
ARTICLE IN PRESS
Physica A 351 (2005) 142–158
0378-4371/$ -

doi:10.1016/j

�Correspo
E-mail ad
www.elsevier.com/locate/physa
Randomness in the bouncing ball dynamics

S. Giusepponia, F. Marchesonia,�, M. Borromeob
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Abstract

The dynamics of a vibrated bouncing ball is studied numerically in the reduced impact

representation, where the velocity of the bouncing ball is sampled at each impact with the plate

(asynchronous sampling). Its random nature is thus fully revealed: (i) the chattering

mechanism, through which the ball gets locked on the plate, is accomplished within a limited

interval of the plate oscillation phase, and (ii) is well described in impact representation by a

special structure of looped, nested bands and (iii) chattering trajectories and strange attractors

may coexist for appropriate ranges of the parameter values. Structure and substructure of the

chattering bands are well explained in terms of a simple impact map rule. These results are of

potential application to the analysis of high-temperature vibrated granular gases.

r 2005 Elsevier B.V. All rights reserved.

PACS: 46.70.Lk; 05.45.�a; 81.07.�b
1. Introduction

A problem as simple as the dynamics of a Bouncing Ball (BB) on an oscillating
plate [1–4] keeps intriguing physicists despite the rich literature on or related to the
subject [5–14]. This is, for example, the case of the archetypal model of an inelastic
BB with constant restitution coefficient a (a is the ratio of the relative ball-plate
velocity immediately after and before impact). While there is a general consensus on
see front matter r 2005 Elsevier B.V. All rights reserved.
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the irregular nature of the BB motion, the authors of Refs. [1,2] noticed that after a
sufficiently large, possibly infinite number of bounces, the BB gets eventually locked
onto the plate for a certain interval of one final oscillation cycle (chattering

mechanism) and then relaunched at an appropriate oscillation phase. This implies
that the dynamics of a vibrated inelastic BB would be ultimately periodic, at variance
with: (a) Earlier theoretical studies [6–9], mostly based on the so-called high-bounce
approximation (i.e., neglecting the amplitude of the plate oscillations versus the ball
jump height) and focused on the evidence of period-doubling route to chaos; (b)
Experimental observations on real BBs [14], where some manifestations of chaos
seem, indeed, to emerge. It should be noticed that the validity of the ideal BB model
in most experimental realizations is questionable. In real experiments, the restitution
coefficient a depends on the ball impact velocity relative to the platform [12,15] and
approaches unity for vanishingly small bounce amplitudes, i.e., right during the
chattering process we are to investigate.
Chattering does not exclude the persistence of regular trajectories where a given

sequence of q bounces repeats itself after an integer number k of plate oscillations. In
principle, q (and k) may be extremely large, thus resulting in a truly chaotic
trajectory even for ao1: Moreover, Tufillaro [3,4] showed numerically that for
certain values of the model parameters, there exists an appreciable fraction of non-
periodic BB orbits that may converge toward one (or more) strange attractors.
As a further motivation that inspired this work, we mention the extensive

literature that focused recently on the physics of granular matter, in general, and on
the dynamics of vibrated granular gases, in particular [11–14]. A granular gas can be
regarded as an assembly of identical BB, each colliding inelastically with the walls of
the container and the surrounding balls. Therefore, one expects that some of the
results presented here may apply to the study of high-temperature (or low-density)
vibrated granular gases as well [16].
In this paper we present a quantitative description of the chattering dynamics of

an ideal inelastic ball bouncing on a vibrating platform. Our results are arranged as
follows. In Section 2 we introduce the ideal BB model and show how its dynamics
can be conveniently described in the reduced impact representation. In this
representation the velocity of the bouncing ball is sampled at each impact with the
plate. Moreover, we show how to reduce our analysis to a special region in the
impact parameter space where all the BB trajectories get eventually trapped, with no
exceptions (trapping region). In Section 3 we propose a simple impact map rule to
determine the nth forward image of the trapping region. After n iterations the
representative points of the trapping region are mapped into a characteristic band

structure that for ao1 comprises a fixed number of extended bands and a countable
set of n � 1 looped, nested chattering bands; the latter ones insist upon a limited
domain of the impact phase (chattering phase). In Section 4 we analyze the stability
of the BB periodic trajectories, thus obtaining a condition for the existence of strange
attractors—necessarily inside the trapping region. In most cases, one expects to
detect just one attractor inside the top extended band of the first iterate of the
trapping region; all attractors may be generated from a corresponding stable
periodic orbit through period doubling. Our analysis of the BB chattering is not
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affected by the presence of strange attractors. In Section 5 we discuss the possibility
of applying our results to the statistical analysis of high-temperature vibrated
granular gases.
2. The ideal bouncing ball

