solution. There is fierce competition between the various
products available and, as a result, development continues at a rapid rate.

e Derive

* Maple

* Mathcad

* Mathematica
* Matlab

* Reduce




Numerical Methods for Natural Sciences |B Introduction

_1.5 Course Credit

Prior to the 1995-1996 academic year, this course was not examinable. Since then, howeve
there have been two examination questions each year. Some indication of the type of exar
guestions may be gained from earlier tripos papers and from the later examples sheets. Note tf
there has, unfortunately, been a tendency to concentrate on the more analysis side of the course
the examination questions.

Some of the topics covered in these notes are not examinable. This situation is indicated by &
asterisk at the end of the section heading.

I1.6 Versions ||

These lecture notes are available in three forms: the lecture notes distributed during lectures, ar
the set available in two formats on the web.

11.6.1 Notes disctributed during lectures
The version distributed during lectures includééenks for you to fill in the missing details. These
details will be given during the lectures themselves.

I 1.6.2 Acrobat _

The lecture notes are also available over the web. This year's notes will be provided in Acroba
format (pdf) and may be found at

http://ww. damt p. cam ac. uk/ user/ fdl / peopl e/ sd103/1 ect ur es/
These notes contain all the information, andlaagks have been filled in.

|1.6.3 HTML |

In previous years these have been provided through an html format, and these notes rema
available, although may not contain the latest revisions. The HTML version of the notes also has a
the blanks filled in.

The HTML is generated from a source Word document that contains graphics, display equation
and inline equations and symbols. All graphics and complex display equations (where the Microsof
Equation Editor has been used) are converted to GIF files for the HTML version. However, many of
the simpler equations and most of the inline equations and symbols do not use the Equation Editt
as this is very inefficient. As a consequence, they appear as characters rather than GIF files in tl
HTML document. This has major advantages in terms of document size, but can cause problern
with older World Wide Web browsers.

Due to limitations in HTML and many older World Wide Web browsers, Greek and Symbols
used within the text and single line equations may not be displayed correctly. Similarly, some
browsers do not handle superscript and subscript. To avoid confusion when using older browser
all Greek and Symbols are formatteddneen. Thus if you find a green Roman character, read it as
the Greek equivalent. Table 1of the correspondences is given below. Variables and normal symbo



Numerical Methods for Natural Sciences |B Introduction

are treated in a similar way but are coloured dlike to distinguish them from the Greek. The
context and colour should distinguish them from HTML hypertext links. Similarly, subscripts are
shown in darkCyan and superscripts in daiagenta. Greek subscripts and superscripts are the
sameGreen as the normal characters, the context providing the key to whether it is a subscript or
superscript. For a similar reason, the use of some mathematical symbols (such as less than or eq
to) has been avoided and their Basic computer equivalent used in stead.

Fortunately many newer browsers (Microsoft Internet Explorer 3.0 and Netscape 3.0 on the PC
but on many Unix platforms the Greek and Symbol characters are unavailable) do not have the san
character set limitations. The colour is still displayed, but the characters appear as intended.

Greek/Symbol character Name

alpha
beta
delta
Delta

b o ™ Q

epsilon
phi

Phi
lambda
mu

pi

theta
sigma
psi

Psi

<= less than or equal to

£ € 0 © 4 = >» g o

>= greater than or equal to
<> not equal to
=~ approximately equal to

vector vectors are represented as bold
Table 1: Correspondence between colour and characters.

I1.6.4 Copyright ||

These notes may be duplicated freely for the purposes of education or research. Any suc
reproductions, in whole or in part, should contain details of the author and this copyright notice.



Numerical Methods for Natural Sciences |B Introduction

I2Key|dea |

The central idea behind the majority of methods discussed in this course is the Taylor Serie
expansion of a function about a point. For a function of a single variable, we may represent the
expansion as

Ox? ox3

f(x+0x) = f(x)+xf'(x) +— f"(x) +—

5 5 fr(x)+.... 1)

In two dimensions we have

of of ox? d%f ody® 9°f 0°f
f(x+6x,y+5y)_ f(x,y)+6x&+6ya—y+ > o + 2 oy +6x6yaxay+

)

Similar expansions may be constructed for functions with more independent variables.

- 10 -



Numerical Methods for Natural Sciences |B Introduction

|3 Root finding in one dimension ||

|3.1 Why?

Solutionsx = Xy to equations of the forrf(x) = 0 are often required where it is impossible or
infeasible to find an analytical expression for the vegtoif the scalar functiori depends om
independent variables,x,,...,.X., then the solution X, will describe a surface in m-1 dimensional
space. Alternatively we may consider the vector funct{gh=0, the solutions of which typically
collapse to particular values ®f For this course we restrict our attention to a single independent
variablex and seek solutions f()=0.

_3.2 Bisection

This is the simplest method for finding a root to an equation and is also knobhimaag
chopping. As we shall see, it is also the most robust. One of the main drawbacks is that we need tw
initial guesses, andx, which bracket the root: ldt = f(x,) andf, =f(x,) such thaf,f, <=0. An
example of this is shown graphically in figure 1. Clearly, i, = 0 then one or both of, andx,
must be a root dfx) = 0.

A

. -

fa

Figure 1. Graphical representation of the bisection method showing two initial guesses (X, and x, bracketting
the root).

The basic algorithm for the bisection method relies on repeated application of
o Letx = (Xa+X)/2,

- 11 -



Numerical Methods for Natural Sciences |B Introduction

» if f. =f(c) = 0thenx = x; is an exact solution,
 elseiff, f. < 0then the root lies in the interviad,,x.),
* else the root lies in the intervat.,x,).
By replacing the intervelx,,x,) with either(x,,x;) or (X.,x,) (whichever brackets the root), the error

in our estimate of the solution {x) = 0is, on average, halved. We repeat this interval halving
until either the exact root has been found or the interval is smaller than some specified tolerance.

|3.2.1 Convergence ||

Since the intervalx,,x,) always bracets the root, we know that the error in using edtluerx, as
an estimate for root at tmgh iteration,e,, must be

€ < [Xa - Xo. ®3)

Now since the intervdk,,x,) is halved for each iteration, then
en+]_ -~ en/2. (4)

More generally, ifx, is the estimate for the roat at thenth iteration, then the error in this
estimate is

En:Xn'X*- (5)

In many cases we may express the error abtiieh time step in terms of the error at thte time
step as

lensal ~Clenl’. (6)

Indeed this criteria applies to all techniques discussed in this course, but in many cases it applie
only asymptotically as our estimateconverges on the exact solution. The expopéantequation

(6) gives the order of the convergence. The larger the valpietiod faster the scheme converges on
the solution, at least provided., < €,. For first order schemesd p = 1), |C| < 1 for convergence.

For the bisection method we may estimatase,. The form of equation (4) then suggegsts 1
and C = 1/2, showing the scheme is first order and converges linearly. Indeed convergence is
guaranteed - a root tigx) = O will always be found - provided(x) is continuous over the initial
interval.

_3.2.2 Criteria

In general, a numerical root finding procedure will not find the exact root being saughyj, (
rather it will find some suitably accurate approximation to it. In order to prevent the algorithm
continuing to refine the solution for ever, it is necessary to place some conditions under which the
solution process is to be finished or aborted. Typically this will take the form of an error tolerance
one, = la—b,|, the value of f., or both.

For some methods it is also important to ensure the algorithm is converging on a solution (i.e.
len+1] < Jeq| for suitably large n), and that this convergence is sufficiently rapid to attain the solution
in areasonable span of time. The guaranteed convergence of the bisection method does not require

- 12 —



Numerical Methods for Natural Sciences |B Introduction

such safety checks which, combined with its extreme simplicity, is one of the reasons for its
widespread use despite being relatively slow to converge.

33Linear interpolation (regulafals) |

This method is similar to the bisection method in that it requires two initial guesses to bracket the
root. However, instead of simply dividing the region in two, a linear interpolation is used to obtain a
new point which is (hopefully, but not necessarily) closer to the root than the equivalent estimate fol
the bisection method. A graphical interpretation of this method is shown in figure 2.

|

fa

Figure 2: Root finding by the linear interpolation (regulafalsi) method. The two initial gueses x, and x, must
bracket the root.

The basic algorithm for the linear interpolation method is

Xb_xa - _Xb_xa _Xafb_xbfa
fof aT%T g Ty Ty

a

o Letx, =x,— , then

o if f. =f(x)) = 0thenx = x. is an exact solution,
» elseiff, f. < Othen the root lies in the interviad,, x.),

- 13—



Numerical Methods for Natural Sciences |B Introduction

* else the root lies in the intervat.,x,).

Because the solution remains bracketed at each step, convergence is guaranteed as was the cas
the bisection method. The method is first order and is exact for finear

|3.4 Newton-Raphson ||

Consider the Taylor Series expansiori(gf about some point= Xo:
f6) = f(x0) + x=0)f (X0) + ¥ole—0) " (o) + O(x—%["). (7)

Setting the quadratic and higher terms to zero and solving the linear approximation of f(x) =0 for x
gives

f (x)

=X, — : 8

X =X m,xo )
Subsequent iterations are defined in a similar manner as
Fix,

g = %~ ( ) (9)

0T

Geometrically, x,+1 can be interpreted as the value of x at which a line, passing through the point
(xn,f(x,)) and tangent to the curve f(x) at that point, crosses the y axis. Figure 3 provides a graphical
interpretation of this.

A

Figure 3: Graphical interpretation of the Newton Raphson a gorithm.

—14 -



Numerical Methods for Natural Sciences |B Introduction

When it works, Newton-Raphson converges much more rapidly than the bisection or linear
interpolation. However, if' vanishes at an iteration point, or indeed even between the current
estimate and the root, then the method will fail to converge. A graphical interpretation of thisis
giveninfigure4.

A

v

Figure 4: Divergence of the Newton Raphson algorithm due to the presence of a turning point close to the
root.

3.4.1 Convergence ||

To study how the Newton-Raphson scheme converges, expand f(x) around the root x = x*,
f(3) = f(x) + (6= X (<) + o= %) () + O(x— %) (10

and substitute into the iteration formula. This then shows

- 15—



Numerical Methods for Natural Sciences |B Introduction

g, F/(x*)+1e2f(x*)+...
" f(x*) +e F(xr)

D fn * D (11)
ey ~[ea ) el ) g e T
) fr(x*) 2 f(x*) 3
=g, "€, tE, f'(X*) _%En f'(X*) +O(£“)
2 f"(X*) 3
:}éen f!(x*) +O(€n)

sincef(x*)=0. Thus, by comparison with (5), there is second order (quadratic) convergence. The
presence of thé term in the denominator shows that the scheme will not convefgeaifishes in
the neighbourhood of the root.

3.5 Secant (chord) ||

This method is essentially the same as Newton-Raphson except that the defiggtive
approximated by a finite difference based on the current and the preceding estimate for the root, i.e.

f —f
/()= (X;) - Xn(_f“'l) , (12)
and thisis substituted into the Newton-Raphson algorithm (9) to give
oy = X3~ f (E(nxrj : );n(_)l(z_l) f (Xn) : (13)

This formula is identical to that for the Linear Interpolation method discussed in section 3.3. The
difference is that rather than replacing one of the two estimates so that the root is always bracketed,
the oldest point is always discarded in favour of the new. This meansit is not necessary to have two
initial guesses bracketing the root, but on the other hand, convergence is not guaranteed. A graphical
representation of the method working is shown in figure 5 and failure to converge in figure 6. In
some cases, swapping the two initial guesses X, and x; will change the behaviour of the method
from convergent to divergent.

- 16 —



Numerical Methods for Natural Sciences |B Introduction

X3 Xp

Figure 5: Convergence on the root using the secant method.

A

\,/
Figure 6: Divergence using the secant method.

—17 -



Numerical Methods for Natural Sciences |B Introduction

|3.5.1 Convergence

The order of convergence may be obtained in a similar way to the earlier methods. Expanding
around the roat = x* for x, andx..1 gives

f(x,) = fO¢¥) + e.f'(¢*) + Voe 28" (¢*) + O(le[), (14a)
f(Xo1) = FOF) + £naf (X*) + YognaF" (x*) + O(lenaf), (14b)

and substituting into the iteration formula

S
f(x)

f (Xn) - f (Xn—l
g, F/(x*) + %2 f "(x*)+... (

" Snf'(X*)+%8§f”(x*)+...—[8n_1f'(x*)+%g§_lf"(x*)+___] n
e, f(x*) +Ke2f " (x*)+... (
n 5 0
(en —en_l)f '(x*)E’H}/z(en + sn_l)

[a— — *
=X, — X

) (Xn - Xn—l)

L +0(e,) . (15

Note that this expression for €., includes both €, and €,5. In general we would like it in terms of €,
only. The form of this expression suggests a power law relationship. By writing

Of"(x*)

%H ns (16)

and substituting into the error evolution equation (15) gives

Df”( *) 0
( )
" " X* =B/

) D'l B/a a+l
St e

which we equate with our assumed relationship to show

—-18-—



Numerical Methods for Natural Sciences |B Introduction

1+a 1++/5
o= = ,
o 2
a _1_ 2
140 o 1++/5°

Thus the method is of non-integer order 1.61803... (the golden ratio). As with Newton-Raphson,
the method may divergefifvanishes in the neighbourhood of the root.

(18)

B:

3.6 Direct iteration ||

A simple and often useful method involves rearranging and possibly transforming the function
f(x) by T(f(x),x) to obtaing(x) = T(f(x),x). The only restriction oi(f(x),x) is that solutions té(x) = 0
have a one to one relationship with solutiong(t) =x for the roots being sort. Indeed, one reason
for choosing such a transformation for an equation with multiple roots is to eliminate known roots
and thus simplify the location of the remaining roots. The efficiency and convergence of this
method depends on the final formggxk).

The iteration formula for this method is then just

X1 = 9(Xn). (19)

A graphical interpretion of this formula is given in figure 7.

A

Figure 7: Convergence on aroot using the Direct Iteration method.

—-19 —



Numerical Methods for Natural Sciences |B Introduction

|3.6.1 Convergence

The convergence of this method may be determined in a similar manner to the other methods k
expanding about*. Here we need to expag(k) rather thari(x). This gives

g(X:) =g(<) + eg (") + oe’g" (") + O(lex ), (20)
so that the evolution of the error follows
€ni = Xoyg —X¥
=gx,)-x*
= g(x) +£,0'(x*) + $e2g"(x*) + Ofe) - x*
=e,g'(x*) + %e2g"(x*) + O(e2)

(21)

The method is clearly first order and will converge onlg’|i< 1. The sign ofy’ determines whether
the convergence (or divergence) is monotonic (postiyeor oscillatory (negativey). Figure 8
shows how the method will diverge if this restriction @ns not satisfied. Herg' <-1 so the
divergence is oscilatory.

Obviously our choice of (f(x),x) should try to minimisey'(x) in the neighbourhood of the root to
maximise the rate of convergence. In addition, we should chbd6@,x) so that the curvature
|g"(x)| does not become too large.

If g'(x) < 0, then we get oscillatory convergence/divergence.

- 20 -



Numerical Methods for Natural Sciences |B

Figure 8: The divergence of a Direct Iteration when g’ < —1.

Introduction

|3.7 Examples

Consider the equation
f(X) = cosx — 1/2

(22)

|3.7.1 Bisection method

* Initial guesses = 0 andx = 172.
» Expect linear convergende;.1| ~ En|/2

Iteration Error e+1/e,
0 -0.261799 -0.500001909862
1 0. 130900 -0. 4999984721161
2 -0. 0654498 -0. 5000015278886

- 21 -



Numerical Methods for Natural Sciences |B

Introduction

3 0. 0327250 - 0. 4999969442322
4 -0.0163624 - 0. 5000036669437
5 0.00818126 - 0. 4999951107776
6 - 0. 00409059 - 0. 5000110008581
7 0. 00204534 - 0. 4999755541866
8 -0. 00102262 - 0. 5000449824959
9 0. 000511356 - 0. 4999139542706
10 - 0. 000255634 -0. 5001721210794
11 0. 000127861 - 0. 4996574405018
12 - 0. 0000638867 - 0. 5006848060707
13 0. 0000319871 -0.4986322611303
14 - 0. 0000159498 -0. 5027411002019
15 0. 00000801862
3.7.2 Linear interpolation

* Initial guesses = 0 andx = 172.

» Expect linear convergende;.1| ~clen|.
Iteration Error €n+1/€n
0 -0. 261799 0. 1213205550823
1 -0.0317616 0. 0963178807113
2 -0. 00305921 0. 09340810209172
3 - 0. 000285755 0. 09312907910623
4 -0. 0000266121 0. 09310313729469
5 - 0. 00000247767 0. 09310037252741
6 - 0. 000000230672 0. 09310059304987
7 - 0. 0000000214757 0. 09310010849472
8 - 0. 00000000199939 0. 09310039562066
9 - 0.000000000186144 0. 09310104005501
10 - 0. 0000000000173302 0. 09310567679542
11 - 0. 00000000000161354 0. 09316100003719
12 - 0. 000000000000150319 0. 09374663216227
13 - 0. 0000000000000140919 0.10000070962752
14 - 0. 0000000000000014092 0.1620777746239
15 - 0. 0000000000000002284

|3.7.3 Newton-Raphson

 Initial guessx = 102
* Note that can not use= 0 as derivative vanishes here.
« Expect quadratic convergenee:; ~ cg,’.

Iteration | Error €n:1/€: e,1le’

0 0. 0235988 0. 00653855280777 0.2770714107399
1 0. 000154302 0. 0000445311143083 0. 2885971297087
2 0. 00000000687124 0. 000000014553 -

3 1.0E- 15

4 Machine accuracy

— 22 —



Numerical Methods for Natural Sciences |B

Introduction

_3.7.4 Secant method

* Initial guesseg = 0 andx = 172.

» Expect convergence;.; ~ Ce,

1.618

Iteration | Error e,1le, le, /e -5
0 -0. 261799 0.1213205550823 0.2777

1 -0.0317616 -0.09730712558561 0. 8203

2 0. 00309063 - 0. 009399086917554 0. 3344

3 -0. 0000290491 0. 0008898244696049 0. 5664

4 - 0. 0000000258486 - 0.000008384051747483 0. 4098

5 0. 000000000000216716

6 Machine accuracy

» Convergence substantially faster than linear interpolation.

|3.7.5 Direct iteration

There are a variety of ways in which equation (22) may be rearranged into the form required fol
direct iteration.

3.7.5.1 Addition of x “

Use

Xn+1 = 0(X) = X, + cOSX — 1/2 (23)

* Initial guessx = 0 (also works withx = 172)
» Expect convergence;.1 ~g'(x*) €, ~0.13¢,.

[teration Error €+1/€,

0 -0.547198 0. 30997006568

1 -0. 169615 0.1804233116175
2 -0. 0306025 0. 1417596601585
3 -0. 00433820 0. 1350620072841
4 - 0. 000585926 0.1341210323488
5 -0. 0000785850 0. 1339937647134
6 - 0. 0000105299 0. 1339775306508
7 -0. 00000141077 0. 1339750632633
8 - 0. 000000189008 0. 1339747523914
9 -0. 0000000253223 0. 1339747969181
10 - 0. 00000000339255 0. 1339744440023
11 - 0. 000000000454515 0. 1339748963181
12 - 0. 0000000000608936 0. 1339759843399
13 - 0. 00000000000815828 0. 1339878013503
14 - 0. 00000000000109311 0.1340617138257
15 - 0. 0000000000001465442

— 23—



Numerical Methods for Natural Sciences |B Introduction

|3.7.5.2 Multiplcation by x

Use

Xn+1 = G(X) = 2X COSX (24)

* Initial guessx =172 (fails withx = 0 as this is a hew solution gfx)=Xx)
» Expect convergence;.; ~g’'(x*) €, ~0.81 ¢,.

[teration Error €+1/€,

0 0. 0635232 -0. 9577980958138

1 -0. 0608424 -0.6773664418235

2 0.0412126 -0.9070721090152

3 -0.0373828 -0.7297714456916

4 0. 0272809 -0.8754733164962

5 -0. 0238837 -0. 7600455540808

6 0. 0181527 -0. 854809477378

7 -0. 0155171 -0.778843985023

8 0. 0120854 -0.8410892481838

9 -0.0101649 -0.7908921878228

10 0. 00803934 -0. 8319464035605

11 -0. 00668830 -0.7987216482514

12 0. 00534209 -0. 8258546748557

13 -0.00441179 -0. 8038528579103

14 0. 00354643 -0.8218010788314

15 -0. 00291446
3.7.5.3 Approximating f'(x) ||
.

The Direct Iteration method is closely related to the Newton Raphson method when a particular
choice of transformation T(f(x)) is made. Consider

f(x) = f(x) + (x=9h(x) = 0. (25)

Rearranging equation (25) for one of the x variables and labelling the different variables for
different stepsin the interation gives

Xne1 = 9(X%0) = X — T(X3)/N(x,). (26)
Now if we choose h(x) such that g'(x)=0 everywhere (which requires h(x) = f'(x)), then we recover
the Newton-Raphson method with its quadratic convergence.

In some situations calculation of f'(xX) may not be feasible. In such cases it may be necessary to
rely on the first order and secant methods which do not require a knowledge of f'(x). However, the
convergence of such methods is very slow. The Direct Iteration method, on the otherhand, provides
us with a framework for a faster method. To do this we select h(x) as an approximation to f'(x). For
the present f(x) = cos x - /2 we may approximate f'(x) as

h(X) = 4x(x —T)/T? (27)

* Initial guess: x = 0 (failswith x = 172 as h(x) vanishes).
» Expect convergence: €,.1 ~ g’'(x*) €, ~ 0.026 €.

—24 —



Numerical Methods for Natural Sciences |B

Introduction

Iteration Error €n+1/€n

0 0. 0235988 0. 02985973863078
1 0. 000704654 0. 02585084310882
2 0. 0000182159 0. 02572477890195
3 0. 000000468600 0. 02572151088348
4 0. 0000000120531 0. 02572134969427
5 0. 000000000310022 0. 02572107785899
6 0. 00000000000797410 0. 02570835580191
7 0. 000000000000205001 0. 02521207213623
8 0. 00000000000000516850

9 Machine accuracy

The convergence, while still formally linear, is significantly more rapid than with the other first
order methods. For a more complex example, the computational cost of having more iterations tha
Newton Raphson may be significantly less than the cost of evaluating the derivative.

A further potential use of this approach is to avoid the divergence problems associafda)with
vanishing in the Newton Raphson scheme. Shiggonly approximate$(x), and the accuracy of
this approximation is more important close to the root, it may be possible to difgpsesuch a

way as to avoid a divergent scheme.

3.7.6 Comparison

Figure 9 shows graphicall a comparison between the different approaches to finding the roots c
equation (22). The clear winner is the Newton-Raphson scheme, with the approximated derivativ

for the Direct Iteration proving a very good alternative.

Convergence for cos(x) = 1/2

IS — - _
AN T T
\\\ NG
0.01 \\\ >
AN "‘
0.001 VN
\
1.0e-4 T \
=) ’ o N AN
¥ 1065 - Y SO
w \ A N RN
~ N, AN ..
- 1.0e6 T \ XN N N,
9 \ PN N .\~
- \ PN N .\.
2 1.0e-7 \ N \\ N
2 10e8 ] Scheme, X\ N S
® vV — B|sect|0hé{ \\ "
© - \  -— — Linear int&polation .
o 1.0e-9 Vo Newton- RaSh\son N S
] s e Segant N \\ S
1.0e-10 \' ——. Generd |tera1|0|’t\xrl+1 X, + CosX, - 1/2 \ S
(RERERE T General iteration: X, ; = 2X,CoSX, S
1.0e-11 VT General iteration: ApprOX|matlngf (X) with quadhatlc \~.\
_ \ B \ S
1.0e-12 \ N, \\ .
\ \ N '
1.0e-13 \ N N
1 N N
1.0e-14

Interation (n)

Figure 9: Comparison of the convergence of the error in the estimate of the root to cos x = 1/2 for a range of

different root finding algorithms.

— 25—

T T T T T T T T T T T T T T T
00 10 20 30 40 50 60 70 80 90 100 11.0 120 13.0 140 15.0 16.0



Numerical Methods for Natural Sciences |B Introduction

3.7.7 Fortran program

The following program was used to generate the data presented for the above examples. No
that this is included as an illustrative example. No knowledge of Fortran or any other programming
language is required in this course.

PROGRAM Root s

| NTECER*4 i, |

REAL* 8 X, xa, xb, xc,fa, fb,fc, pi,xStar, f, df
REAL* 8 Error (0: 15, 0: 15)

f(x)=cos(x)-0.5

df (x) = -SI N(x)

pi = 3.141592653

xStar = ACOS(0.5)

WRI TE(6, *)' # ', xStar, f (xStar)

C=====Bi section
xa 0
fa = f(xa)
xb = pi/2.0
fb = f(xb)
DO i =0, 15

= (xa + xb)/2.0

= f(xc)

(fa*fc .LT. 0.0) THEN
xb XC

fb = fc

ELSE
xa
fa

ENDI F

Error(0,i) = xc - xStar

ENDDO

C=====Li near interpolation

0

f (xa)

pi/2.0

f (xb)

— = x
Mmoo — I

fc

xa - (xb-xa)/(fb-fa)*fa

Mmoo — 00 nn

(fa*fc .LT. 0.0) THEN

fa
ENDI F
Error(1,i) = xc - xStar
ENDDO

Hl
XC |
|||

" Not examinable

— 26 —



Numerical Methods for Natural Sciences |B Introduction

xa = pi/2.0 |||
DO i =0, 15 H
xa = xa - f(xa)/df(xa) |
Error(2,i) = xa - xStar
ENDDO |
C=====Secant H
xa =0 |
fa = f(xa) H
xb = pi/2.0 |
fb = f(xb) H
DO i =0, 15 |
IF (fa .NE. fb) THEN H
C If fa = fb then either nmethod has converged (xa=xb) |
C or will diverge fromthis point H
Xc = xa - (xb-xa)/(fb-fa)*fa |
xa = xb
fa =1fb |
xb = xc H
fb = f(xb) |
ENDI F
Error(3,i) = xc - xStar |
ENDDO H
C=====Direct iteration using x + f(x) = x |
xa = 0.0 H
DO i =0, 15 |
xa = xa + f(xa)
Error(4,i) = xa - xStar |
ENDDO H
C=====Direct iteration using xf(x)=0 rearranged for x |
C---- Starting point prevents convergence H
xa = pi/2.0 |
DO i =0, 15 H
xa = 2.0*xa*(f(x)-0.5) |
Error(5,i) = xa - xStar
ENDDO |
C=====Direct iteration using xf(x)=0 rearranged for x H
xa = pi/4.0 |
DO i =0, 15 H
xa = 2.0*xa* COS( xa) |
Error(6,i) = xa - xStar
ENDDO |
C=====Direct iteration using 4x(x-pi)/pi/pi to approxi mte f’ H
xa = pi/2.0 |
DO i =0, 15 H
xa = xa - f(xa)*pi*pi/(4.0*xa*(xa-pi)) |
Error(7,i) = xa - xStar
ENDDO |
C=====Qut put results H
DO i =0, 15 |
WRI TE( 6, 100)i, (Error(j,i),j=0,7)
ENDDO |
100  FORMAT(1x,i 4, 8(1x, g12. 6))
END J

—27—



Numerical Methods for Natural Sciences |B Introduction

—- 28 —



Numerical Methods for Natural Sciences |B Introduction

4 Linear eguations

- ]
Solving equation of the foriAx = r is central to many numerical algorithms. There are a number

of methods which may be used, some algebraically correct, while others iterative in nature an

providing only approximate solutions. Whichhest will depend on the structure @&, the context

in which it is to be solved and the size compared with the available computer resources.

_4.1 Gauss eimination

This is what you would probably do if you were computing the solution of a non-trivial system
by hand. For example, if

X + 2y + 3z = 6
2x + 2y + 3z = 7, (28)
X + 4y + 4z = 9

we might then subtra@ times the first equation from the second equation, and subtract the first
equation from the third equation to get

X + 2y + 3z = 6
Ox + -2y + -3z = -5. (29)
Ox + 2y + z = 3

In the second step we might add the second equation to the third to obtain
X + 2y + 3 = 6
Ox + -2y + -3z -5. (30)
Ox + 0y + -2z -2

The third equation now involves onhygiving z= 1. Substituting this back into the second equation
gives an equation fgrand so-on. In particular we have

z=-2/-2=1
y=(-5+32)/-2=(-5+3)/-2=-2/-2=1. (31)
x=(6-2y-32)/1=(6-2-3/1=1/1=1

We may write this system in terms of a ma#ixanunknown vectorx and theknown right-hand
sideb as

Ax = b, (32)

and do exactly the same manipulations on the rows of the maamnd right-hand sidb. From the
system

— 29 —



Numerical Methods for Natural Sciences |B Introduction

O O
g4 23 0 EBD
2 2 3yo=00 (33)
3 4 450H BH
we subracP times the first row from the second row, and subtract the first row from the third row
to obtain
3%@ DGD
%) -2 =-3qy0= [1—55 (34)
B 2 H HsH

Before adding the second and third rows, this time we will divide the second row throughthogy
element on the diagonal, getting

A 2 3 E EGE
% 1 3/20y0= /20, (35)
B 2 1fEd HsH

This may seem pointless in this example, but in general it simplifies the next step where we subtra
as; times the second row from the third row. Hese= 2 and represents the value in the second
column of the third row of the matrix. Thus the next step is

QA 2

) 3/2 @E 5/2 [, (36)

B 2-2 1-2(3/2) 2(5/2)H

[

A 2 3 [ D 6 U
] ]
O %) 1 3/2y0= 55/ 20. (37)

B 0 -28%H H-2H

We again divide the resulting row (now the third row) by the element on the diagermal@) to
obtain

O O6 O
A 2 3 %(D D6 H
D 1 320y0=05/20, (38)

0 1Eh O1f
and retrieve immediately the valme 1 from the last row of the equation. Substituting back we get
O 0 O B0

223 0 0 6 O EBD

1 Ofyg= b/ 2-(3/2)z0= M, (39)

o1kl H 1 HHH

and finally we recover the answer

—30 -



Numerical Methods for Natural Sciences |B Introduction

10 09 B P-or-s B
® 1 o0no-noen 1 0=do (40)
2018 BH B 1 B A

In general, for the system
A X HapX, tagXst. . ta X, =0
A Xy T3, X, T apXt. A X, =1,
Ay X; + 35X, T agXst.. . tag X, =15, (41)

Xy T apX, T Xt X, =
we first divide the first row by, and then subtraa; times the new first row from the second

row, asz; times the new first row from the third row ... aad times the new first row from thath
row. This gives

aiz/au s/ /&y, E'.%QDE r/au, E

%) ay, ~ a21/ a11 2 a23_(a21/ all)a13 (aZl/ all)aln ﬂzD .~ (a21/ all)r1|]
Eﬂ) 2 (/o) A =(En/an)an A (a /au)am%%ﬂ = (aw/au)n 5. 42)

: D D : []

@) a,—(aw/a)an as-(an/an)as  an-(aw/aw)a, B0 - (a./a.)nd

By repeating this process for rov8sto n, this time using the new contents of element 2,2, we
gradually replace the region below the leading diagonal with zeros. Once we have

1 a d, ... a,Ix0 0,0
a12 ?13 “i‘l m lD D,\lD
% 1 a5, a2n ﬂzD d20
) 1 4, O, 0=, 0
! % {0 don (43)
0 -0 g
0 0 1 %ﬁ H
the final solution may be obtained by back substitution.
x, =F,
X1 = o = 8 X
Xo-2 = Fooa =8 pna Xt ~ 8npn X (44)

Xp =1 =X = 3X37 73 X,

If the arithmetic is exact, and the matéxis not singular, then the answer computed in this
manner will be exact (provided no zeros appear on the diagonal - see below). However, as comput
arithmetic is not exact, there will be some truncation and rounding error in the answer. The
cumulative effect of this error may be very significant if the loss of precision is at an early stage in
the computation. In particular, if a numericadiyall number appears on the diagonal of the row,
then its use in the elimination of subsequent rows may lead to differences being computed betwee

—31 -



Numerical Methods for Natural Sciences |B Introduction

very large and very small values with a consequential loss of precision. For examgle; if
(ax/a11)a» were very small, I8, say, and both ays—(az1/ai1)ais and ass—(asi/ai)as were 1, say,

then at the next stage of the computation the 3,3 element would involve calculating the difference
between 1/10=10° and 1. If single precision arithmetic (representing real values using
approximately six significant digits) were being used, the result would be smply 1.0 and subsequent
calculations would be unaware of the contribution of a,; to the solution. A more extreme case which

may often occur isif, for example, a,—(ay1/a;1)as2 is zero — unless something is done it will not be
possible to proceed with the computation!

A zero value occuring on the leading diagonal does not mean the matrix is singular. Consider, fo
example, the system

0= 20, (45)

the solution of which is obviously; = x, =x; =1. However, if we were to apply the Gauss
Elimination outlined above, we would need to divide throughahy= 0. Clearly this leads to
difficulties!

|4.2 Pivoting

One of the ways around this problem is to ensure that small values (especially zeros) do nc
appear on the diagonal and, if they do, to remove them by rearranging the matrix and vectors. In tt
example given in (45) we could simply interchange rows one and two to produce

0 oIxH EpO
3 %XZD (80, (46)

0 10k,

[EILHIN

or columns one and two to give

00 EBD
2 %(15 20, (47)

0 1fkH HH

either of which may then be solved using standard Guass Elimination.

[BILHI&

More generally, suppose at some stage during a calculation we have

—32—



Numerical Methods for Natural Sciences |B Introduction

d 4 1.8 3 2 . 5OXO 0O
© 10° 1 10 201 13 450 0
m 9 4 6 -8 2 1800x,0 Lr,0
0 0°0
0 3 2 -3 4 6003  154%0 O 48
® 15 1 9 33 -2 1%%5 5% (48)
0 -155 23 4 25 73 2 %0 OO0
0 m:0 O:0

5) 8 56 4 -4 4 .. ss%ﬁ %%

where the element 2,5 (201) is numerically the largest value in the second row and the element 6
(155) the numerically largest value in the second column. As discussed above, the very€mall 10
value for element 2,2 is likely to cause problems. (In an extreme case we might even have the value

0 appearing on the diagonal — clearly somethingst be done to avoid divide by zero error
occurring!) To remove this problem we may again rearrange the rows and/or columns to bring e
larger value into the 2,2 element.

4.2.1 Partial pivoting ||

In partial or column pivoting, we rearrange the rows of the matrix and the right-hand side to
bring the numerically largest value in the column onto the diagonal. For our example matrix the
largest value is in element 6,2 and so we simply swap rows 2 and 6 to give

o 4 1 8 3 2 .. 50x0 OO
0 00
0 -155 23 4 25 73 26%0 O
M 9 4 6 -8 2 181k, 0 L0
0 0°0
0 3 2 -3 4 6003  154%0 [0
© 15 1 9 33 -2 1%%5 %D
% 10° 1 10 201 13 4 @(GD 0
O ; .0 0.0
- :
M 8 5 4 -4 4 .. 88%% %%

(49)

Note that our variables remain in the same order which simplifies the implementation of this
procedure. The right-hand side vector, however, has been rearranged. Partial pivoting may k
implemented for every step of the solution process, or only when the diagonal values are sufficientl
small as to potentially cause a problem. Pivoting for every step will lead to smaller errors being
introduced through numerical inaccuracies, but the continual reordering will slow down the
calculation.