The modelling of an ideal BB is really simple: A point-like unit mass with
coordinate zb impinges vertically on a rigid plate of infinite mass oscillating up and
down with law zpðtÞ ¼ �A sinðOtÞ (arbitrary time origin); the BB is subject to a
uniform acceleration of gravity �g and the inelastic nature of its instantaneous
collisions with the plate is fully described by a constant restitution coefficient a: Here
a � ð_zb � _zpÞþ=j_zb � _zpj�; where the subscripts denote the time instant, respectively,
after (+) and before (�) the ball-plate impact (Fig. 1). All other forces (internal and
external, alike) are neglected for simplicity. Dimensionless units are adopted
throughout by expressing t in units of T ¼ 2p=O; and the vertical displacements zb;p

in units of gT2=2:
A closely related version of the BB problem is represented by the so-called impact

oscillator, where an elastic restoring force attracts the ball toward the plate [10,17].
2.1. Impact representation

A BB trajectory can be mapped into a point process of impact events (Fig. 1a).
The nth impact event is characterized by two dimensionless coordinates, the impact
time tn and the relative velocity W n � W ðtnÞ immediately after the impact (Fig. 1b),
W n ¼ _zbðtnþÞ � _zpðtnþÞX0: As the trajectory between two consecutive impacts is
known analytically, the relevant impact parameters are related through the implicit
map

G
2p

½sinð2ptnþ1Þ � sinð2ptnÞ	 þ ½W n � G cosð2ptnÞ	


ðtnþ1 � tnÞ � ðtnþ1 � tnÞ
2
¼ 0 , ð1Þ

W nþ1 ¼ �aW n þ 2aðtnþ1 � tnÞ � aG½cosð2ptnþ1Þ � cosð2ptnÞ	 . (2)

The ideal BB dynamics is thus controlled by two parameters, only, the restitution
coefficient a and the reduced acceleration G � AO2=pg:
Starting with arbitrary initial conditions for bounce n, the impact map (1)–(2) may

be iterated numerically forward and backward to determine the unique impact
parameters of bounces n þ 1 and n � 1; respectively; the iteration procedure can be
repeated as many times as our computer accuracy allows. To avoid stretching the
results out over several plate cycles the time axis can be folded as t ! t � tmod½1	:
The ensuing reduced impact representation of the BB dynamics [1–4,9] has the
topology of the half-cylinder ð0ptp1;WX0Þ drawn in Fig. 1c—see also Figs. 2
and 3.
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Fig. 1. Bouncing trajectories for a ¼ 0:5; G ¼ 1:724 and W 0oW 0 ¼ 3:40 and their representations: (a)
Real-time representation, zb vs. t, of three typical trajectories, (1) periodic, (2) chaotic and (3) chattering.

The period of the plate oscillations zpðtÞ (dotted curve) sets the time scale; (b) Orbit of the trajectories of

panel (a) in the ðW ; zÞ plane (relative ball-plate coordinates). Note that the stroboscopic representation
(Section 5) is obtained by sampling this type of BB trajectories at regular time intervals nT; (c) reduced

impact representation of the trajectories of panel (a): (1) one cross (
); (2) dots; and (3) pluses (þ). As in

(a) we choseW 0oW 0 (dashed line), it follows immediately that here all representative points belong to the

trapping region D0:
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The impact representation is based on an asynchronous sampling of the BB
trajectories; the value of tn; the impact time of the nth bounce, varies greatly
depending on the trajectory initial conditions. In particular, a chattering trajectory
(Sections 2.2 and 3.2) can execute infinitely many bounces in less than one plate
oscillation period T, while the bounces of the periodic trajectories may span over
many a period T. The simplest synchronous representation of the BB dynamics
utilizes the plate oscillations as an external clock, namely, all trajectories get sampled
at the same time instant tn ¼ nT þ t0; where n ¼ 1; 2; . . . ; t0 ¼ 0 for convenience.
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Fig. 2. Forward image of D0 in extended (a) and reduced (b) impact representation for the generic case

a ¼ 0:5; G ¼ 1:947: The numerical estimatesW 0 ¼ 3:55 and tmax ¼ 6:05 compare well withW 0 ¼ 4:10; Eq.
(3), and tmax ¼ 6:60; Eq. (4). Accordingly, in panel (a) D1 encroaches upon the seventh plate oscillation,

while on folding, it develops six extended bands. The points belonging to band k0 represent the impact

parameters of the trajectories that bounce on the plate for the first time during the ðk þ 1Þth plate

oscillation; the central region is labelled 00 as it represents the trajectories that bounce on the plate with