4.2.2 Full pivoting
The philosophy behind full pivoting is much the same as that behind partial pivoting. The main

difference is that the numerically largest value in the colemnow containing the value to be

replaced. In our example above element the magnitude of element 2,5 (201) is the greatest in eith

— 33 -



Numerical Methods for Natural Sciences |B Introduction

row 2 or column 2 so we shall rearrange the columns to bring this element onto the diagonal. Thi
will also entail a rearrangement of the solution vextdrhe rearranged system becomes

R

>

o 3 1 8 3 2 .. 50x0 0

6 'O 20
© 201 1 10 10° 13 4 5% b, 0
o -8 4 6 9 2 180k, b,
0 4 2 -3 3 60038  159x0 | b0
©® 33 1 9 15 -2 o T
% 25 23 4 -155 73 2 (A% 0 b, O
Il mD D:D
: B EE
M -4 5 4 8 4 .. 8 ]

(50)

The ultimate degree of accuracy can be provided by rearranging both rows and columns so th:
the numerically largest value in the submatrix not yet processed is brought onto the diagonal. In oL
example above, the largest value is 6003 occurring at position 4,6 in the matrix. We may bring thi
onto the diagonal for the next step by interchanging columns one aaddshows two and four.

The order in which we do this is unimportant. The final result is

g RN

\Z \Z
1 4 1 8 3 2 .. 500 7,0
i 0 00
0 6003 2 -3 4 3 AadsO¢e~ Oe0
™ 2 4 6 -8 O 18@(3% N Eﬂg
® 13 1 10 201 10°  155%0 | @O
_ 0 =30
® -2 1 9 33 15 N
53 73 28 4 25 -155 20«7 00
O : . O 0.0
0 : : :
M 4 5 4 -4 8 .. 88%% %

(51)
Again this process may be undertaken for every step, or only when the value on the diagonal i
consideredoo small relative to the other values in the matrix.

If it is not possible to rearrange the columns or rows to remove a zero from the diagonal, then th
matrix A is singular and no solution exists.

4.3 LU factorisation ||

A frequently used form of Gauss Elimination is LU Factorisation also known as LU
Decomposition or Crout Factorisation. The basic idea is to find two maltriaedU such that

LU =A, (52)

— 34—



Numerical Methods for Natural Sciences |B Introduction

whereL is a lower triangular matrix (zero above the leading diagonal)Jaisdan upper triangular
matrix (zero below the diagonal). Note that this decomposition is underspecified in that we may
choose the relative scale of the two matrices arbitrarily. By conventioh, thatrix is scaled to

have a leading diagonal of unit values. Once we have comipwtedU we need solve only

Ly=b, (53)

then
Ux=y, (54)

a procedure requiringd(n”) operations compared witkD(n®) operations for the full Gauss
elimination. While the factorisation process requités®) operations, this need be done only once
whereas we may wish to sol#&=b for with whole range db.

Since we have decided the diagonal eleménis the lower triangular matrix will always be
unity, it is not necessary for us to store these elements and so the maincds) can be stored
together in an array the same size as that usedhfdndeed, in most implementations the
factorisation will simply overwrité\.

The basic decomposition algorithm for overwritiagvith L andU may be expressed as

# Factorisation
FOR i=1 TO n

FOR p=i TO n
i-1
a; =a,; ~ Zapkaki
=
NEXT p

|
FOR g=i+1 TO n I

I
|
‘
i-1
aiq - ;aikakq
R
|
|
|
|
|

NEXT g
NEXT i
# Forward Substitution
FOR i=1 TO n

FOR g=n+1 TO n+m

i-1
a'iq - glaikakq
T

NEXT g |
NEXT i I
# Back Substitution I
FOR i=n- 1 TO 1 |

FOR g=n+1 TO n+m |

aiq = a'iq - z a'ika'kq

NEXT g
NEXT i

k=i+1

This algorithm assumes the right-hand side(s) are initially stored in the same array structure as the
matrix and are positioned in the column(s) n+1 (to n+m for m right-hand sides). To improve the

—35—



Numerical Methods for Natural Sciences |B Introduction

efficiency of the computation for right-hand sides known in advance, the forward substitution loop
may be incorporated into the factorisation loop.

Figure 10 indicates how the LU Factorisation process works. We want to find vectondu,
such thata; = IiTuj. When we are at the stage of calculatingitheelement otu;, we will already
have thei nonzero elements df and the firsti-1 elements ofu;. Theith element ofu; may
therefore be chosen simply &g, = a;— |;'uwhere the dot-product is calculated assumipg is
zero.

Uj
djm

Figure 10: Diagramatic representation of how LU factorisation works for calculating u; to replace a; where
i <j. Thewhite areas represent zerosin the L and U matrices.

As with normal Gauss Elimination, the potential occurrence of small or zero values on the
diagonal can cause computational difficulties. The solution is again pivoting — partial pivoting is
normally all that is required. However, if the matrix is to be used in its factorised form, it will be
essential to record the pivoting which has taken place. This may be achieved by simply recordin
the row interchanges for eacim the above algorithm and using the same row interchanges on the
right-hand side when usingin subsequent forward substitutions.

|4.4 Banded matrices .

The LU Factorisation may readily be modified to account for banded structure such that the only
non-zero elements fall within some distance of the leading diagonal. For example, if element:
outside the range;; , to a ., are all zero, then the summations in the LU Factorisation algorithm
need be performed only from k=i or k=i+1 to k=i+b. Moreover, the factorisation loop FOR g=i+1
TO n can terminate at i+b instead of n.

One problem with such banded structures can occur if a (near) zero turns up on the diagonal
during the factorisation. Care must then be taken in any pivoting to try to maintain the banded
structure. This may require, for example, pivoting on both the rows and columns as described in
section 4.2.2.

Making use of the banded structure of a matrix can save substantially on the execution time and,
if the matrix is stored intelligently, on the storage requirements. Software libraries such as NAG and
IMSL provide a range of routines for solving such banded linear systems in a computationally and
storage efficient manner.

I4.5 Tridiagonal matrices ||

A tridiagonal matrix isaspecia form of banded matrix where al the elements are zero except for
those on and immediately above and below the leading diagonal (b=1). It is sometimes possible to

— 36—



Numerical Methods for Natural Sciences |B Introduction

rearrange the rows and columns of a matrix which does not initially have this structure in order tc
gain this structure and hence greatly simplify the solution process. As we shall see later in sections
to 8, tridiagonal matrices frequently occur in numerical solution of differential equations.

A tridiagonal system may be written as

0 0 O 0 0 0 O0mMmx 0O OrQ
b ¢ M g g4 G
% b oc 00 0 0 0 O0f%g ghQ
0 0 0 0O 0 ordx U OO
0 a b, ¢ il 0 g Qg
M 0 a b ¢ 0 0 0O Omxo onO
00 0 O 0 0o o ox0O OO0
P 0 0ah S M’ 0=0"°0 (55)
[ : : : : : : : 0 O: 0
Eb 0 0 0 0 bn—3 Cn—3 0 0 %—3% %n—SE
Ep 0 0 0 0 an—2 bn—2 Cn—2 0 m(n—zlj |:rn—ZD
0 0
0 00 00 0 ay By Guffean Hos
0 0 0 0 O 0 0 a b xn% rn%
or
axi-1+ bix + CXi1 =1 (56)

fori=1,...,n. Clearly x; and X, are not required and we set a;=c,=0 to reflect this.

If solved by standard Gauss elimination, then we start by dividing the first equation by by before
subtracting a, times this from the second equation to eliminate a,. We then divide the new second
equation by the new value in place of b,, before subtracting a; times this equation from the third,
and so on.

Solution, by analogy with the LU Factorisation, may be expressed as
# Factorisation

FOR i=1 TO n

b = bj—a jci1

ci = C,‘/b,‘
NEXT i
# Forward Substitution
FOR i=1 TO n

ri =(ri—a ri)lb;
NEXT i

# Back Substitution
FOR i=n—1 TO 1
r i =r;—¢ irju

4.6 Other approachesto solving linear systems ||

There are a number of other methods for solving general linear systems of equations including
approximate iterative techniques. Many large matrices which need to be solved in practical
situations have very specia structures which allow solution - either exact or approximate - much
faster than the genera O(n®) solvers presented here. We shall return to this topic in section 8.1

—37-—



Numerical Methods for Natural Sciences |B Introduction

where we shall discuss a system with a special structure resulting from the numerical solution of th
Laplace equation.

If the matrix A containsm rows andn columns, withm>n, the system is probably over-
determined (unless there are-nredundant rows). Such a system may be the result from fitting a
model with unknown coefficients to experimental data or observations. For example, fitting data
pointss,ti (i = 0,n—1) withthemodel a + bs+ cs” + de’ = r leads to the linear system

K} 2 ed [ ar, O
4 > 3% %5 o'
S & €' oh O
ﬂ_ 2 S %D Dr []
g o> 2 e% 00’0
s s e R ELE D 57)
dosos e D g
1 s & e*0d0 Dr D
o : an
i : 0 :
B s 5. e %n—l%

which is of theform Ax = r, wherex" = (a,b,c,d) While the solutionto Ax = r will not exist in an
algebraic sense, it can be valuable to determine the solution in an approximate sense. Theerror in

this approximate solution is then
e= AX-—r. (58)

The approximate solution is chosen by optimising this error in some manner. Most useful among
the classes of solutionis the Least Squares solution. In this solution we minimise the residual sum
of squareswhich is simply

rss =e'e (59)

Substituting for e we obtain

rss=[x'A" = r"][Ax - 1]

=x'"ATAx = 2x"ATr +r'r, (60)
and setting drss/0x to zero gives

orss

a—XZZATAx—ZATr:O. (61)

Thus, if we solve the n by n problem ATAx = A'r, the solution vector x will give us the solution in a
least squares sense.

" Not examinable

— 38 —



Numerical Methods for Natural Sciences |B Introduction

Warning: The matrix A'A is often poorly conditioned (nearly singular) and can lead to
significant errors in the resulting Least Squares solution due to rounding error. While these error:
may be reduced using pivoting in combination with Gauss Elimination, it is generally better to solve
the Least Squares problem using the Householder transformation, as this produces less roundi
error, or better still by Singular Value Decomposition which will highlight any redundant or nearly
redundant variables

The Householder transformation avoids the poorly conditioned natubé/ofby solving the
problem directly without evaluating this matrix. Supp@sis an orthogonal matrix such that

Q'Q=l, (62)
wherel is the identity matrix an® is chosen to transfori into
QA=F T ©3)
= D’
H

whereR is a square matrix of a sineandO is a zero matrix of size+n by n. The right-hand side of
the systenQAx = Qr becomes

b
o= (64)

whereb is a vector of siza andc is a vector of sizarn.
Now the turning point (global minimum) in the residual sum of squares, (61), this occurs when
orss
=, = AATAX-ATH]
=2[ATQ"QAX-ATQ"QI]
. 2[[QA]TQAX —[QA]TQr] (65)
= 2QA]"[QAX - Qr]
=2R"[Rx —b]

vanishes. For a non-trivial solution, that occurs when
Rx =h. (66)

This system may be solved to obtain the least squares sokutismg any of the normal linear
solvers discussed above.

Further discussion of these methods is beyond the scope of this course.

— 39 —



Numerical Methods for Natural Sciences |B Introduction

I4.8 Under deter mined systems

If the matrixA containam rows andh columns, withm < n, the system is under determined. The
solution maps out a—mdimensional subregion in n dimensional space. Solution of such systems
typically requires some form of optimisationin order to further constrain the solution vector.

Linear programming represents one method for solving such systems. In Linear Programming,
the solution is optimised such that the objective functiorz=c'x is minimised. The “Linear” indicates
that the underdetermined system of equations is linear and the objective function is linear in the
solution variablex. The “Programming” arose to enhance the chances of obtaining funding for
research into this area when it was developing in the 1960s.

" Not examinable

—40 -



Numerical Methods for Natural Sciences |B Introduction

5 Numerical integration
a -]

There are two main reasons for you to need to do numerical integration: analytical integratior
may be impossible or infeasible, or you may wish to integrate tabulated data rather than know:
functions. In this section we outline the main approaches to numerical integration. Which is
preferable depends in part on the results required, and in part on the function or data to b
integrated.

_5.1 Manual method

If you were to perform the integration by hand, one approach is to superimpose a grid on a grap
of the function to be integrated, and simply count the squares, counting only those covered by 50¢
or more of the function. Provided the grid is sufficiently fine, a reasonably accurate estimate may b
obtained. Figure 11 demonstrates how this may be achieved.

A

Figure 11: Manual method for determining integral by superimposing a grid on a graph of the integrand. The
boxes indicated in grey are counted.

5.2 Constant rule ||

Perhaps the simplest form of numerical integration is to assume the fuictisnconstant over the
interval being integrated. Such a scheme is illustrated in figure 12. Clearly this is not going to be :
very accurate method of integrating, and indeed leads to an ambiguous result, depending on whett
the constant is selected from the lower or the upper limit of the integral.

—41 -



Numerical Methods for Natural Sciences |B Introduction

Xo X1=Xg+AX

Figure 12: Integration by constant rule whereby the value of f(x) is assumed constant over the interval.

Integration of a Taylor Series expansiori(gf shows the error in this approximation to be

X+AX X+Ax

f(x)ax=[fx,)+ (X )\x=%)+3F"(%)x- xo +... dx
froges |
= £ (x)Ox + 3 /(%o )Ax? + 2 £ (x,)Ax3+.. (67)
= f(xO)Ax+O(Ax2),

if the constant is taken from the lower limit, ffxo+AX)Ax if taken from the upper limit. In both
cases the error B(AX%), with the coefficient being derived frofx).

Clearly we can do much better than this, and as a result this rule is not used in practice, althouc
a knowledge of it helps with understanding the solution of ordinary differential equations (see 86).

I5.3 Trapezium rule ||

Consider the Taylor Series expansion integrated koimxo+AX:

J’f Qo= [ 1)+ 1) x0) + 3 17 (xxe) .

%
- et 1o+ 17 6o
= [% f (Xo) + %(f (xo) + f '(XO)AX +5 f "(xo)Ax2+...) -5 f "(XO)AX2 +...]Ax

= %(f (%) + (%, + Ax))Ax +0(ax?)

—42 —



Numerical Methods for Natural Sciences |B Introduction

The approximation represented Bjf(xo) + f(xo+Ax)]Ax is called the Trapezium Rule based on its
geometric interpretation as shown in figure 13.

A

e

Xo X1=Xo+AX

Figure 13: Graphical interpretation of the trapezium rule.

As we can see from equation (68), the error in the Trapezium Rule is proportiaral Thus, if
we were to halvé\x, the error would be decreased by a factor of eight. However, the size of the
domain would be halved, thus requiring the Trapezium Rule to be evaluated twice and the
contributions summed. The net result is the error decreasing by a factor of four rather than eigh
The Trapezium Rule used in this manner is sometimes termed the Compound Trapezium Rule, b
more often simply the Trapezium Rule. In general it consists of the sum of integrations over &
smaller distancéx to obtain a smaller error.

Suppose we need to integrate framto x;. We shall subdivide this interval intosteps of size
Ax=(X1—X)/n as shown in figure 14.

— 43—



Numerical Methods for Natural Sciences |B Introduction

Xo X1=Xo+NAX

Figure 14: Compound Trapezium Rule.

The Compound Trapezium Rule approximation to the integral is therefore

X n—1 %o +(i+1)Ax
J'f(x)dx: leo J'f(x)dx
% 1=0 x,+iAx
Ax _ .
:7;f(xo+|Ax)+f(xo+(|+l)Ax) . (69)

= [t (0) # 21 (1o + )21 (3 + 200)+..-421 (3 +(n- D)+ 1 )]

While the error for each step@Ax°), the cumulative error is times this 0lO(AX?) ~ O(n™).

The above analysis assum@sg is constant over the interval being integrated. This is not
necessary and an extension to this procedure to utilise a smaller stéy sizeegions of high
curvature would reduce the total error in the calculation, although it would rebaid). We
would choose to reduakx in the regions of high curvature as we can see from equation (68) that
the leading order truncation error is scaled'by

I5.4 Mid-point rule

A variant on the Trapezium Rule is obtained by integrating the Taylor Seriesxfrdmx/'2 to
Xo+AX/2:

—44 —



Numerical Methods for Natural Sciences |B Introduction

Xo+ Yo% Xo +Y40X 2
XO_I%AfX( x) dx = XOJ%IX(XO) 11 ) (X = Xo) + 2 £7(%o)(x = %) +....dx | 0

= f (xO)Ax +5 f ”(xo)Ax3+...

By evaluating the functiof(x) at the midpoint of each interval the error may be slightly reduced
relative to the Trapezium rule (the coefficient in front of the curvature term is 1/24 for the Mid-
point Rule compared with 1/12 for the Trapezium Rule) but the method remains of the same ordel
Figure 15 provides a graphical interpretation of this approach.

A

/ |

Xo - YolAX Xg + Y2AX

Figure 15: Graphical interpretation of the midpoint rule. The grey region defines the midpoint rule as a
rectangular approximation with the dashed lines showing alternative trapeziodal aproximations containing
the same area.

Again we may reduce the error when integrating the interval X, to x; by subdividing it into n
smaller steps. This Compound Mid-point Rule is then

n-1

jif(x)dszxZO (% + (i + 4)Ax), (71)

with the graphical interpretation shown in figure 16. The difference between the Trapezium Rule
and Mid-point Rule is greatly diminished in their compound forms. Comparison of equations (69)
and (71) show the only difference is in the phase relationship between the points used and the
domain, plus how the first and last intervals are calculated.

— 45—



Numerical Methods for Natural Sciences |B Introduction

Xo X1=Xo+NAX

Figure 16: Compound Mid-point Rule.

There are two further advantages of the Mid-point Rule over the Trapezium Rule. The first is that
is requires one fewer function evaluations for a given number of subintervals, and the second that
can be used more effectively for determining the integral near an integrable singularity. The reasor
for this are clear from figure 17.

— 46 —



Numerical Methods for Natural Sciences |B Introduction

Figure 17: Applying the Midpoint Rule where the singular integrand would cause the Trapezium Rule to
fail.

5.5 Simpson’s rule ||

An dternative approach to decreasing the step size Ax for the integration is to increase the
accuracy of the functions used to approximate the integrand. Figure 18 sketches one possibility,
using a quadratic approximation to f(x).

N\

Figure 18: Quadratic approximation to integrand is the basis of Simpson’s Rule.

Integrating the Taylor series over an interval 2Ax shows

—47 -



Numerical Methods for Natural Sciences |B Introduction

X+2AX

[f (x)dx =2f (xo)Ax+ 2f ’(XO)AX2 +3 f "(XO)AX3 +3 f ”'(xc,)Ax4 +1c f iV(XO)AXS... (72)

=370

+4(f (Xo)+ f'(xO)Ax+% f "(xo)Ax2 +1f ”'(XO)AX3 +Lf iv(XO)AX4+m)
(1 (%) + 28 () ax+ 25 () +4 £ ()0 +2 (x,)ax*+.. )
—% f iv(XO)AX“...]
AX

:?(f (xo)+4f (xO +Ax)+ f (xO +2Ax))+O(Ax5)

Whereas the error in the Trapezium rule \@&x°), Simpson’s rule is two orders more accurate at
O(AX), giving exact integration of cubics.

To improve the accuracy when integrating over larger intervals, the inteteal; may again be
subdivided inton steps. The three-point evaluation for each subinterval requires that there are ar
even number of subintervals. Hence we must be able to express the number of intervais. as
The Compound Simpson’s rule is then

m-1

}f(x)dx:%z f(x0 +2iAx)+4f(xO +(2i +])Ax)+ f(x0 +(2i +2)Ax)
% = . (73)
AX

Xt 1 )21, 20}, 41 x, + (1-8) 1 x)]

and the corresponding erotnAx®) or O(AXY).

|5.6 Quadratic triangulation” ||

Simpson’s Rule may be employed in a manual way to determine the integral with nothing more
than a ruler. The approach is to cover the domain to be integrated with a triangle or trapeziun
(whichever is geometrically more appropriate) as is shown in figure 19. The integrand may cross th
side of the trapezium (triangle) connecting the end points. For each arc-like region so created (the
are two in figure 19) the maximum deviation (indicated by arrows in figure 19) from the line should
be measured, as should the length of the chord joining the points of crossing. From Simpson’s rul
we may approximate the area between each of these arcs and the chord as

area = %; x chordx maxDeviation, (74)
remembering that some increase the area while others decrease it relative to the initial trapezoid

(triangular) estimate. The overall estimate (ignoring linear measurement errors) @flPhevhere
| is the length of the (longest) chord.

—48 —



Numerical Methods for Natural Sciences |B Introduction

Xo X1=Xg+NAX

Figure 19: Quadratic triangulation to determine the area using a manual combination of the Trapezium and
Simpson’s Rules.

I5.7 Romberg integration

e ————————————————

With the Compound Trapezium Rule we know from section 5.3 the error in some estimate T(AX)
of theintegral | using a step size Ax goes like cAX® as Ax — 0, for some constant c. Likewise the error
in T(Ax/2) will be cAX?/4. From this we may construct a revised estimate T?(Ax/2) for | as a
weighted mean of T(Ax) and T(AX/2):

TOAX/2) = aT(AX/2) + (1-a) T(AX)
= afl +cAxC/4 +O(AXH] + (1-0)[I + A + O(AXY]. (75)
By choosing the weighting factar = 4/3 we elimate the leading orde©(\x%) error terms,
relegating the error 19(Ax"). Thus we have
TH(AXI2) = [AT(AX2) —T(AX)]/3. (76)

Comparison with equation (73) shows that this formula is precisely that for Simpson’s Rule.

This same process may be carried out to higher orders 0gidgAX/8, ... to eliminate the

higher order error terms. For the Trapezium Rule the errors are all even poveiEnof as a result
it can be shown that

TM(AX2) = [2°"TMD(Ax2) =T (AX)]/(2°™-1). (77)

A similar process may also be applied to the Compound Simpson’s Rule.

—49 —



Numerical Methods for Natural Sciences |B Introduction

5.8 Gauss quadrature
a -]

By careful selection of the points at which the function is evaluated it is possible to increase the
precision for a given number of function evaluations. The Mid-point rule is an example of this: with
just a single function evaluation it obtains the same order of accuracy as the Trapezium Rule (whic
requires two points).

One widely used example of this is Gauss quadrature which enables exact integration of cubic

with only two function evaluations (in contrast Simpson’s Rule, which is also exact for cubics,
requires three function evaluations). Gauss quadrature has the formula

X=X +AX

O HN
J’f(x)dxz%élf%ﬁ%—%@bx%f§%+%+§§m%0(&4). (78)
Xo

In general it is possible to chookkfunction evaluations per interval to obtain a formula exact for
all polynomials of degreeM-1 and less.

The Gauss Quadrature accurate to o1 may be determined using the same approach
required for the two-point scheme. This may be derived by comparing the Taylor Series expansio
for the integral with that for the poirts+a/Ax andxy+pBAX:

X1 =Xo +AX A 2 A 3 AX4
J (=2 (1) 5 1 () 25 o)+ 5 ) + o)
-5 () 080 oy, (8
_7g(xo)+aAXf (X°)+Tf (x0)+ 5 f (x0)+,,, 79)
Ax)’ Ax)° 0
w1t (o) BT 1) B e
NG AXC Ax?
:Axf(xo)+(a +B)%f'(xo)+(0‘2+BZ)TX+(GS+B3)T);+...
Equating the various terms reveals
a+p=1
(o +B%)/4 = 1/, (80)

the solution of which gives the positions stated in equation (78).

Using three function evaluations: symmetry suggests for the interuak to xo+Ax the points
should be evaluated =&t andx,xa with weightings2AxA and2AxB. The Taylor Series expansion of
the integral gives

X +AX M NG A AX®
J'f(x)dx=2Afo(xo)+if”(xo)+l—;(0f'v( )+50);0

- £9(x,) + O(AXB)E, (81)

Xo—AX

while the expansion of the function for the three points gives

—-50-—



Numerical Methods for Natural Sciences |B Introduction

Xo+AX

If X)obx = 200 Af (x,) + B (%, — ) + BF (x, + ]

= 20 Af
+B(f —(xf'+i(xzf"—lcx3f"'+2*14(X4fiv—r%0(15fv+7*%006f\'i —ﬁ(ﬂf"“ +O(a8))
(f +Gf +4 a fu 3f"'+2*1404fiv+1*%0(15fv+7%006f"i+ST14007fV“+O(C18))]
:ZAx[(A+ZB)f +Ba’f "+ Batf Y + 5500 +O(08)]- (82)

Comparing the terms between (81) and (82) gives

A+2B=1
Bo? = AX’/6
Ba“/12 = AX*/120 (83)

which may be solved to obtain the position of the evaluations and the weightings
(Ba'/12)Bo’ = (AX*/120) / (:x%/6)

0 o= (6/10A%

[ a = (3/5)"Ax

B=5/18
A= 409, (84)
thus
XO}AIX‘ = —Ax%f ( ) +5f %(O %QZAX%+ 5f %(O + %QZAXEEL (85)
& 0 0 O A

|5.9 Example of numerical integration

Consider the integral
J'sinxdx=2, (86)
0

which may be integrated numerically using any of the methods described in the previous section:
Tables 2 to 6 summarise the error in the numerical estimates for the Trapezium Rule, Midpoin
Rule, Simpson’s Rule, Gauss Quadrature and a three point Gauss Quadrature (formula derived
lectures). Table 7 compares these errors. The results are presented in terms of the number
function evaluations required. The calculations were performed in double precision.

—-51 -



Numerical Methods for Natural Sciences |B

No. No. f(x) Trapezium Rule Error Ratio:
intervals €n/€n

1 2 - 2. 00000000 0. 2146
2 3 -0. 429203673 0. 24203
4 5 -0.103881102 0. 24806
8 9 -0. 0257683980 0. 24952
16 17 - 0. 00642965622 0. 24988
32 33 -0. 00160663902 0. 24997
64 65 -0. 000401611359 0. 24999
128 129 -0. 000100399815 0. 25
256 257 - 0. 0000250997649 0. 25
512 513 - 0. 00000627492942 0. 25
1024 1025 - 0. 00000156873161 0. 25
2048 2049 - 0. 000000392182860 0. 25
4096 4097 - 0. 0000000980457133 0. 25
8192 8193 -0.0000000245114248 0. 25
16384 16385 - 0. 00000000612785222 0. 25
32768 32769 - 0. 00000000153194190 0. 24999
65536 65537 - 0. 000000000382977427 0. 24994
131072 131073 - 0. 0000000000957223189 0. 25014
262144 262145 - 0. 0000000000239435138 0. 24898
524288 524289 - 0. 00000000000596145355

Table 2: Error in Trapezium Rule. Note error ratid? (AXY)

No. No. f(x) Midpoint Rule Error Ratio:
intervals €n/€n

1 1 1. 14189790 0.19392
2 2 0.221441469 0. 23638
4 4 0. 0523443059 0. 24662
8 8 0. 0129090855 0. 24916
16 16 0. 00321637816 0. 24979
32 32 0. 000803416309 0. 24995
64 64 0. 000200811728 0. 24999
128 128 0. 0000502002859 0. 25
256 256 0. 0000125499060 0. 25
512 512 0. 00000313746618 0. 25
1024 1024 0. 000000784365898 0. 25
2048 2048 0. 000000196091438 0. 25
4096 4096 0. 0000000490228564 0. 25
8192 8192 0. 0000000122557182 0. 25
16384 16384 0. 00000000306393221 0. 25
32768 32768 0. 000000000765979280 0. 25
65536 65536 0. 000000000191497040 0. 24979
131072 131072 0. 0000000000478341810 0. 25081
262144 262144 0. 0000000000119970700 0. 25286
524288 524288 0. 00000000000303357339

Table 3: Error in Mid-point Rule. Note error ratio 272 (AX?)

No. No. f(x) Simpson’s Rule Error Ratio:
intervals enlen

1 3 0. 0943951023 0. 0483
2 5 0. 00455975498 0. 05903
4 9 0. 000269169948 0. 06164
8 17 0. 0000165910479 0. 06228
16 33 0. 00000103336941 0. 06245
32 65 0. 0000000645300022 0. 06249
64 129 0. 00000000403225719 0. 0625

- 52 —

Introduction



Numerical Methods for Natural Sciences |B Introduction

128 257 0. 000000000252001974 0. 0625
256 513 0. 0000000000157500679 0. 0624
512 1025 0. 000000000000982769421

Table 4: Error in Simpson’s Rule. Note error ratid2™ (Ax")

No. No. f(x) Gauss Quadrature Error Ratio:
intervals enl/én
1 2 -0.0641804253 0.0476
2 4 -0.00305477319 0. 05881
4 8 -0.000179666460 0. 06158
8 16 -0.0000110640837 0. 06227
16 32 - 0. 000000688965642 0. 06244
32 64 -0.0000000430208237 0. 06249
64 128 - 0. 00000000268818500 0. 0625
128 256 - 0. 000000000168002278 0. 06249
256 512 - 0. 0000000000104984909 0. 06248
512 1024 - 0. 000000000000655919762

Table 5: Error in Gauss Quadrature. Note error ratip (Ax“)
No. No. Gauss Quadrature - three point Error Ratio:
intervals  f(x) enlen
1 3 0.001388913607743625 0. 01169
2 6 0. 00001624311099668319 0. 01464
4 12 0. 0000002378219958742989 0. 01538
8 24 0. 000000003657474767493341 0. 01556
16 48 0. 00000000005692291082937118 0. 0156
32 96 0. 0000000000008881784197001252 0. 016
64 192 0. 00000000000001421085471520200 -0. 01563
128 384 - 0. 0000000000000002220446049250313 1
256 768 - 0. 0000000000000002220446049250313

Table 6: Error in Three point Gauss Quadrature. Note error+afid (Ax°)

No. Trapezium Midpoint Simpson’s  Gauss 3 Pnt Gauss

Intervals Rule Rule Rule Quadrature  Quadrature
1 -2. 0000E+00 1. 1418E+00 9. 4395E-02 - 6. 4180E-02  1.3889E-03
2 -4.2920E-01 2.2144E-01 4.5597E-03 -3.0547E-03  1.6243E-05
4 -1. 0388E- 01 5.2344E-02 2.6916E-04 -1.7966E-04  2.3782E-07
8 -2.5768E-02 1. 2909E-02 1.6591E-05 -1.1064E-05  3.6574E-09

16 -6.4296E-03  3.2163E-03 1.0333E-06 -6.8896E-07 5.6922E-11

32 -1.6066E-03  8.0341E-04 6.4530E-08 -4.3020E-08  8.8817E-13

64 -4.0161E-04  2.0081E-04 4.0322E-09 -2.6881E-09  1.4210E-14

128 -1.0039E-04  5.0200E-05 2.5200E-10 -1.6800E-10 -2.2204E-16

256 - 2. 5099E- 05 1. 2549E-05 1.5750E-11 -1.0498E-11 -2.2204E-16

512 -6.2749E-06  3.1374E-06 9.8276E-13 -6.5591E-13

1024 -1.5687E-06 7. 8436E-07

2048 - 3. 9218E- 07 1. 9609E- 07

4096 -9.8045E-08 4. 9022E- 08

8192 -2.4511E-08 1. 2255E- 08

16384 - 6. 1278E- 09 3. 0639E- 09

32768 - 1. 5319E- 09 7. 6597E- 10

65536 - 3. 8297E- 10 1. 9149E- 10

131072  -9.5722E-11 4. 7834E-11

262144  -2.3943E-11 1. 1997E-11

524288  -5.9614E-12 3. 0335E- 12

1048576

Table 7: Error in numerical integration of (86) as afunction of the number of subintervals.

—- 53—



Numerical Methods for Natural Sciences |B Introduction

5.9.1 Program for numerical integration

Note that this program is written for clarity rather than speed. The number of function
evaluations actually computed may be approximately halved for the Trapezium rule and reduced b
one third for Simpson’s rule if the compound formulations are used. Note also that this example i
included for illustrative purposes only. No knowledge of Fortran or any other programming
language is required in this course.

PROGRAM | nt egr at
REAL* 8 x0, x1, Val ue, Exact, p
| NTEGER*4 i, ), nx
C=====Functi ons
REAL* 8 Trapezi unRul e
REAL* 8 M dpoi nt Rul e
REAL* 8 Si mpsonsRul e
REAL* 8 GaussQuad
C=====Const ant s
pi = 2.0*ASI N( 1. 0D0)
Exact = 2.0
C=====Limts
x0 = 0.0
x1 = pi
C::::::::::::::::::::::::::::::: === s s s p——
C= Trapeziumrul e =
C::::::::::::::::::::::::::::::: === s s s p——
VRI TE( 6, *)
WRI TE( 6, *)’ Trapezium rul e’
nx =1
DO i =1, 20
Val ue = Trapezi unRul e(x0, x1, nx)
WRI TE( 6, *) nx, Val ue, Val ue - Exact
nx = 2*nx
ENDDO
C::::::::::::::::::::::::::::::: === s s s p——
C= M dpoint rule =
C::::::::::::::::::::::::::::::: === s s s p——
VRI TE( 6, *)
WRI TE( 6, *)’ M dpoint rule’
nx =1
DO i =1, 20
Val ue = M dpoi nt Rul e(x0, x1, nx)
WRI TE( 6, *) nx, Val ue, Val ue - Exact
nx = 2*nx
ENDDO
C::::::::::::::::::::::::::::::: === s s s p——
C= Sinmpson’s rule =
C::::::::::::::::::::::::::::::: === s s s p——
VRI TE( 6, *)
WRI TE(6, *)’ Si npson’’s rul e’
VRI TE( 6, *)
nx = 2
DO i =1, 10
Val ue = Si npsonsRul e(x0, x1, nx)
WRI TE( 6, *) nx, Val ue, Val ue - Exact
nx = 2*nx

" Not examinable

—54 —



Numerical Methods for Natural Sciences |B Introduction

WB|$E£8113’Gauss quadr at ure
nx =

DO i =1, 10
Val ue = GaussQuad(x0, x1, nx)
WRI TE( 6, *) nx, Val ue, Val ue - Exact
nx = 2*nx

ENDDO

END

FUNCTI ON f (x)
C=====paraneters
REAL* 8 X, f

I f = SIN(x)

RETURN
END

REAL*8 FUNCTI ON Trapezi unRul e( x0, x1, nx)

| NTEGER*4 nx
REAL* 8 x0, x1
C=====f uncti ons
REAL* 8 f
C=====| ocal vari abl es
| NTEGER*4 i
REAL* 8 dx, xa, xb, fa, f b, Sum
dx = (x1 - x0)/DFLQOAT( nx)

Sum= 0.0
DO i =0, nx-1
xa = x0 + DFLOAT(i)*dx
xb = x0 + DFLOAT(i +1) *dx
fa = f(xa)
fb = f(xb)
Sum= Sum + fa + fb
ENDDO

Sum = Sum* dx / 2.0
Trapezi unRul e = Sum
RETURN

END

REAL*8 FUNCTI ON M dpoi nt Rul e(x0, x1, nx)
C=====paraneters

| NTEGER*4 nx

REAL* 8 x0, x1

REAL* 8 f
C=====| ocal vari abl es
| NTEGER*4 i
REAL* 8 dx, xa, fa, Sum
dx = (x1 - x0)/Dfl oat (nx)
Sum= 0.0
DO i =0, nx-1
xa = x0 + (DFLQAT(i)+0.5)*dx
fa = f(xa)
Sum = Sum + fa
ENDDO
Sum = Sum * dx
M dpoi nt Rul e = Sum
RETURN
END

REAL*8 FUNCTI ON Si npsonsRul e( x0, x1, nx)

| NTEGER*4 nx
REAL* 8 x0, x1

— 55—



Numerical Methods for Natural Sciences |B

Introduction

C=====| ocal vari abl es
| NTEGER*4 i
REAL* 8 dx, xa, xb, xc, fa, fb, fc, Sum
dx = (x1 - x0)/DFLQOAT( nx)
Sum= 0.0
DO i=0,nx-1,2

xa = x0 + DFLOAT(i)*dx

xb = x0 + DFLOAT(i +1) *dx

xc = x0 + DFLOAT(i +2) *dx

fa = f(xa)

fb = f(xb)

fc = f(xc)

Sum = Sum + fa + 4.0*fb + fc
ENDDO

Sum = Sum* dx / 3.0
Si mpsonsRul e = Sum
RETURN

END

REAL*8 FUNCTI ON GaussQuad(x0, x1, nx)
C=====paraneters

| NTEGER*4 nx

REAL* 8 x0, x1

REAL* 8 f
C=====| ocal vari abl es
| NTEGER*4 i
REAL* 8 dx, xa, xb, fa, f b, Sum dxl , dxr
dx = (x1 - x0)/DFLQOAT(nx)

dxl = dx*(0.5D0 - SQRT(3.0D0)/6.0D0)
dxr = dx*(0.5D0 + SQRT(3.0D0)/6.0D0)
Sum= 0.0
DO i =0, nx-1

xa = X0 + DFLOAT(i)*dx + dxl

xb = x0 + DFLOAT(i)*dx + dxr

fa = f(xa)

fb = f(xb)

Sum= Sum + fa + fb
ENDDO

Sum= Sum* dx / 2.0
GaussQuad = Sum
RETURN

END

— 56 —




Numerical Methods for Natural Sciences |B Introduction

6 First order ordinary differential equations

Ths section of the course introduces some commonly used methods for determining the
numerical solutions of ordinary differential equations. These methods will then be used in 88 as th
basis for solving some types of partial differential equations.