0ot1p1: Both panels are limited from above by the boundary lineW 0 ¼ W 0: The broken forward image
of the counterclockwise oriented boundary lines ðABÞ0; ðBCÞ

0 and ðCDÞ
0 are drawn in dark gray, light gray

and black, respectively. In both panels, the non-uniformly shaded area represents the forward image of the

uniform grid ðm=Nt; nW 0=NW Þ; with m ¼ 0; 1; . . .Nt; n ¼ 0; 1; . . .NW ; and Nt ¼ 10
3; NW ¼ 720;

introduced to sample D0: The inset of panel (a) is a blow up of the rectangle centered at t1 ¼ 1; the
non-uniform distribution of the D1 grid is apparent. The crosses (
) denote the five stable periodic orbits

allowed by our choice of the BB parameters (see Section 4).

S. Giusepponi et al. / Physica A 351 (2005) 142–158146
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Fig. 3. Backward image of D0 in extended (a) and reduced (b) impact representation for a ¼ 0:5; G ¼

1:947: In both panels the boundary line W 0 ¼ W 0 and the backward image of the uniform grid sampling

D0; see Fig. 2, are reported for reader’s convenience. The broken backward image of the counterclockwise-
oriented boundary lines ðABÞ0; ðBCÞ

0 and ðCDÞ
0; panel (b), are drawn in dark gray, light gray and black,

respectively. The band structure of D�1 in (b) results from the folding of the complicated extended pre-

image of D0 in (a).
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This is the stroboscopic representation of the BB dynamics briefly mentioned in
Section 5.

2.2. General features

We summarize now a few well-known properties [1–4] of the BB dynamics:
(i) Launching mechanism: The ball, placed on the moving plate, i.e., with W 0 ¼ 0;

sits on it until the plate acceleration overcomes the acceleration of gravity (i.e.,
GX1=p). It follows that the locked state is stable for 0pt0ptg and 1� tf pt0p1;
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with tf ¼ tg � 1=2 ¼ ð1=2pÞ arcsinð1=pGÞ; and unstable for tgpt0p1� tf ; there-
fore, the ball is launched by the plate with t0 ¼ tg;
(ii) Trapping region: Its existence follows the observation that, no matter what t0;

the impact velocity of the first jumpW 1 is smaller than the initial impact velocityW 0

for all W 0 above a certain limiting value W 0: This implies that all trajectories
originated outside the trapping region Dðt;W Þ � ð0pWpW 0; 0ptp1Þ eventually
fall into it, with no exceptions (Fig. 1c). Correspondingly, the time duration of all
bounces mapped in D cannot overcome a certain value tmax: Both W 0 and tmax are
functions of a and G: The velocity W 0 was approximated [18] through the impact
relations (1)–(2) to

W 0 ¼
aG
1� a

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4

pG
1� a
1þ a

r !
; (3)

correspondingly,

2tmax ¼ 1þ W 0 þ Gþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW 0 þ GÞ2 þ 2G=p

q
. (4)

Both approximate laws (3) and (4) improved on earlier estimates [1,4] and compare
well with our numerics for relatively large values of A and a;
(iii) Bouncing trajectories: The trajectories of a BB can be classified into three

categories as shown in Fig. 1:
(a) Chattering trajectories. For most initial conditions the BB gets eventually

locked onto the plate through a sequence of infinitely many bounces that take place
within a finite phase interval of an ultimate plate oscillation. This class of trajectories
is the main concern of the present report;
(b) Periodic trajectories. By definition, the repeating bounce sequence of a periodic

trajectory is represented by q points in the ðt;W Þ space satisfying the periodic
conditions tq ¼ t0 þ k; W q ¼ W 0: In the simplest case of identical bounces, q ¼ 1;
the coordinates of the q ¼ 1 representative point ðt1 ðkÞ;W 1ðkÞÞ satisfying the above
periodic conditions are

1

2

1

2p
arccos

k

G
1� a
1þ a

� �
;
2ak

1þ a

� 	
. (5)