I6.1 Taylor series ||

The key idea behind numerical solution of odes is the combination of function values at different
points or times to approximate the derivatives in the required equation. The manner in which the
function values are combined is determined by the Taylor Series expansion for the point at whicl
the derivative is required. This gives ulrgte difference approximation to the derivative.

_6.2 Finite difference ||

Consider a first order ode of the form

dy _
% f(t,y), (87)

subject to some boundary/initial conditigft=to) = c. The finite difference solution of this equation
proceeds by discretising the independent variabdd,, to+At, to+2At, to+3At, ... We shall denote
the exact solution at sonte-t, = to+nAt by y, = y(t=t,) and our approximate solution b. We
then look to solve

Y= f(tn,Yn) (88)

at each of the points in the domain, wh¥tgis an approximation tdy/dt based on the discrete set
of Y.

If we take the Taylor Series expansion for the grid points in the neighbourhood of some point
t = tﬂ!

1 2\ 4 3w/, 4
V.o =Y, - 200 + 200 - At v 0 At)

1 1
Yoy =Y, — A0+ AP =AY O[At)

2 6
v =y , (89)
1 1 21 1 3\ 4
Yo =Y, A0+ A Ay O[At)
1 21 4 3\, 4
Yoo =Y, + 200 + 203+ Y- 0(At?)

—57—



Numerical Methods for Natural Sciences |B Introduction

we may then take linear combinations of these expansions to obtain an approximation for the
derivativeY’,, att = t,, viz.

Y'=ZO(Y . (90)

io(i =0 (91)

and, depending on the method, possibly some of the terms of higher order. We shall look at variot
strategies for choosing in the following sections. As an example, we may selectytrendY,.;

values as the basis of an approximation to approxinfateAdding the appropriate equations,
noting that the weightings sum to zero so may be expressed=as ando, =- o, and setting

equal toY’,, gives

Y,n = aYn - aYn.]_
= aY, — a(Y, = AtY, + ALY = ALY "+ ). (92)

Equating left- and right-hand sides reveals 1/At, so

Y, Y, 1
— LY+ ALY+ OlAt?). 93
A=Y Ay ofat?) (93)

Before looking at this in any further detail, we need to consider the error associated with
approximatingy, by Y.

6.3 Truncation error ||

The global truncation error at thenth step is the cumulative total of the truncation error at the
previous steps and is

En= Yo— ¥ (94)
In contrast, thelocal truncation errorfor the nth step is
eﬂ = Yﬂ - %*, (95)

where y.* the exact solution of our differential equation but with the initial condition y, 1*=Y, ;.
Note that E,, is not ssimply

D& (96)

=1

which would give E, = O(ne,). It aso depends on the stability of the method (see section 6.7 for
details) and we aim for E, = O(e,).

— 58 —



Numerical Methods for Natural Sciences |B Introduction

I6.4 Euler method

The Euler method is the simplest finite difference scheme to understand and implement
Following on from (93) we approximate the derivative in (88) as

Y’n = (Yn+l - Yn)/At, (97)

in our differential equation for Y, to obtain
Yn+]_ = Yn + Atf(tn,Yn). (98)

Given the initial/boundary condition Y, =c, we may obtain Y; from Yy + Atf(to,Yo), Y2 from
Y; + Atf(t;,Y1) and so on, marching forwards through time. This process is shown graphically in
figure 20.

/

Figure 20: Sketch of the function y(t) (dark line) and the Euler method solution (arrows). Each arrow is
tangental to to the solution of (87) passing through the point located at the start of the arrow. Note that this

point need not be on the desired y(t) curve.

The Euler method is termed an explicit method because we are able to write down an explicit
solution for Y, 1 in terms of “known” values df.

Comparing the Euler method equation Yarin (98) with the the Taylor Series expansion Yar

in (89), shows that th&(At) error in the finite difference approximation (93) become©gkt?)
error in (98). Thus the Euler method is first order accurate and is often referred fiosasraer

method. Moreover, it can be shown that Yi=y,+O(At?), then Yn.1=yn..+O(At?) provided the
scheme is stable (see section 6.7).

— 59 —



Numerical Methods for Natural Sciences |B Introduction

I6.5 I mplicit methods

- — |

The Euler method outlined in the previous section may be summarised by the update formul:
Yre1 = g(Yn,th,At). In contrast implicit methods have haYe; on both sidesY .1 = h(Yy, Yns1,tn,AL),
for example. Such implicit methods are computationally more expensive for a single step thar
explicit methods, but offer advantages in terms of stability and/or accuracy in many circumstances
Often the computational expenge step is more than compensated for by it being possible to take
larger steps (see section 6.7).

_6.5.1 Backward Euler

The backward Euler method is almost identical to its explicit relative, the only difference being
that the derivative’,, is approximated by

Y= (Yo — Yoa)/At, (99)

to give the evolution equation

Yn+]_ = Yn + Atf(tn+1,Yn+1). (100)

o

Thisis shown graphically in figure 21.

A

/

Figure 21: Sketch of the function y(t) (dark line) and the Euler method solution (arrows). Each arrow is
tangental to to the solution of (87) passing through the point located at the end of the arrow. Note that this
point need not be on the desired y(t) curve.

— 60—



Numerical Methods for Natural Sciences |B

Introduction

The dependence of the right-hand side on the variablgs edther thar, means that it is not, in
general possible to give an explicit formula ¥6r 1, only in terms ofY,, andt,.1. (It may, however,
be possible to recover an explicit formula for some functigns

As the derivativeY’, is approximated only to the first order, the Backward Euler method has
errors ofO(Atz),g_exactIy as for the Euler method. The solution process will, however, tend to be
more stable and hence accurate, especiallystféfr problems (problems wher is large). An

example of this is shown in figure 22.

ward Euler

-Nicholson

(Forl

ward) Euler

Figure 22: Comparison of ordinary differential equation solvers for a stiff problem.

6.5.2 Richardson extrapolation

The Romberg integration approach (presented in section 5.7) of using two approximations o
different step size to construct a more accurate estimate may also be used for numerical solution
ordinary differential equations. Again, if we have the estimate for somet taaleulated using a
time stepAt, then for both the Euler and Backward Euler methods the approximate solution is
related to the true solution Byft,At) = y(t) + cAt>. Similarly an estimate using a step sizé? will
follow Y(t,At/2) = y(t) + ,cAt* as At— 0. Combining these two estimates to try and cancel the
O(At?) errors gives the improved estimate as

YO (t,A2) = [4Y(t,AU2) — Y(t,At) 1/3.

(101)

The same approach may be applied to higher order methods such as those presented in the
following sections. It is generally preferable, however, to utilise a higher order method to start with,
the exception being that calculating both Y(t,At) and Y(t,At/2) alows the two solutions to be
compared and thus the trunctation error estimated.

— 61 -



Numerical Methods for Natural Sciences |B Introduction

_6.5.3 Crank-Nicholson _

If we usecentral differences rather than thdorward difference of the Euler method or the
backward difference of the backward Euler, we may obtain a second order method due to
cancellation of the terms @f(At%). Using the same discretisationtafie obtain

Y’n+ 1/2 = (Yn+ 1— Yn)/At (102)

Substitution into our differential equation for Y, gives
(Yner — Y)/At = f(the 172, Yne172). (103)

The requirement for f(t..12,Yn+12) is then satisfied by a linear interpolation for f between t, 1/, and
th+1/2 tO Obtain

Yot — Y = l/Z[f(tn+lyYn+l) + f(thn)]At- (104)

As with the Backward Euler, the method is implicit and it is not, in general, possible to write an
explicit expression for Y. 1 interms of Y,.

Formal proof that the Crank-Nicholson method is second order accurate is dlightly more
complicated than for the Euler and Backward Euler methods due to the linear interpolation to
approximate f(t+1/2, Yo+ 1/2). The overal approach is much the same, however, with a requirement for
Taylor Series expansions about t,,::

_ dy =~ 1d% , .
yn+1 - yn dt At + 2 dt2 —2 At +O(At )

=y + AL+ H—+f—Bm +o(at?)

(105q)

(b Your) = F (60 ¥0) + %At +‘;—;Ay+ ofat?) +o(ay?)

Lof . of dy
"TotT dy dt

[Df of U
=for Gyt f a—yHAt +0(At?)

Substitution of these into the left- and right-hand sides of equation (104) reveals

= f =2 At +0(At?) (105b)

109f  of O
Yo = Y0 = T+ 5 Fo £ o TR + o(at?) (1062)
and

3000 Gt~ o 1 3 ol

(106b)

1 [of
= f At+= B—+f—EPt +0(at?)

— 62 —



Numerical Methods for Natural Sciences |B Introduction

which are equal up ©(At).

I6.6 Multistep methods

As an alternative, the accuracy of the approximation to the derivative may be improved by using
a linear combination of additional points. By utilising oilys.1,Yn-s+2,...,Y, We may construct an
approximation to the derivatives of ordérto s att,. For example, is = 2 then

Y'n =i,
Y"n == (fn - fn_]_)/At (107)

and so we may construct a second order method from the Taylor series expansion as
Yot = Yo + ALY, + BAPY"
= Y, + A3, = ). (108)
For s=3 we aso have Y, and so can make use of a second-order one-sided finite difference to

approximate Y', = f, = (3f, -4 f.1 + f,2)/2At and include the third order Y™, = ', = (f-
2f.1+f,.0)/At? to obtain

Yoe1 = Yo + ALY + ALY+ YeABY
= Y, + YAt(23f, — 16f, 1 + 5f,, ). (109)

These methods are called Adams-Bashforth methods. Note that s = 1 recovers the Euler method.

Implicit Adams-Bashforth methods are also possible if we use information about f,..; in addition
to earlier time steps. The corresponding s = 2 method then uses

Y=t
Y" n = (fn+1 - fn_]_)/ZAt
Y= (Frn — &+ fra) A, (110)

to give
Yne1 = Yo + ALY, + 1/2At2Y"n + l/eAt3Y’ "N
= Y, + (V12)At(5fh.q + 8f —fa). (111)

Thisfamily of implicit methods is known as Adams-Moulton methods.

6.7 Stability ﬂ

The stability of a method can be even more important than its accuracy as measured by the order
of the truncation error. Suppose we are solving

y =My, (112)

for some complex A. The exact solution is bounded (i.e. does not increase without limit) provided
ReA < 0. Substituting this into the Euler method shows

— 63 -



Numerical Methods for Natural Sciences |B Introduction

Yo = (1 +AAD)Y, = (1 +AADY 1 = ... = (L + AAD™ Y, (113)

If Y, isto remain bounded for increasing n and given ReA < 0 we require
|1+ AAt < 1. (114)

If we choose a time step At which does not satisfy (114) then Y, will increase without limit. This
condition (114) on At is very restrictive if A<<0 as it demonstrates the Euler method must use very
small time steps At < 2]\[* if the solution is to convergeony = 0.

The reason why we consider the behaviour of equation (112) is that it is a model for the
behaviour of small errors. Suppose that at some stage during the solution process our approximate
solution is

Ys=YtE, (115)
where € isthe (small) error. Substituting this into our differential equation of the form y’ = f(t,y) and
using a Taylor Series expansion gives

dys _dy  de
dt  dt dt

= f(t,y$)
= f(t,y+s)

= f(t,y)+£g—;+0(£2)

(116)

Thus, to the leading order, the error obeys an equation of the form given by (112), with A = 0f/dy.

As it is desirable for errors to decrease (and thus the solution remain stable) rather than increase

(and the solution be unstable), the limit on the time step suggested by (114) applies for the
application of the Euler method to any ordinary differential equation. A consequence of the decay of

errors present at one time step as the solution process proceeds is that memory of a particular time

step’s contribution to the global truncation error decays as the solution advances through time. Tht
the global truncation error is dominated by the local trunction error(s) of the most recent step(s) an:
O(E.) = O(e,).

In comparison, solution of (112) by the Backward Euler method

Yn+]_ = Yn + At)\Yn+l, (117)

can be rearranged ., and
Yorr = Yo/(L =AAL) = Yoa/(1 —=AAD? = ... = Yo/(1 —AAD)™, (118)

which will be stable provided
|1 —AAt| > 1. (119)

ForRe\ < Othis is always satisfied and so the Backward Euler method is unconditionally stable.
The Crank-Nicholson method may be analysed in a similar fashion with
(1-AAV2)Y i1 = (LHAAU2)Y,, (120)

— 64—



Numerical Methods for Natural Sciences |B Introduction

to arrive at

Yoe1 = [(A+AAY2)/(1 =AAY2)]™ Yo, (121)
with the magnitude of the term in square brackets always less than unigNer0. Thus, like
Backward Euler, Crank-Nicholson is unconditionally stable.

In general, explicit methods require less computation per step, but are only conditionally stable
and so may require far smaller step sizes than an implicit method of nominally the same order.

6.8 Predictor-corrector methods ||

One approach to using an implicit method is to use a direct iteration to solve the implicit
equation. For example, the Backward Euler method has the form

Yn+]_ = Yn + At f(tn+]_,Yn+]_). (122)

Applying the theory for direct iteration outlined in §83.6, we may write
Y1 = Yo + At f(toes, Yoes), (123)

settingY.+10=Y,, and iterate over until the solution has converged. From (21) we know it will
converge if

<1, (124)

o (Yn +AUF (Y, ))‘ - ‘At g—fY

and the solution will gradually approach the Backward Euler solution. Note that this convergence
criterion is more stringent than the stability criterion established in 86.7!

What we are effectively doing here is makingradiction with the Euler method (our equation
for Y,.11 is just the Euler method), then multiglerrections to this to get the solution to converge
on the Backward Euler method. A similar strategy may be applied to the Crank-Nicholson methoc
to obtain

Yne1i = Yo + Y2 At [f(tn+l,Yn+1,i) + f(tn,Yn,i)], (125)

requiring¥z At 0f/0Y < 1 for convergence. Once convergence is achieved, we are left with a second-
order implicit scheme. However, it may not be necessary or desirable to carry on iterating until
convergence is achieved. Moreover, the condition for convergence using (125) imposes the san
restrictions upont as stability of the Euler method. There are other reasons, however, for taking
this approach.

The above examples, if iterated only a finite number of times rather than until convergence is
achieved, belong to a class of methods known as predictor-corrector methods. Predictor-correctt
methods try to combine the advantages of the simplicity of explicit methods with the improved
accuracy of implicit methods. They achieve this by using an explicit methwediat the solution
Yoi® at t,.. and then utilisef(t,.1,Y1”) as an approximation tf(t..1,Y,:1) to correct this
prediction using something similar to an implicit step.

— 65—



Numerical Methods for Natural Sciences |B Introduction

I6.8.1 |mproved Euler method

The simplest of these methods combines the Euler method as the predictor
Yoit® = Y, + Atf(t,Y,), (126)

and then the Backward Euler to give the corrector
Yn+1(2) =Y.+ Atf(tn,Yn+1(l))- (127)

The final solution is the mean of these:
Yr1+l = (Yn+1(l) + Yn+1(2))/2- (128)

To understand the stability of this method we again usey'thely so that the three steps
described by equations (126) to (128) become

Yoei® = Y, + AALY,, (129a)

Yoii® = Y, + ALY, P
=Y, + AAt (Y, + AALY,)
= (1 + MAt+ AAP)Y,, (129b)

Y1 = (Yord® + Yois @2
= [(1 + AADY, + (1 + AAL + A%AtD) Y,]/2
= (1 + AAt + YLAPA) Y,
= (1 + MAt+ 1oAPAP)™ Y, (129¢)

Stability requires |1 + AAt + Y/,0%At?| < 1 (for Rel < 0) which in turn restricts At < 2]A[™%. Thus the
stability of this method, commonly known as the Improved Euler method, is identical to the Euler
method. It is also the same as the criterion for the iterative Crank-Nicholson method given in (125)
to converge. Thisis not surprising as it is limited by the stability of the initial predictive step. The
accuracy of the method is, however, second order as may be seen by comparison of (129¢) with the
Taylor Series expansion.

6.8.2 Runge-Kutta methods ||

The Improved Euler method is the simplest of a family of similar predictor corrector methods
following the form of a single predictor step and one or more corrector steps. The corrector step
may be repeated a fixed number of times, or until the estimate for Y,..; converges to some tolerance.

One subgroup of this family are the Runge-K utta methods which use a fixed number of corrector
steps. The Improved Euler method is the simplest of this subgroup. Perhaps the most widely used of
these is the fourth order method:

KY = Atf(t,,Y) (130a)

K@ = Atf(t+ it Y+ Yy | (130b)

— 66 —



Numerical Methods for Natural Sciences |B Introduction

K® = Atf(t+ oAt Y+ K2 | (130c)
KD = Atf(t,+ At Y +K) | (130d)
Yo = Yo+ (KP + 2k@ + 2k9 + K96, (130e)

In order to analyse this we need to construct Taylor-Series expansions for
K@ = Atf(t o0t Yt BKY) = A[f(t,, Yo)+(AU2)(@f/0t+of/dy)], and similarly fork® andk®. This is

then compared with a full Taylor-Series expansionYfor up to fourth order. To achieve this we
require

Y" = df/dt = of/ot + dy/ot of/dy = df/ot + f of/dy, (131)
Y = df/dt?
= 0°f/ot? + 2f 9%f/atdy + of/ot af/dy + 2 °flay” + f (Bf/dy)?, (132)

and similarly forY"". All terms up to ordeAt* can be shown to match, with the error coming in at
AP,

— 67 —



Numerical Methods for Natural Sciences |B Introduction

|7 Higher order ordinary differential equations

In this section we look at how to solve higher order ordinary differential equations. Some of the
techniques discussed here are based on the techniques introduced in 86, and some rely or
combination of this material and the linear algebra of §4.

I7.1 Initial value problems ||

The discussion so far has been for first order ordinary differential equations. All the methods
given may be applied to higher ordinary differential equations, provided it is possible to write an
explicit expression for the highest order derivative and the system has a complete set of initia
conditions. Consider some equation

dy .0 dy d’y d"'yO
g - Y a (133)

where att =t, we know the values of, dy/dt, d?y/dt?, ..., d™y/dt™™ . By writing xo=y, x.=dy/dt,
Xo=dyldt?, ..., x,.=d"y/dt"™, we may express this as the system of equations

Xo' = X1
X1 =X
X' = X3
Xn2' = Xna
Xna' = F(tX0, X1, .. Xn2), (134)

and use the standard methods for updating each x; for some t,,.1 before proceeding to the next time

step. A decision needs to be made as to whether the values of x for t, or t,.; are to be used on the

right hand side of the equation for x,1’. This decision may affect the order and convergence of the
method. Detailed analysis may be undertaken in a manner similar to that for the first order ordinar
differential equations.

7.2 Boundary value problems
For second (and higher) order odes, two (or more) initial/lboundary conditions are required. If
these two conditions do not correspond to the same point in time/space, then the simple extension
the first order methods outlined in section 7.1 can not be applied without modification. There are
two relatively simple approaches to solve such equations.

I7.2.1 Shooting method

Suppose we are solving a second order equation of theyfoerf(t,y,y’) subject toy(0) =c, and
y(1) =c;. With the shooting method we apply §(@)=c, boundary condition and make somesss

— 68 —



Numerical Methods for Natural Sciences |B Introduction

thaty’(0) = ap. This gives us two initial conditions so that we may apply the simple time-stepping
methods already discussed in section 7.1. The calculation proceeds until we have avalue for y(1). If
this does not satisfy y(1) = ¢; to some acceptable tolerance, we revise our guess for y'(0) to some
value a4, say, and repeat the time integration to obtain an new value for y(1). This process continues
until we hit y(1)=c,; to the acceptable tolerance. The number of iterations which will need to be
made in order to achieve an acceptable tolerance will depend on how good the refinement algorithm
for o is. We may use the root finding methods discussed in section 3 to undertake this refinement.

The same approach can be applied to higher order ordinary differential equations. For a system of
order n with m boundary conditions at t = t, and n—mboundary conditions at t = t;, we will require
guesses for n—m initial conditions. The computational cost of refining these n—m guesses will
rapidly become large as the dimensions of the space increase.

| 7.2.2 Linear equations ||

The alternative is to rewrite the equations using a finite difference approximation with step size
At = (t:—to)/N to produce a system dF+ 1 simultaneous equations. Consider the second order linear
system

y'+ay +hby=c, (135)
with boundary conditionsy(tp) =a and y(t;) +y’(t;)) =[3. If we use the central difference
approximations

i = (Y1 — Yo1)/2At, (1364a)

V' = (Yo = 2Y, + Yi)/AE, (136b)

Substitution into (135) gives

Y —2Y +Y L 1
+ +bY =
2 a AL bY =c, (137)

and we may write the boundary condition att =ty as
Yo = Q. (138)
For t =t; we must express the derivative in the boundary condition in finite difference form using

points that exist in our mesh. The obvious thing to do is to take the backward difference so that the
boundary condition becomes

=B, (139)

but as we shall see, this choiceis not ideal.
The above strategy leads to the system of equations
Yo =0,
(1+,8A)Y, + (DAP=2)Y: + (1-,8At) Y, = AL,
(1+,8A0Y; + PA-2)Y, + (1-,aAt)Ys = CAL,



Numerical Methods for Natural Sciences |B Introduction

(1+,800) Y, 2 + (DAP=2)Yr 4 + (1-1:8A1)Y, = A,
~Yo1 + (At +1) Y, = BAt (140)

This tridiagonal system may be readily solved using the method discussed in section4.5.

There is one problem with the scheme outlined above: whilg'tladY’ derivatives within the
domain are second order accurate, the boundary conditiontais imposed only as a first-order
approximation to the derivative. We have two ways in which we may improve the accuracy of this
boundary condition.

The first way is the most obvious: make use of ¥he value to construct a second-order
approximation tor" so that we have

3Y, 4V Y 2
= +O[At?), 141
: P (at?) (141)
so that the last equation in our system becomes
Yoo = 4Y, 1 + (20t + 3) Y, = 2BAt. (142)

The problem with this is that we then loose our simple tridiagonal system.

The second approach is to artificially increase the size of the domain by one mesh point an
impose the boundary conditionside the domain. The additional mesh point is often referred to as a
dummy mesh point or dummy cell. This leads to the last three equations being

(1+,800) Y, 2 + (DAP=2)Yr 4 + (1-:8A0)Y, = A,
(1+,8A0) Vi1 + DAP=2)Y, + (1-128A8)Ye1 = CAL,
~Yo1 + 2AtY, + Yoe1 = 2BAt (143)

The attraction of this approach is that we maintain our simple tri-diagonal system.
Clearly the same tricks can be applied if we have a boundary condition on the deritative at

Higher order linear equations may be catered for in a similar manner and the matrix representin
the system of equations will remain banded, but not as sparse as tridiagonal. The solution may
undertaken using the modified LU decomposition introduced in section 4.4.

Nonlinear equations may also be solved using this approach, but will require an iterative solutior
of the resulting matrix systedx = b as the matriA will be a function ofx. In most circumstances
this is most efficiently achieved through a Newton-Raphson algorithm, similar in principle to that
introduced in section 3.4 but where a system of linear equations requires solution for each iteration

I7.3 Other consider ations

Not examinable

" Not examinable

— 70—



Numerical Methods for Natural Sciences |B Introduction

I7.3.1 Truncation error’

Not examinable

I7.3.2 Error and step control”

Not examinable

" Not examinable

" Not examinable

- 71 -




Numerical Methods for Natural Sciences |B Introduction

I8 Partial differential equations

-]
In this section we shall concentrate on the numerical solution of second order linear partial
differential equations.

I8.1 L aplace equation

Consider the Laplace equation in two dimensions

0’0 9%
2 — —_— =
Do=_ 2+ oy 0, (144)

in some rectangular domain describedty [Xo,x1], Y in [Yo,y1]. Suppose we discretise the solution
¢ onto am+1 by n+1 rectangular grid (or mesh) given by

X = Xo + 1AX (145a)

Yi = Yo+ jly (145D)
wherei=0,m, j=0,n. The mesh spacing i< = (X;—x)/mand Ay = (y:—y)/n. Let

bij = O (x.y) (146)

be the exact solution at the mesh point i,j, and ®;; = ¢;; be the approximate solution at that mesh
point.
By considering the Taylor Series expansion for ¢ about some mesh point i),

a¢i,j +AX2 62¢i,j +AX3 a3¢i,j

Bron; =0y + DX B+ -G = — sk v o), (147a)
0y =, — DX ag’)‘("’ + A;(Z a;i‘z’i - Agg ";“;y +0o(axt), (147b)
Oi o =0, +AY 5:1;;,- + A;Z a;;t'z' + AgB 023'31 +O(Ay4), (147b)
¢ .=0,, _py 2 B 0, 000, +olay?), (147b)

dy 2 oy’ 6 oay°
it is clear that we may approximate 8°p/0x* and 0°¢p/dy’to the second order using the four adjacent

mesh points to obtain the finite difference approximation

CDi+1j - 20, j +cDi—1j D, j+1_2q)i j +®, j-1
' ' —+— ' — = 14

— 72 —



Numerical Methods for Natural Sciences |B Introduction

for the internal point®<i<m, 0g<n. In addition to this we will have either Dirichlet, von Neumann
or mixed boundary conditions to specify the boundary valugs.ofhe system of linear equations
described by (148) in combination with the boundary conditions may be solved in a variety of ways.

_8.1.1 Direct solution

-]
Provided the boundary conditions are lineaminour finite difference approximation is itself
linear and the resulting system of equations may be written as

Ad = b, (149)

with (m+1)(n+1) equations. This system may be solved directly using Gauss Elimination as
discussed in section 4.1. However, this approach may be feasible if the total number of mesh poin
(m+1)(n+1) required is relatively small, but as the mathixused to represent the complete system
will have [(m+1)(n+1)]* elements, the storage and computational cost of such a solution will
become prohibitive even for relatively modesandn.

i=0, j=3 0¢/oy =1 i=3, j=3
o0y =y $(3.0) =y
i=0, j=0 bx0) =0 i=3, j=0

Figure 23: Sketch of domain for Laplace equation. The linear system for this domain is given in (150).

The structure of the system ensufess relatively sparse, consisting of a tridiagonal core with
one nonzero diagonal above and another below this. These nonzero diagonals are offsetrby either
or n from the leading diagonal. For example, in the domain shown in figure 23, the linear system is

— 73—



Numerical Methods for Natural Sciences |B

[y

I v o |

Introduction

Q
(=]

=
o

w
o

o
=

N
i o e[ e e
HL OGS S
e Y

R B
ood
OonOod

D:

O

Q
N

0

g
I

[N
N

i .|
[

w N
N N

Q
@

&
O
O

S
=

Provided pivoting (if required) is conducted in such a way that it does not place any nonzera
elements outside this band then solution by Gauss Elimination or LU Decomposition will only
produce nonzero elements inside this band, substantially reducing the storage and computation
requirements (see section 4.4). Careful choice of the order of the matrix eleneebisx(or byy)
may help reduce the size of this matrix so that it need containGnt}) elements for a square

domain.

Because of the wide spread need to solve Laplace’s and related equations, specialised solve
have been developed for this problem. One of the best of these is Hockney's method for solvin
A¢ =b which may be used to reduce a block tridiagonal matrix (and the corresponding right-hanc

side) of the form

5
-
-
-
-
o

>
1
I |

into a block diagonal matrix of the form

—74 -

> —

MmOoOdOooooooood

(151)



Numerical Methods for Natural Sciences |B Introduction

o>
o>

(152)

D]]DDDDDDDDDD@
o>
S

o>
o>
A O |

where A and B are themselves block tridiagonal matrices kiglan identiy matrix.. This process
may be performed iteratively to reduce andimensional finite difference approximation to
Laplace’s equation to a tridiagonal system of equations nwithapplications. The computational
cost is O(p log p), where p is the total number of mesh points. The main drawback of this method is
that the boundary conditions must be able to be cast into the block tridiagonal format.

I8.1.2 Relaxation

An aternative to direct solution of the finite difference equations is an iterative numerical
solution. These iterative methods are often referred to as relaxation methods as an initial guessat
the solution is alowed to slowly relax towards the true solution, reducing the errors as it does so.
There are a variety of approaches with differing complexity and speed. We shall introduce these
methods before looking at the basic mathematics behind them.

|8.1.2.1 Jacobi |

The Jacobi Iteration is the simplest approach. For clarity we consider the special case when
Ax = Ay. To find the solution for atwo-dimensional Laplace equation simply:

1. Initidlise ®;; to some initial guess
2. Apply the boundary conditions.
3. For each internal mesh point set

%) = (Pirrj + Pigj+ Dijer + Pja)/4 (153)
4. Replace old solution ® with new estimate ®*.
5. If solution does not satisfy tolerance, repeat from step 2.

An example of this algorithm is given in the table below where ¢ =0 on the boundaries and the
initial guessis ¢ = 1intheinterior (clearly the answer is ¢ = 0 everywhere). The first four iterations
arelabelled a, b, cand d.

a0 a0 a0 a0 a0
b) 0 b) 0 b) 0 b) O b) 0
c)0 cO0 c)0 cO0 c0

— 75—



Numerical Methods for Natural Sciences |B Introduction

a)o0 a)l a)l a)l a)o
b) 0 b) 1/2 b) 3/4 b) 1/2 b) 0
c)0 c) 3/8 c) 1/2 c) 3/8 c)0
a0 a)l a)l a)l a0
b) 0 b) 3/4 b) 1 b) 3/4 b) 0
c)0 c) 1/2 c) 3/4 c) 1/2 c)0
a)o0 a)l a)l a)l a0
b) 0 b) 1/2 b) 3/4 b) 1/2 b) 0
c)0 c) 3/8 c) 1/2 c) 3/8 c)0
a0 a0 a0 a0 a0
b) 0 b) 0 b) 0 b) 0 b) 0
c)0 c)0 c)0 c)0 c)0

The coefficients in (153) (here dll4) used to calculate the refined estimate is often referred to
as thestencil or template. Higher order approximations may be obtained by simply employing a
stencil which utilises more points. Other equatiag. the bi-harmonic equation]*¥ = 0) may be
solved by introducing a stencil appropriate to that equation.

While very simple and cheap per iteration, the Jacobi Iteration is very slow to converge,
especially for larger grids. Corrections to errors in the estinpgtéiffuse only slowly from the
boundaries takin@(max(m,n)) iterations to diffuse across the entire mesh.

_8.1.2.2 Gauss-Seidel

The Gauss-Seidel Iteration is very similar to the Jacobi Iteration, the only difference being that
the new estimat@*;; is returned to the solutioh;; as soon as it is completed, allowing it to be used
immediately rather than deferring its use to the next iteration. The advantages of this are:

» Less memory required (there is no need to stdhe
» Faster convergence (although still relatively slow).

On the other hand, the method is less amenable to vectorisation as, for a given iteration, the ne
estimate of one mesh point is dependent on the new estimates for those already scanned.

An example of the first iteration of the Gauss-Seidel approach using the same initial guess as ol
Jacobi iteration in 88.1.2.1 is given below, with the iteration starting at the bottom left and moving
across then up.

— 76 —



Numerical Methods for Natural Sciences |B

Introduction

a0 a)o0 a0 a)o0 a)o0
b) 0 b) 0 b) 0 b) 0 b) 0
c)0 c)0 c)0 c)0 c)0
d) 0 d) 0 d) 0 d) 0 d) 0
a) 0 a) 1 a) 1 a) 1 a) 0
b) 0 b) 13/32 b) 29/64 b) 29/128 b) 0
c)0 c) c) c) c)0
d) 0 d) d) d) d) 0
a)0 a) 1 a) 1 a) 1 a) 0
b) 0 b) 5/8 b) 13/32 b) 29/64 b) 0
c)0 c) c) c) c)0
d)o d) d) d) d) o
a)0 a) 1 a) 1 a) 1 a) 0
b) 0 b) 1/2 b) 5/8 b) 13/32 b) 0
c)0 c) c) c) c)0
d)o d) d) d) d)o
a0 a)o0 a0 a)o0 a)o0
b) 0 b) 0 b) 0 b) 0 b) 0
c)0 c)0 c)0 c)0 c)0
d) 0 d) 0 d) 0 d) 0 d) 0

Clearly in this example the solution is converging on

existed in the initial guess has been lost.

zero more rapidly, but the symmetry that

18.1.2.3 Red-Black ordering

A variant on the Gauss-Seidel Iteration is obtained by updating the sofutiam two passes
rather than one. If we consider the mesh points as a chess board, then the white squares would
updated on the first pass and the black squares on the second pass. The advantages

—77 -

No interdependence of the solution updates within a single pass aids vectorisation.



Numerical Methods for Natural Sciences |B

Faster convergence at low wave numbers.

Introduction

An example, based on those in the previous two sections, is given below. Note that the cell
labelled “Red” are updated on the first pass and those labelled “Black” on the second pass. Unlik
the Gauss-Seidel, the order in which the cells are updated within one pass does not matter.

Black Red Black Red Black
a0 a)0 a)0 a)0 a)o0
b) 0 b) 0 b) 0 b) 0 b) 0
Red Black Red Black Red
a0 a)l al a)l a)o0
b) 0 b) 3/8 b) 3/4 b) 3/8 b) 0
Black Red Black Red Black
a0 a)l a)l a)l a)o0
b) 0 b) 3/4 b) 3/4 b) 3/4 b) 0
Red Black Red Black Red
a)o0 a)l a)l a)l a0
b) 0 b) 3/8 b) 3/4 b) 3/8 b) 0
Black Red Black Red Black
a0 a)o0 a0 a)o0 a0
b) 0 b) 0 b) 0 b) 0 b) 0

In this example the solution is converging faster than the Jacobi iteration and at a comparabl
rate to Gauss-Seidel, yet is maintaining the symmetries which existed in the initial guess. For man
problems, particularly those looking at instabilities, the maintenance of symmetries is important.

8.1.2.4 Successive Over Relaxation (SOR)

It has been found that the errors in the solution obtained by any of the three preceding methoc
decrease only slowly and often decrease in a monotonic manner. Hence, rather than setting

D*jj = (Piggj + Piogj + Djjuq + Djj1)/4,

for each internal mesh point, we use

O*j = (1-0)Djj + O(Pisrj + Pigj + Dijar + P 1)/4,

78—

(154)



Numerical Methods for Natural Sciences |B Introduction

for some values. Theoptimal value ofc will depend on the problem being solved and may vary as
the iteration process converges. Typically, however, a value of around 1.2 to 1.4 produces goo
results. In some special cases it is possible to determine an optimal value analytically.