Here the periodic trajectories marked by (�) are clearly unstable [8]. The distance of
such points from the t-axis increases with the time between bounces k, kpGð1þ
aÞ=ð1� aÞ: Moreover, as shown in Figs. 1c and 4 all these points fall within D and,
equivalently, in dimensionless units kptmax;
(c) Chaotic trajectories. For a special value of G (i.e., of the plate oscillation

amplitude) it may happen that a new periodic q ¼ 1 solution with period k enters D;
namely, W k ¼ W 0; for this special value of k, t1 ðkÞ ¼ 1=2 and the (Þ trajectories
coincide. On increasing G; only the (þ) trajectory is stable, as t1 ðkÞ shift,
respectively, to the right (þ) and to the left (�). Note that the relative impact
velocity W 1ðkÞ does not depend on G; only W 0 does (it increases with G). At even
larger G values, the k periodic trajectory, too, becomes unstable; a new stable
periodic trajectory with q ¼ 2 close representative points can be identified instead
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Fig. 4. Mapping rule D0 ! D1 for G ¼ 1:947 and a ¼ 0:5: The frame ðABCDÞ
0 represents D0: The

forward image of the uniform grid sampling D0; see Fig. 2, is reported for reader’s convenience. The curves
of the contour ðABCDÞ

1 are also drawn in different gray shades as in Fig. 2. Domains of D0 and D1 related

through the impact map (1)–(2) carry the same label (primed for D1). The stable periodic trajectories with

q ¼ 1 and k ¼ 1–5 are marked by crosses—one per band with identical label k0:
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(period doubling). On further increasing G this mechanism repeats itself until a
persistent chaotic q ¼ 1 trajectory is established, whose representative points
populate a twisted curve in D; showing the typical features of a strange attractor

[4,8]. A numerical analysis of this class of trajectories is reviewed in Section 4.
3. The chattering mechanism

We focus now on the chattering mechanism: this is a process of inelastic collapse
that affects all the BB trajectories originated within the trapping region, with the
exception of the periodic orbits (a countable set) and of the trajectories also
belonging to the basin of attraction of the strange attractors of Section 4.
In view of our definition of the trapping region, we restrict our study of the BB

dynamics to the region of initial impact conditions D0 � Dðt0;W 0Þ and determine its
forward image D1 in the ðt1;W 1Þ space. In the generic case of Fig. 2, the forward
images ðABCDÞ

1 of the boundary lines of D0; ðABCDÞ
0; are drawn in different gray

shades and oriented counterclockwise. In Fig. 2b, the upper D0 boundary line
ðCDÞ

0—the black segment W 0 ¼ W 0—is mapped into an extended band structure
obtained by wrapping the stretched ðt1;W 1Þ image of Fig. 2a around the half-
cylinder ðt1;W 1Þ: The number of extended bands coincides with the maximum time
between bounces tmax expressed in units of the plate oscillation period, i.e., the
integer part of tmax in dimensionless units. This is apparent in the extended impact
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representation of Fig. 2a. The image of the t0-axis (dark gray) is a broken line: the
segments ð0; tgÞ and ð1� tf ; 1Þ are mapped into themselves, while the launching
segment [1] ðtg; 1� tf Þ is mapped into a bell-shaped curve plus a dangling arch
contained in band 20: The oriented segment ðBCÞ

0 (light gray) is also mapped into a
broken line: a bell-shaped curve encircled by the forward image of the t0-axis and a
disconnected arch with end points on the forward image of the t0-axis and at the
branching point C1 ¼ D1 of the lowest extended bands 1b0 and 20:
In order to clarify the trapping mechanism, in Fig. 3 we plotted the backward

iterate of D0; D�1; using the gray shade code and the orientation rule earlier adopted
in Fig. 2. At variance with D1; here the pre-image of the ðBCÞ

0 segment bisects all
(five) extended bands, which branch off above the ðCDÞ

0 segment, namely, outside
the trapping region D0:
On combining the contents of Figs. 2 and 3, one determines the mapping rule

D0 ! D1 illustrated graphically in Fig. 4. The rectangle ðABCDÞ
0 in the impact

space containing D0 and D1 can be divided up uniquely in special domains related by
the implicit map (1)–(2). Indeed, each band of D1 must be regarded as the map of a
uniquely connected D0 domain, whose boundaries always comprise a portion of the
D0 upper boundary line W 0 ¼ W 0:Moreover, all the extended bands 2