18.1.3 Multigrid’ _

The big problem with relaxation methods is their slow convergence= It then application of
the stencil removes all the error in the solution at the wave length of the mesh for that point, but ha
little impact on larger wave lengths. This may be seen if we consider the one-dimensional equatio
d?p/dx® = 0 subject todp(x=0)=0 and ¢(x=1)=1. Suppose our initial guess for the iterative
solution is that®; = O for all internal mesh points. With the Jacobi Iteration the correction to the
internal points diffuses only slowly along froos 1.

[terations

Multigrid methods try to improve the rate of convergence by considering the problem of a
hierarchy of grids. The larger wave length errors in the solution are dissipated on a coarser gri
while the shorter wave length errors are dissipated on a finer grid. for the example consideret
above, the solution would converge in one complete Jacobi multigrid iteration, compared with the
slow asymptotic convergence above.

For linear problems, the basic multigrid algorithm for one complete iteration may be described as

1. Select the initial finest grid resolutipr P, and seb®™ = 0 and make some initial
guess at the solutich®

2. If at coarsest resolutiop0) then solveA P d®P=h® exactly and jump to step 7
3. Relax the solution at the current grid resolution, applying boundary conditions

" Not examinable

—79 —



Numerical Methods for Natural Sciences |B Introduction

Calculate the error= A®®hHP)

Coarsen the error b®™ 1 to the next coarser grid and decrement p

Repeat from step 2

Refine the correction to the next finest grid ®®*Y = ®®P* D+qd® and increment p
Relax the solution at the current grid resolution, applying boundary conditions

. If not at current finest grid (Po), repeat from step 7

10. If not at final desired grid, increment P, and repeat from step 7

11. If not converged, repeat from step 2.

© © N o U s

Typically the relaxation steps will be performed using Successive Over Relaxtion with Red-Black
ordering and some relaxation coefficient 0. The hierarchy of grids is normally chosen to differ in
dimensions by afactor of 2 in each direction. The factor a istypically less than unity and effectively
damps possible instabilities in the convergence. The refining of the correction to afiner grid will be
achieved by (bi-)linear or higher order interpolation, and the coarsening may simply be by sub-
sampling or averaging the error vectorr.

It has been found that the number of iterations required to reach a given level of convergence is
more or less independent of the number of mesh points. As the number of operations per complete
iteration for n mesh points is O(n)+O(n/2%+ +0(n/2°%+..., whered is the number of dimensions in
the problem, then it can be seen that the Multigrid method may often be faster than a directior
solution (which will required(n®), O(n?) or O(n log n) operations, depending on the method used).
This is particularly true ifi is large or there are a large number of dimensions in the problem. For
small problems, the coefficient in front of thdor the Multigrid solution may be relatively large so
that direct solution may be faster.

A further advantage of Multigrid and other iterative methods when compared with direct
solution, is that irregular shaped domains or complex boundary conditions are implemented mor
easily. The difficulty with this for the Multigrid method is that care must be taken in order to ensure
consistent boundary conditions in the embedded problems.

8.1.4 The mathematics of relaxation” ||

In principle, relaxation methods which are the basis of the Jacobi, Gauss-Seidel, Successive Ov
Relaxation and Multigrid methods may be applied to any system of linear equations to interatively
improve an approximation to the exact solution. The basis for this is identical to the Direct Iteration
method described in section 3.6. We start by writing the vector function

f(x) = Ax — b, (155)

and search for the vector of rootd o) = 0 by writing
Xn+1 = g(Xn), (156)

where
g(x) = DY[ A+D]x - b}, (157)

" Not examinable

— 80 -



Numerical Methods for Natural Sciences |B Introduction

with D a diagonal matrix (zero for all off-diagonal elements) which may be chosen arbitrarily. We
may analyse this system by following our earlier analysis for the Direct Iteration method (section
3.6). Let us assume the exact solutioxFis g(x*), then

Ent1 = Xns1 — X*
=D Y[ A+D]x, - b} - D[ A+D]x* - b}
= D [A+D](x, — x*)
=D {A+D]e,
={D{A+D]} " ¢o. (158)

From this it is clear that convergence will be linear and requires

|Ensall= [Benll < [l (159)

whereB = D'[A+D] for some suitable norm. As any error vectgrmay be written as a linear
combination of the eigen vectors of our maixit is sufficient for us to consider the eigen value
problem

Ben = A&, (160)

and requirenax(p|) to be less than unity. In the asymptotic limit, the smaller the magnitude of this
maximum eigen value the more rapid the convergence. The convergence remains, however, linear

Since we have the ability to choose the diagonal méatriand since it is the eigen values of
B = D [A+D] rather thamA itself which are important, careful choice Bfcan aid the speed at
which the method converges. Typically this means selebtsgthat the diagonal & is small.

8.1.4.1 Jacobi and Gauss-Seidel for Laplace equation’ ||

The structure of the finite difference approximation to Laplace’s equation lends itself to these
relaxation methods. In one dimension,

32 1 0
0, _ 0
J1 -2 1 J
0 1 -2 1 0
A= 1 -2 1 . (161)
0 1 -2 1 O
0 T D
0 SR
H 1 -2

and both Jacobi and Gauss-Seidel iterations@aés?2l (I is the identity matrix) on the diagonal to
giveB =D [A+D] as

" Not examinable

- 81 -



Numerical Methods for Natural Sciences |B

00 12 O
42 0 12 .
0 12 0 12 O
B=F y2 0 12 .
5 V2 0 %2 g
0 o
a Y2 of

The eigen values of this matrix are given by the roots of
detB-Al) = 0.

In this case the determinant may be obtained using the recurrence relation
det(B-)\)(n) =-A det@-)\)(n_l) - ]7’4 detB-)\)(n_z) ,

where the subscript gives the size of the md@rikrom this we may see

detB-\)p) = -\,
detB-\)) =A? - Vi,
detB-\) = -\ + ¥\,
det@-A\)w =\* - %A? + (1/16),
detB-\)s = -\° +A° - (3/16)\

det®B-A\)e =A° - (5/4N* + (3/8)\° - (1/64),

which may be solved to give the eigen values

)\(1) = 0,
)\2(2) = 1/4,
A =0, 1/2,

N4 = (3£ V5)/8,

N =0, 1/4, 3/4

Introduction

(162)

(163)

(164)

(165)

(166)

It can be shown that for a system of any size following this general form, all the eigen values satisf
[A| <1, thus proving the relaxation method will always converge. As we increase the number of
mesh points, the number of eigen values increases and gradually fills up th@\fangjewith the

— 82 —



Numerical Methods for Natural Sciences |B Introduction

numerically largest eigen values becoming closer to unity. As a result of the convergence of

the relaxation method slows considerably for large problems. A similar analysis may be applied tc
Laplace’s equation in two or more dimensions, although the expressions for the determinant an
eigen values is correspondingly more complex.

The large eigen values are responsible for decreasing the error over large distances (many me
points). The multigrid approach enables the solution to converge using a much smaller system c
equations and hence smaller eigen values for the larger distances, bypassing the slow converger
of the basic relaxation method.

18.1.4.2 Successive Over Relaxation for L aplace equati on’ ||

The analysis of the Jacobi and Gauss-Seidel iterations may be applied equally well to Successiy
Over Relaxation. The main difference is tBat (2/0)l so that

d-o o/2 0
50/2 1-0 o/2 B
O o/2 1-0 o0o/2 O
Bor = B 0/2 1-0 0/2 B (167)
O 0/2 1-0 o/2 O
U . . U
- . . O
H 0/2 1-of
and thus
A+o-1 [
Boy — Al :G%J | (168)

and the corresponding eigen valuesr are related to the eigen valuesfor the Jacobi and Gauss-
Seidel methods by

)\g)R =1+ O-()\J - 1) (169)
Thus if o is chosen inappropriately, the eigen valueBoWill exceed unity and the relaxation

method will diverge. On the otherhand, careful choice @fill allow the eigen values d8 to be
less than those for Jacobi and Gauss-Seidel, thus increasing the rate of convergence.

8.1.4.3 Other equations ||

Relaxation methods may be applied to other differential equations or more general systems of line:
equations in a similar manner. As a rule of thumb, the solution will converge A tatrix is
diagonally dominant,e. the numerically largest values occur on the diagonal. If this is not the case,

" Not examinable

" Not examinable

— 83—



Numerical Methods for Natural Sciences |B Introduction

SOR can still be used, but it may be necessary to clioeskewhereas for Laplace’s equatiore 1
produces a better rate of convergence.

|8.L5FFT

One of the most common ways of solving Laplace’s equation is to take the Fourier transform of
the equation to convert it into wave number space and there solve the resulting algebraic equatior
This conversion process can be very efficient if the Fast Fourier Transform algorithm is used,
allowing a solution to be evaluated wiilin log n) operations.

In its simplest form the FFT algorithm requires there tm be2” mesh points in the direction(s)
to be transformed. The efficiency of the algorithm is achieved by first calculating the transform of
pairs of points, then of pairs of transforms, then of pairs of pairs and so on up to the full resolution
The idea is talivide and conquer! Details of the FFT algorithm may be found in any standard text.

8.1.6 Boundary elements ||
8.1.7 Finite elements “

8.2 Poisson equation
The Poisson equatidi’p = f(x) may be treated using the same techniques as Laplace’s equation.
It is simply necessary to set the right-hand sidedcaled suitably to reflect any scalingiin

I8.3 Diffusion equation

Consider the two-dimensional diffusion equation,

—=Dl— +7D, (170)

subject tou(x,y,t) =0 on the boundariex=0,1 and y=0,1 Suppose the initial conditions are
u(x,y,t=0) = up(x,y) and we wish to evaluate the solution for 0. We shall explore some of the
options for achieving this in the following sections.

_8.3.1 Semi-discretisation

One of the simplest and most useful approaches is to discretise the equation in space and th
solve a system of (coupled) ordinary differential equations in time in order to calculate the solution.
Using a square mesh of step size= Ay = 1/m, and taking the diffusivitp = 1, we may utilise our
earlier approximation for the Laplacian operator (equation (148)) to obtain

" Not examinable
" Not examinable

" Not examinable

-84 —



Numerical Methods for Natural Sciences |B Introduction

aui,j ~ ui+1,j +ui—1,j +ui,j+1+ui,j—1_4uiJ
ot AX?

(171)

for the internal points&=1,m-1 and j=1,m-1. On the boundaries (i=0,j), (i=m,j), (i,j=0) and (i,j=m)
we simply have u;=0. If Uj; represents our approximation of u at the mesh points x;;, then we must
simply solve the (m-1)? coupled ordinary differential equations

Ui',j(t) = (Ui+1,j +Ui U atU _4Ui,j)/AX2' (172)
In principle we may utilise any of the time stepping algorithms discussed in earlier lectures to
solve this system. As we shall see, however, care needs to be taken to ensure the method chosen

produces a stable solution.

8.3.2 Euler method ||

Applying the Euler method Y,.1 = Y +Atf(Y,,t,) to our spatially discretised diffusion equation
gives

UG =0 +u(U, +U, U U -0 ), (73

i,] i,j+1
where the Courant number
U= AUAR, (174)

describes the size of the time step relative to the spatial discretisation. As we shall see, stability of
the solution depends on | in contrast to an ordinary differential equation where it is afunction of the
time step At only.

8.3.3 Sability “

Stability of the Euler method solving the diffusion equation may be analysed in a similar way to
that for ordinary differential equations. We start by asking the question “does the Euler method
converge as—>infinity?” The exact solution will have—> 0 and the numerical solution must also
do this if it is to be stable.

We choose
U9 ;=sin(ai) sin(@j), (175)

for somea and[3 chosen as multiples affm to satisfyu =0 on the boundaries. Substituting this
into (173) gives

U®;; = sin(@i)sin(@j) + p{sin[a(i+1)]sin(3j) + sinf(i-1)]sin(3j)
+ sin@i)sin[B(j+1)] + sin@i)sin[B(j-1)] — 4 sin@i)sin(@j)}
= sin(@i)sin(@j) + p{[sin(ai)cosr) + cosfi)sin(@)]sin(Bj) + [sin(@i)cosE) — cosfii)sin(@)]sin(3))
+ sin(i)[sin(Bj)cos) + cosfj)sin(B)] + sin(i)[sin(Bj)cos) — cosj)sin(B)] — 4 sin@i)sin(3))}

— 85 —



Numerical Methods for Natural Sciences |B Introduction

= sin(i)sin(@j) + 2u{sin(ai)cos) sin(®j) + sin@i)sin(@j)cos) — 2 sin@i)sin(3j)}
=sin(@i)sin(@)){1 + 2u[cos(@) + cosP) — 2]}
= sin(ai)sinBj)}{1 - 4u[sin’(a/2) + sirf(B/2)]}. (176)
Applying this at consecutive times shows the solution at ttinse
U™, = sini)sin@j) {1 - 4u[sin®(a/2) + sirf(B/2)]}", (177)

which then requirefl — 4u[sin®(0/2) + sirf(/2)]| < 1for this to converge as>infinity. For this to
be satisfied for arbitrany and3 we require. < 1/4 Thus we must ensure

At < AXCL4. (178)

A doubling of the spatial resolution therefore requires a factor of four more time steps so overall the
expense of the computation increases sixteen-fold.

The analysis for the diffusion equation in one or three dimensions may be computed in a simila
manner.

8.3.4 Model for general initial conditions ||

Our analysis of the Euler method for solving the diffusion equation in section 8.3.3 assumed
initial conditions of the formsin(krx/L,) sin(my/L,) wherek, are integers and.,, L, are the
dimensions of the domain. In addition to satisfying the boundary conditions, these initial conditions
represent a set of orthogonal functions which may be used to construct any arbitrary initial
conditions as a Fourier series. Now, since the diffusion equation is linear, and as our stability
analysis of the previous section shows the conditions under which the solution for each Fourie
mode is stable, we can see that the equation (178) applies equally for arbitrary initial conditions.

8.3.5 Crank-Nicholson ||

The implicit Crank-Nicholson method is significantly better in terms of stability than the Euler
method for ordinary differential equations. For partial differential equations such as the diffusion
eguation we may analyse this in the same manner as the Euler method of section 8.3.3.

For simplicity, consider the one dimensional diffusion equation

ou _d°u

with u(x=0,t) = u(x=1t) = 0 and apply the standard spatial discretisation for the curvature term to
obtain

Ui(n+1) B %{Ui(ffl) -2U i(n+1) + Ui(—nl+1)} =U i(n) + %{Ui(fl) -2U i(n) + Ui(—nl)} (180)

for thei=1,m-1 internal points. Solution of this expression will involve the solution of a tridiagonal
system for this one-dimensional problaheach time step:

— 86 —



Numerical Methods for Natural Sciences |B Introduction

>
+
=

01 g EE 0 0
Fin 1+p -3 g gui+3p(ul? -0 +ul)

O i lep —du (0 Dug+ip(uf” -20 +uf) O

0 —3H 1+p -3 §”+1)B 0 H(181)
O -1 1+ 1 (n+1)

0 21 1“ 2K . %"‘(‘H)D:[I O
B —ZH 1+ -3 NIVEY B B B
1 1 (n+1)

0 2h 1+p —3zp %JG 1[] 0 0
O 0 B O O

n+: n n n n D
B —ZH 1+p _%uljﬂ (e m—l+%u(ur(n)_2Ur(n—)l+UrEw—)2)
B8 1 f;ﬂ)@ 0 %

To test the stability we again choose a Fourier mode. Here we have only one spatial dimension <
we useU?; = sin(i) which satisfies the boundary conditiordifs a multiple ofr. Substituting this
into (182) we find

Un_Un_lEl—ZpsinZ%D_ JOl-2usin? 8 (182)
T M+2usn?é0 T M+2usn® S0

Since the ternf1—2usin’(6/2)])/[1+2usinf(6/2)] < 1 for all p > 0, the Crank-Nicholson method is
unconditionally stable. The step siZz¢ may be chosen on the grounds of truncation error
independently of\x.

18.3.6 ADI’ “

Not examinable

|8.4 Advection’ ||

Not examinable

8.4.1 Upwind differencing ﬂ

Not examinable

|8.4.2 Courant number” ||

Not examinable

" Not examinable
" Not examinable
" Not examinable

" Not examinable

—-87-—



Numerical Methods for Natural Sciences |B

Introduction

I8.4.3 Numerical dispersion’

Not examinable

I8.4.4 Shocks

Not examinable

I8.4.5 Lax-Wendroff

Not examinable

I8.4.6 Conservative schemes

Not examinable

" Not examinable
" Not examinable
" Not examinable

" Not examinable

—-88—




Numerical Methods for Natural Sciences |B

Introduction

I9. Number representation’

This section outlines some of the fundamentals as to how numbers are represented in compute

None of the material in this section is examinable.

I9.1. Integers

Normally represented as 2's compliment. Positive integers are presented as their binan

equivalents:

Decimal
1
5
183
255
32767

Binary

1
101
10110111
11111111

1111111111111112

Two’s compliment (16 bit)
0000000000000001

0000000000000101
0000000010110111
0000000011111111
0111111111111111

Negative numbers are obtained by taking the one’s complimeninferting all bits) and adding
one:-A= (Axor 111111111111) + 1 Anycarry bit generated is discarded. This operation is its

self-inverse

A
xor 1111111111111
+ 1

A
xor 1111111111111
+ 1

Examples
Decimal
-1
-5
-183
-255
-32767
-32768

Decimal
5

-5

Decimal
-5

5

Binary
-1
-101
-10110111
-11111111
-111111111111111

-1111111111111110

Two’s compliment (16 bit)
0000000000000101

1111111111111010
1111111111111011

Two’s compliment (16 bit)
1111111111111011
0000000000000100
0000000000000101

Two’s compliment (16 bit)
1111111111111111

1111111111111011
1111111101001001
1111111100000001
1000000000000001
1000000000000000

* The number must be represented by a known number of bits, n (say)
» The highest order bit indicates the sign of the number

« If nbits are used to represent the integer, values in the rahgéeo-2""~1 may be
represented. For=16, values from —32768 to 32767 are represented

" Not examinable

" Not examinable

— 89 —



Numerical Methods for Natural Sciences |B Introduction

* Normal binary addition of two two’s compliment numbers produces a correct result
if any carry bit is discarded

Decimal Two’s compliment (16 bit)
-5 1111111111111011
+ + 183 0000000010110111
binary sum ??7? 10000000010110010
discard carry bit 178 0000000010110010
. . *
9.2. Floating point ||

Represented as a binary mantissa and a binary exponent. There are a number of strategies for
encoding the two parts. The most common of these is the IEEE floating point format which we
describe here.