0–60 intersect
the vertical axes t1 ¼ t0 ¼ 0 and t1 ¼ t0 ¼ 1; therefore, the corresponding domains
2–6 of D0 must be encircled by the backward image of the W 0-axis (Fig. 3b).
Analogously, the central area of D1 corresponds to the domain of D0 encircled by the
pre-image of the t0-axis and split in two domains, 0 and 1a, by the W 0-axis. The
intercepts of the backward iterate of the W 0- and t0-axis with the D0 boundaries are
labelled L0k and R0k with k running from 0 to 5; their forward image is denoted by L1k
and R1k; respectively.
3.1. Extended bands

A simple analysis of the impact map (1)–(2) leads to the conclusion that the

extrema ð~tk; ~W kÞ of the continuous arches
dL0kR0k of Fig. 4 satisfy the identity

~W k ¼ 2j~tkj½1� pg sinð2pj~tkjÞ	 , (6)

in extended impact notation. As a consequence, their minima shift left, from tk ¼ tg

to tk ¼ 1=2; with increasing the index k and separate vertically with unit spacing. In
view of the mapping rule illustrated above, the forward image of the segment cutting
D0 vertically at t ¼ tg bisects to a good approximation all the extended bands of D1:
Studying the BB dynamics requires computing the forward image of D0 after n

impacts with n arbitrary large. The structure of Dn can be analyzed qualitatively as
follows. In Fig. 4, the first iterate D1 is entirely contained in D0 and, therefore,
divided up among D0 domains 0–6; the intersections of D1 with one such domain get
mapped inside the D1 domain carrying the same label; hence D2 is contained in D1;
see Fig. 5, its volume shrinking as an effect of the impact inelasticity [9]. In
conclusion Dn retains the band structure (and labelling) of D1 with two significant
differences, see in Fig. 6: (1) the width of each extended band narrows down to an
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Fig. 5. First, (a), and second, (b), forward iterate of D0: Dashed curves: backward images Rn of the

launching segment ðtg; 1� tf Þ; crosses: midpoints P1n of the D1 extended bands in (a) and their images P2n
in (b); thick curves: the W 1 segment ð1;P

1
4Þ in (a) and its image in (b). The vertical arrows in (b) point to

the tip of the three sub-bands of band 50 of D2:

S. Giusepponi et al. / Physica A 351 (2005) 142–158 151
asymptotic value, while its fine structure gets more and more complicated with
increasing n; (2) the domain 00 [ 1a0 [ 1b0 of D1 is replaced by n � 1 new looped
chattering bands.
The intricacies of the extended band sub-structure of Fig. 6 can be explained by

iterating the mapping rule of Fig. 4. The tip of band 60 belongs to the domain 0 of
D0; therefore, all its points get mapped into the chattering bands of D2 contained in
domain 00 - no band 60 is detectable in Fig. 5 for D2:
As another example, we notice that domain 5 in Fig. 4 intersects bands 30–50 of D1:

The forward image of such three disconnected domains of D1 consists of three
disconnected looped sub-bands embedded in band 50 of D2 and intersecting the
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Fig. 6. Chattering band structure of D20 plotted against the contour of D1; with chattering bands labelled
1–19: (a) The midpoints of the three bottom-extended bands after 18 iterations, P181;2;3; and the
corresponding first and second forward images (circles, triangles and crosses). The first two forward

images of P181;2;3 sit on top of the three sub-bands of the chattering bands 1 and 2, both contained in the

chattering region under the bell-shaped thicker black curve; (b) forward image of the midpoints of the two

bottom-extended bands of D1; P01;2; chosen as initial conditions, after k ¼ 16–19 iterations (circles and

triangles). In panel (c) the chattering bands displayed in (b) are plotted against the arches of the k ¼ 16–20

iterate of the t0 segment contained by the curve R1:

S. Giusepponi et al. / Physica A 351 (2005) 142–158152
W 0-axis at t0 ¼ 0; the right- and left-most sub-band tips in Fig. 5 correspond to
band 50 and 30 of D1; respectively.