Figure 24 shows the IEE format for four byte floating point values, and figure 25 the same for
eight byte values. In both cases the number is stored as a sign bit followed by the expondent and the
mantissa. The number of bits used to represent the exponent and mantissa varies depending on the
total number of bits.

Sign bit. The sign hit gives the overal sign for the number. A value of 0 indicates positive
values, while 1 indicates negative values.

Exponent. This occupies eight bits for four byte values and eleven bits for eight byte values. The
value stored in the exponent field is offset such that for four byte reals exponentsof n= -1 ,0 and +1
are stored as 126 (=01111110,), 127 (=01111111,) and 128 (=10000000,) respectively. The
corresponding stored values for eight byte numbers are 1022 (=01111111110,), 1023
(=01111111111,) and 1024 (=10000000000,). Each of these exponents represents a power of two
scaling on the mantissa.

Mantissa. The mantissais stored as unsigned binary in the remaining 23 (four byte values) or 52
(eight byte values) bits. The use of a mantissa plus an exponent means that the binary representation
of al floating point values apart from zero will start with a one. It is thus unnecessary to store the
first binary digit, and so improve the accuracy of the number representation. There is an assumed
binary point (equivalent of adecimal point) following the unstored part of the number.

Zero. The value zero (0) does not follow the pattern of a unit value for the first binary digit in the
mantissa. Given that, plus it being, in general, a special case, zero does not follow the above
pattern. Instead, it is stored with all three components set to zero.

In the example below we show the four byte |IEE representations of a selection of values.Binary
values are indicated by a subscript 2.

Decimal | Sign | Exponent Mantissa Value Stored

seeeeeee emmmmmmm mmmmmmmm mmmmmmmm

0.0 0 0.0 0.0

0, 00000000 , 0.00000 , | 00000000 00000000 00000000 00000000 2
1.0 + 0 1.0 1.0

0, 01111111, 1.00000 , | 00111111 10000000 00000000 00000000 2
8.0 + 3 1.0 8.0

0, 10000100 , 1.00000 , | 01000001 00000000 00000000 00000000 2

" Not examinable

- 90 -



Numerical Methods for Natural Sciences |B Introduction

3.0 + 1 1.5 3.0

0, 10000000, 1.10000, [ 01000000 01000000 00000000 00000000,

-3.0 - 1 1.5 -3.0

1, 10000000, 1.10000, 11000000 01000000 00000000 00000000,
0.25 + -2 1.0 0.25

0, 01111101, 1. 00000, (00111110 10000000 00000000 00000000,
0.2 + -3 1.6 0.2 + 0.0000000149. .

0, 01111100, 1.10011, | 00111110 01001100 11001100 11001101

The first six values in this table yield exact representations under the IEE format. The final value
(0.2), however, while an exact decimal, is represented as a recurring binary and thus suffers froi
truncation error in the IEEE format. Here the final bit has been rounded up, whereas the recurrin
sequence would carry on the 11001100 pattern. The error for a single value is small, but whe
carried through the a number of stages of computation, may lead to substantial errors bein
generated.

93 Roundingand truncationerror™ |

The finite precision of floating point arithmetic in computers leads to rounding and truncation
error. Truncation error is the result of the computer not being able to represent most floating poin
values exactly.

If two floating point values are combined, by addition, for example, then there may be a further
loss of precision throughounding error even if both starting values may be represented exactly.
Consider the sum of 0.0039062690000001, and 1620000, both of which have exact
representations in our binary floating point format. The sum of the@sep. 00000001, would
require a 13 bit mantissa. If we were to have a format where we have only 12 bits stored for tht
mantissa, it would be necessary to reduce the number by estimeling the binary number up to
10000. 0000001,, Or truncating it to give0000. 0000000,. In either case there is a loss of precision.
The effect of this will accumulate of successive computations an may lead to a meaningless fine
result if care is not taken to ensure adequate precision and a suitable order for calculations.

I9.4. Endians

While almost all modern computers use formats discussed in the previous sections to stor
integer and floating point values, the same value may not be stored in the same way on two differel
machines. The reason for this is in the architecture of the central processing unit (CPU). Som
machines store the least significant byte of a word at the lower memory address and the mo
significant byte at the upper memory address occupied by the value. This is the case for maching
based on Intel and Digital processoeg.(PCs and DEC alphas), amongst others. However, other
machines store the values the opposite way around in memory, storing the least significant byte :
the higher memory address. Many (but not all) Unix work stations use the latter strategy.

The result of this is that files containing binary daa.(in the raw IEEE format rather than as
ASCII text) will not be easily portable from a machine that uses one convention to one that uses th

" Not examinable

" Not examinable

—-91 -



Numerical Methods for Natural Sciences |B Introduction

other. A two byte integer value of 106000000 00000001, written by one machine would be read
as 256 00000001 00000000, when read by the other machine.

—92—



Numerical Methods for Natural Sciences |B Introduction

|10. Computer languages ||

A complete discussion of computer languages would require a whole course in
itself. These notes are simply intended to give the reader a feeling for the strengths
and uses of different languages. The notes are written from the perspective of
someone who was brought up on awide range of languages with programs suitable for
both procedural and object oriented approaches. The discussion is necessarily brief
and may be unfairly critical on some languages.

Ideally you would use the language which is most appropriate for a given
application. For most projects, the language will be selected from the intersection of
the subset of languages you know and the set of languages supported on the specific
platform you require. Only for large projects is it worth investing the time and money
required to utilise the optimal language.

None of the material in this section is examinable.

10.1. Procedural verses Object Oriented” ||

For many applications, the current trend is towards object oriented languages such
as C++. Procedural languages are considered behind the times by many computer
scientists, yet they remain the language of choice for many scientific programs. The
main procedural contender is, and has always been Fortran. Both C++ and Fortran
have their advantages, depending on the task at hand. This section is intended to act as
an aid for choosing the appropriate language for a given task.

|10.2. Fortran 90 ||

Fortran is one of the oldest languages still in wide spread use. It has long had a
standard, enabling programs written for one type of machine to be relatively easily
ported to run on a different type of machine, provided a Fortran compiler was
available. The standard has evolved to reflect changes in coding practices and
requirements. Unfortunately for many programmers, the standard lags many years
behind current thinking. For example, Fortran 77 is the standard to which the majority
of current compilers adhere. As the name suggests, the standard was released in 1977
and the demands of computing have changed significantly since then.

The latest standard, Fortran 90, was not finally released until about 1994. Like
earlier improvements to the standard, it maintains a high level of backward
compatibility. A Fortran 90 compiler should be able to compile al but a few of the
oldest of Fortran programs (assuming they adhere to the relevant standard). While
Fortran 90 answers the majority of criticisms about the earlier version, work has

" Not examinable
" Not examinable

" Not examinable

-93



Numerical Methods for Natural Sciences |B Introduction

aready started on the next generation, helping to ensure Fortran remains in wide
spread use.

10.2.1. Procedural oriented’ ||

The origins of Fortran as a scientific computer language are reflected in the name
which stands for Formula Trandlation. The language is procedural oriented with the
algorithm (or “formula”) playing the central réle controling the way the program is
written and structured. In contrast, thigect oriented C++ (see below) focuses on the
data. For the majority of scientific programs using the types of algorithms introduced
in this course, the procedural oriented approach is more appropriate. The program
generates data from input parameters. The underlying numerical algorithms process
one type of data in a consistent manner.

As the most computationally intensive programs have traditionally followed the
procedural model, and have been written in Fortran, there has been a tremendous
effort put into developing optimisation strategies for Fortran compilers. As a result the
code produced by Fortran compilers is normally more efficfenta numerical
program than that produced by other language compilers. In contrast, if you were to
develop a word processor, for example, in Fortran, the end result would be less
efficient (in terms of speed and size) and more cumbersome than something with the
same functionality developed in C++.

10.2.2. Fortran enhancements ||

For those familiar with Fortran 77, the Fortran 90 standard has introduced many of
the features sadly missing from the earlier version. Control structures such as DO
loops have done away with the need for a numeric label. WHILE, CASE and BREAK
statements have been added to simplify program logic, and the ability to call
subroutines recursively allows the program to operate more efficiently. From the data
side structures (records), unions an maps greatly simplify the passing of parameters
and the organisation of variables without resort to a multitude of COMMON blocks.

Perhaps the most significant changes accompany a move from all data structures
being statici(e. the size of and space required by variables is determined at compile
time) to allowing dynamic allocation of memory. This greatly improves the flexibility
of a program and frequently allows you to achieve more with less memory as the same
memory can be reused for different purposes.

Many of these enhancements have been borrowed from languages such as C++,
and adapted to the Fortran environment. One of the most powerful (and, if abused,
most dangerous) is the ability twerload a function or operator. By overloading a
function or operator, the precise result will depend on the type (and number) of
parameters or operands used in executing the function/operator. For example, the
operator “+” could be defined such that, when it “adds” two strings, then it
concatenates them together, perhaps stripping any trailing spaces in the process.

" Not examinable

" Not examinable

-4



Numerical Methods for Natural Sciences |B Introduction

Similarly it would be possible to define “number=string” such that the string “string”
was passed to an interpreter function and the contents of it evaluated. Clearly doing
something like defining “WRITE” as “READ” would lead to a great deal of
confusion!

110.3. C++ ||

Like Fortran, C++ has evolved from earlier languages. The original, BCPL, was
adopted and enhanced by Bell Laboratories to produce B and then C as part of their
project to develop Unix.

110.3.1. C’ “

The main features of C are its access to low-level features of the system and its
extremely compact (and often confusing) notation. C has often been described as a
write only language as it is relatively easy to write code which almost no one will be
able to decipher. The popularity of C stems from its close association with Unix rather
than from any inherent qualities. While there are probably still more programs written
in Fortran and COBOL than there are in C, it is almost certain that more pseple
programs written in C (or C++) than in any other language. The vast majority of
shrink wrapped applications are now written in C or C++.

While C compilers are still widely available and in common use, there is little or
no justification for using C for any new project. C++ (which is more than just an
improved version of C) provides all the functionality of C and allows the code to be
written in a more flexible and readable manner.

Many programs were written in C during the late 1980s because it was the “in”
language rather than the best for a given application. As a result of this investment and
the relative simplicity of gradually moving over to C++, most mainstream applications
inC

10.3.2. Object Oriented’ “

As systems became bigger, it became desirable — often essential — to reuse
components as much as possible. Historically this was achieved through the use of
software libraries, but such libraries tend to be useful only for low-level routines. The
concept of Object Oriented Programming was introduced to C to provide a straight
forward way of handling many similar — but not identicadbjects without having to
write specialised code for each object. An object is simply some data which describes
a coherent unit.

" Not examinable
" Not examinable

" Not examinable

-95



Numerical Methods for Natural Sciences |B Introduction

Suppose we have an object my cup which belongs to some class Ccup_of drink
(say). The object my_cup will take the form of a description of the cup which might
include information about its colour, its texture, its use and its contents. Suppose we
also have an object my plate and that this belongs to a class Cplate of food. Clearly
there is much in common between a cup and a plate. They are both crockery, although
my_cup will contain a drink while my_plate will contain food. To save us having to
define the crockery aspects separately for my _cup and my_plate, we shall allow them
to inherit these attributes from a class Ccrockery. Tableware will, in turn, inherit
attributes from other classes such as Ctableware, Ccolour and Ctexture. This
hierarchy may be expressed as

Ccup_of_drink: Ccrockery, Cdrink
Cplate of food: Ccrockery, Cfood
Ccrockery: Ctableware, Ccolour, Ctexture

Similarly we might have a teaspoon my_teaspoon belonging to Ccutlery which
follows

Ccutlery: Ctableware, Ccolour

The object-oriented approach comes in if we have an object my dishwasher. The
dishwasher will accept all objects belonging to Ctableware. The classes Ccrockery
and Ccutlery are both derived from Ctableware and so any Ccrockery or Ccutlery
object is also a Ctableware object, and can thus be washed by the my_dishwasher.
Similarly as Ccup_of drink and Cplate of food are derived (indirectly) from
Ctableware and so can be washed by my_dishwasher.

The object my dishwasher would simply say “wash thyself” to any object it
contains. For aCcrockery or Ccutlery object the process of washing would be
identical, and could thus be embodied atGtebleware level. It is not quite so simple
for the Ccup_of drink andCplate of food objects as they contain food which would
be destroyed by the dishwasher. Thus wiman dishwasher tries to wash the
Ctableware derived objecimy plate, it is necessary for th€plate of food class to
override theCtableware procedure for washing. In this example tBgate of food
response to the dishwasher may be to declarenyhplate empty of food and then
pass the request for washing the plate down to its embetimedkery class which
will in turn pass it down t&tableware.

|10.3.3. Weaknesses ||

On the surface, the class structure would appear to allow C++ to be adapted to any
type of application. In practice there are some things that are difficult to achieve in a
seamless way and others which lead to relatively inefficient programming. This
inefficiency may not matter for a wordprocessor (although users of Microsoft Word
may not agree), but can be critical for a large scale numerical simulation.

For someone brought up on most other languages, the most obvious omission is
support for multidimensional arrays. While C++ is able to have an array of arrays, and

" Not examinable

- 96



Numerical Methods for Natural Sciences |B Introduction

so have some of the functionality of a multidimensional array, they can not be used in
the same way and the usual notation can not be employed. Further, it is easy to get
confused as to what you have an array of, especially with the cryptic notation shared
by C and C++.

C++ itself isavery small language with only afew built in functions and operators.
It gains its functionality through standard and specialised libraries. While this adds to
the flexibility, it has implications on the time taken to compile a program and, more
importantly, on the execution speed. Even with the most carefully constructed
libraries and the functions being inserted in-line (instead of being called), the fact the
compiler does not understand the functions within the library limits the degree of
optimisation which can be achieved.

10.4. Others

10.4.1. Ada’

Touted as the language to replace all other languages, Ada was introduced in the
1980s with a substantial backing from the US military. Its acceptance was slow due to
its cumbersome nature and its unsuitability for many of the computers of the period.

110.4.2. Algol’ “

In the late 1960s and early 1970s Algol (Algorithmic Language) looked as though
it would become the scientific computer language. Algol forced the programmer to
adopt a much more structured approach than other languages at the time and offered a
vast array of built-in functionality such as matrix manipulation. Ultimately it was the
shear power that lead to the demise of Algol as it was unableto fit on the smaller mini
and microcomputers as they were devel oped.

110.4.3. Basic “

Basic has developed from a design exercise in Southampton to the language which
is known by more people than any other. The name Basic (Beginners Symbolic
Instruction Code) does not really represent a language, but rather a family of
languages which appear similar in concept but will differ in almost every important
detail. Most implementations of Basic are proprietary and some are much better than
others. Basic was designed as an interpreted language and most implementations
follow this heritage. The name Basic is often used for the interpreted macro language
in many modern applications, especially those from Microsoft.

" Not examinable
" Not examinable
" Not examinable

" Not examinable

-97



Numerical Methods for Natural Sciences |B Introduction

10.4.4. Cobol “

Cobol (Common Business Oriented L anguage) and Fortran are the only two early
high-level languages remaining in widespread use. However, whereas Fortran has
evolved with time, Cobol is essentially the same as it was 30 years ago. It is an
extremely verbose, English-like language aimed at business applications. It remainsin
widespread use not because of any inherent advantages, but because of the huge
investment which would be required to upgrade the software to a more modern
language.

10.4.5. Delphi” “

Developed by Borland International as a competitor for Microsoft’s Visual Basic,
Delphi tries to combine the graphical development tools of Visual Basic with the
structure and consistency of Pascal and the Object Oriented approach of C++ and
Smalltalk. It is being predicted that Delphi will become increasingly popular on PCs.

10.4.6. Forth’ “

A threaded-interpreted language. Developed to control telescopes. Uses reverse-
polish notation. Extremely efficient for an interpreted language, but relatively hard to
read and program.

110.4.7. Lisp’ “

Good for Atrtificial Intellegence, provided you like recursion and counting brackets.

10.4.8. Modula-2" “

An improved form of Pascal. Very good, but never widely accepted.

10.4.9. Pascal’ “

Developed as a teaching language. Handard lacks many of the features
essential for effective computing. Most implementations provide significant
enhancements to this standard, but are often not portable. Can be used for scientific
programming, but the compilers are often inferior to those of Fortran and C++.

" Not examinable
" Not examinable
" Not examinable
" Not examinable
" Not examinable

" Not examinable

- 98



Numerical Methods for Natural Sciences |B Introduction

10.4.10. PL/1 “

Introduced by IBM in the 1970s as a replacement for both Cobol and Fortran, PL/1
has some of the advantages and some of the disadvantages of both languages.
However, it never gained much of afollowing due to a combination of its proprietary
nature and a requirement for very substantial mainframe resources.

10.4.11. PostScript’ “

Often thought of as a printer protocol, PostScript is in fact a full-fledged language
with al the normal capabilities plus built in graphics! Like Forth, PostScript is a
threaded-interpreted language which results in efficient but hard to read code. While
PostScript can be used for general-purpose computing, it is inadvisable as it would tie
up the printer for along time! Unlike most languages in wide-spread use, PostScript is
a proprietary language belonging to Adobe. There are, however, many emulations of
PostScript with suitably disguised names: GhostScript, StarScript, ...

10.4.12. Prolog

10.4.13. Smalltalk’

One of the first object-oriented programming languages. It provides a more
consistent view than C++, but is less widely accepted.

10.4.14. Visual Basic “

This flavour of Basic was introduced by Microsoft as an easy method of writing
programs for the Windows GUI. It has been an extremely successful product, but
remains relatively inefficient for computational work when compared with C++ or
Fortran.

" Not examinable
" Not examinable
" Not examinable
" Not examinable

" Not examinable

- 99