Finally, the forward images of the intersections between the bisectrix of the

topmost D1 band and the arch dL0kR0k provide a good estimate of the width of the
k þ 10 band of Dn for large n. When repeated over and over again, this construction
(Smale’s horseshoe [9,18]) generates the complicated Cantor-like band sub-structure
displayed in Fig. 6.
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3.2. Chattering bands

The structure of the chattering bands can be analyzed in detail by extending the
technique illustrated in Fig. 4. The curves Rn; n ¼ 1; 2; . . . ; of Fig. 5a represent the
nth backward iterate of the launching segment ðtg; 1� tf Þ on the t0-axis. Here R1
coincides with the curve dL00R01 of Fig. 4. By definition, R1 encloses all the initial
impact conditions allowing at least one bounce of the BB in the region 00 [ 1a0:
Analogously, each of the nested curves Rn encloses the initial conditions of the
trajectories that execute n or more bounces in the same region; for n ! 1 the curves
Rn quickly approach the curve R1 that defines the actual chattering region. Note that
the forward image of the region delimited by R1; 0

0 [ 1a0; encompasses all chattering
bands—see Figs. 5 and 6.
In Fig. 5a we marked (thicker line) theW 1 segment with end points at t ¼ 1 and at

the midpoint P14 of band 5
0; it contains all midpoints P1k�1 of each D1 band k

intersecting the W 1-axis. In Fig. 5b the image of such a segment is shown to bisect
quite closely the chattering bands of D2:
Moreover, we have computed 19 iterates of the W 0 segment ½1;P

0
2	 (only the last

four are shown in Fig. 6). As it lies entirely below R1 (Fig. 6a), its iterates approach
the t-axis; the kth iterate bisects the corresponding chattering band k and the kth
iterate of the points P11;2; Pk

1;2; fall on top of the two outer sub-bands of the chattering
band k (Fig. 6b). Note that in the case of Dk; with kX2; R1 and R2 intersect three
extended bands, while Rn with nX3 intersect two bands only (compare Figs. 5a and
b); accordingly, the chattering bands are split into three (the two topmost bands) or
two sub-bands (all remaining lower bands), respectively.
To further characterize the chattering band structure, in Fig. 6c we computed

the kth iterate of the chattering region under R1: By definition each iterate
belongs to the intersection of the chattering region being mapped with the central
domain 00 [ 1a0: The structure of Fig. 6c clearly shows that the tip of the kth
chattering band is embedded in the sector delimited by the kth and the ðk þ 1Þth
iterate of the t0-axis.
3.3. Chattering trajectories

More insight in the dynamics of the chattering mechanism may be gained by
monitoring the time evolution of single trajectories (Fig. 7), as suggested in Ref. [2].
The chattering bands are visited by the trajectories that have entered the impact
region encircled by R1: Moreover, those originated in the chattering region below
R1 perform a straight sequence of infinitely many bounces with exponentially
decaying amplitude. The representative points ðtn;W nÞ of a chattering trajectory
approach the t-axis (Fig. 7a) cascading through the chattering bands according to
the asymptotic law W n ¼ 2ðt1 � tnÞ: Note that the chattering process is completed
within a finite time interval [4,13], negligible with respect to the plate oscillation
period. Moreover, the chattering bands overlap the chattering region below R1 with
the phase comprised in the interval ð0; tgÞ; namely, only in 0 \ (00 [ 1a0). As all the
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Fig. 7. (a) Chattering trajectories in the impact space ðt;W Þ as an oriented sequence of impact events

represented by ðþÞ for the trajectory initiated at the lower edge of band 30 with t0 ¼ 0; and by (
) for the
BB launched by the platform at t0 ¼ tg: The latter trajectory repeats itself after each chattering process.
The representative points of D20 are reported for the sake of a comparison. Solid line: the fitting law

W n ¼ 2ðt1 � tnÞ: Inset: Fraction Pb of the trajectories with initial conditions at the grid points of Fig. 4b

and entering the layer 0pWp10�6 with tcptptg; after n bounces. The exponential decay of Pb with n is

apparent. (b) Noisy trajectory initiated at t0 ¼ tg with W 0 ¼ 0: Numerical noise is generated by
randomizing the impact parameters as explained in Section 3.3; other simulation parameters are as in

panel (a). After 106 bounces the trajectory impact points populate both the extended and the chattering

bands without undergoing complete chattering.

S. Giusepponi et al. / Physica A 351 (2005) 142–158154
points of this portion of the impact space are mapped into the lower sides of the
chattering bands, so are the chattering trajectories in their final approach to the
plate.
The chattering bands clearly accumulate against a finite segment ðtc; tgÞ of the

t-axis (chattering phase). By repeatedly mapping forward the lower edge of band
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30 at t0 ’ 0; one traces closely the tips of all chattering bands and easily evaluates
their limiting phase tc (Fig. 7a).
The band structure we have illustrated so far is rather robust toward numerical

noise. In Fig. 7b we plotted the impact parameters of 106 bounces of the re-launching
trajectory, where the impact parameters ðtn;W nÞ in (1)–(2) have been modified at
each step by adding the small random amounts dt; dW ; uniformly distributed in
½�5; 5	 
 10�4 and ½0; 1	 
 10�3; respectively. Such a noisy trajectory does not
undergo a full chattering process, as the small perturbation we introduced suffices to
unlock it from the plate after a finite number of bounces; nevertheless, the topology
of the band structure (both extended and chattering) is clearly resolved.
Finally, it should be noticed that chattering resembles inelastic collapse, the

process by which partially inelastic balls dissipate their energy through an infinite
number of collisions in a finite amount of time [12,13]. In particular, it has been
shown that letting the coefficient of restitution approach 1, as the impact velocity
goes to 0, makes inelastic collapse disappear [19]. We checked numerically [16] that
the BB chattering, too, is suppressed in the limit a ! 1 (as signalled by W 0; Eq. (3),
tending to 1 in the same limit).
4. Searching for strange attractors

Although in Figs. 2–7 we chose BB parameter values such that all D0 points
undergo chattering, the existence of strange attractors in the ðt;W Þ space (of course,
inside the trapping region) is by no means ruled out. Following the indications of
Refs. [1–4], in Fig. 8 we lowered the plate acceleration G; thus revealing a stable
strange attractor in band 50: A weak condition of existence (and stability) of such an
object can be determined as follows. We know from Section 2.2 that when a q ¼ 1
periodic trajectory executes identical bounces with time length k, the maximum value
of k compatible with our choice of a and G is the integer part of kmax ¼

Gð1þ aÞ=ð1� aÞ: A simple linear stability analysis [1] suggests that bounces of
duration k are stable against chattering as long asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2max �
4

p2
1þ a2

1� a2

r
okokmax . (7)

Let us suppose that a new stable periodic trajectory in the topmost extended band k0

has appeared for k ¼ kmaxða;GÞ—see also Section 2.2; on increasing G; kmax grows
larger than the integer index k denoting the new periodic trajectory, so that both
inequalities (7) may hold good and the trajectory keeps being stable; on further
increasing G the first inequality (7) eventually fails and the kth periodic trajectory
becomes unstable. Note that, in view of Eq. (7), the existence of two or more stable
trajectories—with decreasing k values—requires a values much closer to one than in
our simulation (a ¼ 0:5). Furthermore, the smaller kmax; the wider the stability
domain of the periodic solutions in the (a;G) space.
Inequalities (7) clearly define a necessary condition for the existence of a stable

chaotic trajectory made of slightly perturbed (i.e., irregular) bounces with time
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Fig. 8. Strange attractor (dark gray) for G ¼ 1:724; a ¼ 0:5 (and W 0 ¼ 3:40), obtained by recording an
individual trajectory for over 106 bounces, and corresponding basin of attraction (gray), see text. The

relevant band structure of D20 (light-gray dots) is plotted against the contour of D1; the chattering region
00 [ 1a0 is delimited by the bell-shaped thicker black curve. The attractor was shown to originate from the

periodic trajectory (þ) through period doubling; note that both lie well outside D20 (see inset), though well

inside D1:
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duration close to k, whose representative points diffuse over the strange attractor
structures plotted in Figs. 8 and 9.
The presence of a strange attractor does not affect our characterization of the

chattering process. All the D0 trajectories undergoing chattering jump down the
ladder formed by the chattering bands. As noticed in Ref. [3], Dn shrinks due the
inelasticity (ao1) of the ball-plate collisions, leaving the strange attractor isolated in
an emptied portion of the relevant (in most cases, the topmost) extended band of D1:
However, in impact representation it takes a large number n of bounces for the real
profile of the strange attractor to emerge, as a ‘‘shadow’’ prolonging it is still
apparent in Fig. 9b after n ¼ 100 bounces; for much larger n values the points
shadowing (i.e., not belonging to) the attractor eventually undergo chattering, thus
sparsely populating the lower lying chattering bands. The attractor ‘‘shadow’’ gets
depleted over time according to a unique exponential decay law (see inset of Fig. 9b);
after 200 bounces the strange attractor has fully emerged; it is populated by about
50% of the initial grid points uniformly sampling D0:
5. Concluding remarks

We explain now why we made use of the impact representation, as opposed to the
stroboscopic representation. The impact representation, sampling a bouncing
trajectory at each impact time, allows a detailed analysis of the chattering
mechanism; in particular, a chattering BB is sampled infinitely many times within
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Fig. 9. ‘‘Shadowed’’ strange attractor for a ¼ 0:5 and G ¼ 0:5518: The strange attractor (dark gray dots),
centered around the periodic orbit (
), is obtained by recording an individual trajectory for over 106

bounces. In panel (a) the frame is restricted to the countour of D0; the forward image of each boundary
line is plotted in different colors: light gray (W 0-axis), dark gray (t0-axis) and black (upper boundary line
W 0 ¼ 0:90). In panel (b) the representative points of D100 are reported for the sake of a comparison; the

strange attractor continues into a long, looped ‘‘shadow’’ formed by points of D100 contained in band 10:
After a large number of bounces (see inset for Pb vs. n; notation as in Fig. 7), the points not belonging to

the attractor eventually fall onto the t-axis through a standard chattering mechanism; after 200 bounces
the attractor only is distinguishable (i.e., no shadow is visible). The curve AC1 (light gray) from panel (a) is

reported for clarity. Note that the chattering bands are ‘‘open’’ (convex arches, not loops) as band 10 does

not intersect the t ¼ 1 axis.
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a fraction of the cycle T. The stroboscopic representation, instead, amounts to a
synchronous sampling clocked by the plate oscillations. A high jumping BB with
impact parameters ðt;W Þ in an extended band k0 at time nT, gets sampled k times
through one complete bounce nT ! ðn þ 1ÞT ; namely, it corresponds to a
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representative point in at least k subsequent stroboscopic images of extended band it
belongs to; on the contrary, a BB with impact parameters belonging to the chattering
region at nT undergoes full chattering within less than one period T and, therefore,
corresponds to no stroboscopic image point at time ðn þ 1ÞT : Thus, the stroboscopic
representation tends to filter away chattering versus high jumping trajectories.
A detailed understanding of the BB problem, besides its interest in the theory of

dynamical systems, is of potential application to the characterization of the
dynamics of a vibrated granular gas. An assembly of identical grains subject to
gravity and kept in steady motion through the oscillations of the container bottom
(plate) can be modelled by a gas of ideal BBs that collide inelastically with the
container walls and the remaining balls [11–13]. For large plate accelerations (i.e., A

and/or o) the grain–grain collisions become less frequent so that the energy loss due
to the grain–grain interaction is counterbalanced by the energy injected through the
bottom of the container; therefore, one can visualize such a vibrated granular gas as
an ensemble of fully randomized BBs to which the stroboscopic analysis may apply
with success. Of course, the grain–grain collisions, no matter how low the gas
density, are likely to blur the details of the chattering dynamics, ultimately
preventing the BB from locking, and to unsettle any chaotic trajectories. Preliminary
simulation runs [16] seem to confirm that a characterization of vibrated granular
gases along this line is, indeed, viable.
References

[1] J.M. Luck, A. Mehta, Phys. Rev. E 48 (1993) 3988.

[2] A. Mehta, J.M. Luck, Phys. Rev. Lett. 65 (1990) 393.

[3] N.B. Tufillaro, Phys. Rev. E 50 (1994) 4509.

[4] N.B. Tufillaro, T.A. Abbott, J.P. Reilly, An Experimental Approach to Nonlinear Dynamics and

Chaos, Addison-Wesley, Reading, MA, 1992.

[5] E. Fermi, Phys. Rev. 75 (1949) 1169.

[6] L.D. Pulstylnikov, Trans. Moscow Math. Soc. 2 (1978) 1.

[7] B.V. Chirikov, Phys. Rep. 52 (1979) 263.

[8] A.J. Lichtenberg, M.A. Lieberman, R.H. Cohen, Physica 1D (1980) 291.

[9] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector

Fields, Springer, Berlin, 1983 (Chapter 2).

[10] J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics and Chaos, Wiley, New York, 1991 (Chapter

15).

[11] A. Mehta (Ed.), Granular Matter: An Interdisciplinary Approach, Springer, Berlin, 1994.

[12] H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68 (1996) 1259.

[13] L.P. Kadanoff, Rev. Mod. Phys. 71 (1999) 435.

[14] see e.g. K. Szymanski, Y. Labaye, Phys. Rev. E 59 (1999) 2863;

Z.J. Kowalik, M. Franaszek, P. Pieranski, Phys. Rev. A 37 (1988) 4016.
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